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Abstract - 

In modern dynamic construction fields, more 

attention has been paid on safely operating heavy 

construction equipment such as cranes, excavators, 

and concrete pump.  In order to improve the safety 

in complicated jobsites, it is highly required to 

provide heavy equipment operators with accurate 

measurement of on-site objects in near real time. In 

this paper, a rapid surface modeling method and its 

performance evaluation through on-site tests are 

introduced. The performance of the proposed 

method was tested with a heavy equipment at 

construction site. The interrelationships among data 

size, processing time, and the size of the resultant 

hull segments were examined from the data analyses. 

The field experimental results demonstrate that the 

proposed dynamic surface modeling method would 

significantly improve the equipment operation 

productivity and safety by distinguishing a dynamic 

surface model being controlled by the operator from 

the point cloud of existing static environment in 3D 

views. 
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1 Introduction 

Visibility-related accidents can be easily caused by 

the interactions between workers, equipment, and 

materials. This problem can lead to serious collisions 

without pro-active warnings. There have been a number 

of advances in vision-aid techniques because lacking 

full visibility is a major contributing factor in accidents 

at construction sites. 3D spatial modeling can help to 

optimize equipment control [1, 24], significantly 

improve safety [2-3], monitor construction progress [4], 

and enhance a remote operator’s spatial perception of 

the workspace [5-8]. However, the rapid processing of 

tens of thousand bits of range data in real time is still an 

unsolved problem requiring further investigation [9]. 

Unstructured work areas like construction sites are 

difficult to graphically visualize because they highly 

involve unpredictable activities and change rapidly. 

Construction site operations require real-time or near 

real-time information about the surrounding work 

environment, which further complicates graphical 

modeling and updating. 

One commonly used method to obtain the 3D 

position of an object is based on 3D laser scanning 

technology [7, 10-11]; this method, however, has some 

limitations, such as low data collection speed and low 

object recognition rates [12]. It has always been a 

challenge to recognize specific objects from a 3D point 

cloud in unstructured construction environments 

because it is difficult to rapidly extract the target area 

from background scattered noises in a large and 

complex 3D point cloud. 

While rapid workspace modeling is essential to 

effectively control construction equipment [13], few 

approaches have been accepted by the construction 

industry due to the difficulty of addressing all the 

challenges of current construction material handling 

tasks with the current sensor technologies. Thus, an 

innovation in rapid 3D spatial information is necessary 

to meet the challenges.  The main objective of this paper 

was to validate a 3D visualization framework to collect 

and process dynamic spatial information rapidly at a 

construction job site for safe and effective construction 

equipment operations. Multi-video camera integrated 

vision-based object recognition and tracking method has 

been developed, based on which, a smart laser scanning 

method was proposed to reduce data size and scanning 

time. 
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Fig. 1. Model-based object recognition and registration [17] 

 

2 Related Work 

For the operator to monitor blind spots of the 

workspace from the cab, a vision-based system using a 

single or multiple cameras is an inexpensive option [14]. 

Brilakis et al. [15] introduced 2D vision-based methods 

that recognize new overlapping feature points and track 

them in the subsequent video stream. To acquire a 

precise 3D position of objects with additional depth 

information, generally two or more cameras generate a 

stereo view after calibration with known intrinsic 

parameters. Park et al. [16] achieved more accurate 3D 

locations of tracking objects by projecting the centroids 

of the tracked entities from two cameras to 3D 

coordinates. Notwithstanding the recent advances, there 

are some known drawbacks of vision-based techniques 

in tracking moving equipment at the sites: 1) additional 

infrastructure is needed to install and maintain cameras; 

2) fixed camera locations have limited view angles and 

resolutions, and 3) the results are sensitive to lighting 

conditions [17]. 

Laser scanners have been extensively utilized to 

automatically obtain the “as-is” condition of the existing 

buildings [18]; they also can be used to classify and 

capture a complex heavy equipment operation as it 

happens or to provide automated feedback to those who 

are conducting the operations [7, 17, 19]. Teizer et al. 

presented a methodology for real-time 3D modeling 

using Flash LADAR which has a limited measurement 

range and low accuracy for outdoor use [3]. Lee et al. 

proposed an automated lifting-path tracking system on a 

tower crane to receive and record data from a laser 

device [13]. Bosche and Hass registered 3D static CAD 

objects to laser-scanned point cloud data [20], which 

can be utilized to efficiently assess construction 

processes. However, most of the algorithms were 

developed mainly to recognize and register static 

objects’ models to point clouds.  Few applications have 

demonstrated the technical feasibility of registering 

dynamic models to point clouds in real or near real time. 

In the authors’ previous studies [17], a model-based 

automatic object recognition and registration method, 

Project-Recognize-Project (PRP), was introduced to 

register the CAD models with the corresponding point 

cloud of the recognized objects through comparing the 

recognized point cloud of the objects with existing CAD 

models in a database (shown in Fig. 1.). While the PRP 

approach provides very detailed, accurate solid models 

in a point cloud, the limitation of this method is that it 

only works for the objects which have corresponding 

models in the database. In this study, a non-model based, 

surface modeling method is introduced to automatically 

recognize and visualize dynamic objects on construction 

sites. 

3 Overview of the Proposed Method 

In Fig. 2, the framework of the proposed rapid 

surface modeling method is illustrated. The developed 

data acquisition system is composed of two 2D line 

laser scanners (80 meter working ranges at 100Hz scan 

speed, up to 2.5 sec / 360º scan, 190º for vertical line), a 

digital camera and three video cameras with a resolution 

of 0.25 degree in a vertical direction and 0.0072 degree 

in a horizontal direction. In this system, multiple
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Fig. 2. The framework of the proposed method 

 

degree-of-freedom (DOF) kinematic problems were 

solved based on the mechanical installation, and 3D 

point cloud data and digital image streams can be 

collected simultaneously. Utilizing this form of flexible 

design together with Time-of-flight (TOF) laser scanner 

working type, higher scanning resolution and faster 

scanning rate were obtained, which is more suitable for 

the complicated dynamic construction environments.  

Working together with the laser scanner system, the 

digital video cameras were employed to capture real 

time image streams in the jobsite for the operators. Then, 

the operators can select the target objects in the image 

streams by drawing a bounding box through the 

developed graphical user interface. Using a robust local 

feature detector, Speeded Up Robust Features (SURF) 

[21], image-based target object recognition and tracking 

algorithms were implemented.   

Taking the bounding box area as an input, smart 

scanning and visualization processes were immediately 

applied to separately collect and update the data of the 

target object and the static site environment. The major 

two steps of the smart scanning method are: (1) a static 

jobsite environment is scanned by the laser system with 

a very high resolution. Those collected site data are 

stored in the memory; and (2) from the second scanning 

round, only the point clouds in the dynamic target area 

specified by the equipment operator are updated 

separately.  In this process, the size of point cloud data 

obtained from complex large construction sites and the 

updating time can be significantly reduced. 

Surface modeling of point clouds can be more 

advantageous for the equipment operators over the 

point-cloud-only visualization because a surface model 

of target object can be better distinguished from a 

complex point-cloud environment. The concave hull 

approach is one of the most widely used surface 

modeling methods creating a polygon that represents the 

area occupied by a set of points. A concave hull better 

details the shape of the point cloud than the convex hull 

does. A concave hull of a set of surfaces is the enclosing 

concave surfaces with smallest volume. There are 

several existing concave hull calculation algorithms [22], 

however the efficiency of these algorithms decreases 

significantly because of high computing queries for the 

large size of point cloud data like the ones obtained 

from construction jobsites.  

The raw data size of point cloud data collected from 

a construction jobsite is quite a large and as a result, it is 

challenging to process and visualize these data in real or 

near real time. In this study, as shown in Fig. 4, the 

smart scanning technology was employed at the very 

beginning of the surface modeling phase in order to 

significantly reduce the data size of the point clouds and 

the surface modeling time. In addition, outliers of the 

point data were statistically identified and removed to 

improve concave hull model accuracy. Then, a data 

filtering and downsizing process was conducted to 

further decrease the number of points. The goal of data 

downsizing is to increase the data processing speed by 

reducing the amount of overly dense data being 

processed. 

4 Field Test and Discussion 

Validation of the proposed methodology was 

implemented on a backhoe loader at a building 

construction site. The data acquisition system was 

mounted on a mobile cart, and set up in the working 

area of the equipment, especially in its blind spots. It 

firstly scanned the whole jobsite and kept the point 

cloud data in the database; then smart scanning and 

visualization were fulfilled based on the selected 

tracking objects. All tests were benchmarked on an Intel 

Core i5 CPU with 4GB RAM on a 64 bit Windows 
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mobile computer. It should be noted that the required 

resolution, registration accuracy, and scan rate for 

successful surface modeling vary based on the scan 

range, ambient lighting conditions, properties of the 

target (e.g., shape, color, reflectivity, and moving speed), 

and the number of mounted 2D laser scanner. In this 

study, all data were collected from the system with two 

2D laser scanners, and the maximum scan speed of 

which is 227,500 points/sec. The scan speed could be 

doubled if four 2D laser scanners were equipped [17]. 

 

 
Fig. 3 The backhoe loader was chosen as target in the 

developed graphical user interface 

 

In this study, a backhoe loader was chosen as a test 

subject. The entire equipment was selected as the 

tracking target, as shown in Fig. 3. Through smart 

scanning, the point cloud of the target area and the site 

environment were separately collected and visualized in 

Fig. 4., and 18,304 points were collected from the target. 

Then the collected raw data was processed by the data 

filtering and downsizing algorithms to decrease the 

surface modeling time. The resolution (the average 

point to point distance) of the raw data is 0.01 m, and 

the raw data size became 17,585 after filtering, and 

varied from 61 to 17,311 after downsizing based on 

different leaf sizes (Fig. 5. and Table 1). The leaf size 

here is defined as the edge length of the 3D voxel, and 

the greater the leaf size is, the more the data size is 

decreased. Table 2 shows the processing time under 

different data downsizing scales and the size of the 

concave hull segments. In Table 2, α limits the size of 

the resultant concave hull segments. The smaller α is, 

the more detailed the hull segments are. The concave 

hull surface modeling on raw data without data filtering 

and downsizing was also evaluated. As shown in Table 

3, the range of surface modeling time for raw data was 

between 1 to 4 seconds. Thus, data filtering and 

downsizing was needed before surface modeling to 

reduce the data size for a real-time application. In Fig. 6, 

the total processing time includes time for data filtering, 

downsizing, and surface modeling. When the leaf size 

was 0.01 m, the total processing time was greater than 1 

second, but in the other sizes the time was all within 1 

second. To deliver a best available result to the operator, 

therefore, the smallest α value was selected. Fig. 7 

shows the surface modeling result of the backhoe holder 

integrated with the data of the static site environment. 

 

Table 1. Data size of each step of the proposed 

methodology 

 
Number of 

points 

Raw data 18,304 

Filtered data 17,585 
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Leaf size = 50 * Resolution* 61 

Leaf size = 10 * Resolution 1,014 

Leaf size = 5 * Resolution 3,036 

Leaf size = Resolution 17,311 
*Resolution = 0.01 m in the case 1. 

 

 
Fig. 4. Collected point cloud of (a) the static site 

environment and (b) the target area 
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Fig. 5. The point cloud of (a) the filtered data, (b) the downsized data, and (c) the created surface model 

 

 
Fig. 6. Total processing time with different α value 
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Table 2. Processing time of each step of the proposed methodology 

Time (s) 
Data Downsizing Leaf Size (m) 

0.5 0.1 0.05 0.01 

Data Filtering 0.133 0.133 0.133 0.133 

Data Downsizing 0.003 0.003 0.004 0.006 

S
u

rf
a

ce
 M

o
d

el
in

g
 α = 1.0 * Leaf Size 0.002 0.042 0.140 0.929 

α = 1.5 * Leaf Size 0.001 0.041 0.143 0.925 

α = 2.0 * Leaf Size 0.001 0.041 0.142 0.935 

α = 2.5 * Leaf Size 0.002 0.041 0.141 0.950 

α = 3.0 * Leaf Size 0.002 0.040 0.141 0.940 

α = 3.5 * Leaf Size 0.001 0.040 0.143 0.946 

α = 4.0 * Leaf Size 0.001 0.040 0.141 0.950 

α = 4.5 * Leaf Size 0.001 0.040 0.139 0.920 
 

Table 3. Test on raw data without filtering and downsizing 

α 
Surface 

modeling time (s) 
α 

Surface modeling 

time (s) 
α 

Surface modeling 

time (s) 

0.01 1.003 0.08 0.948 0.6 1.853 

0.02 0.961 0.09 0.947 0.7 0.924 

0.03 0.965 0.1 0.948 0.8 1.854 

0.04 0.963 0.2 1.888 0.9 2.782 

0.05 0.967 0.3 2.822 1.0 0.925 

0.06 0.962 0.4 3.752 

0.07 0.954 0.5 0.924 
 

 
Fig. 7. The created surface model was integrated with the static site environment 
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5 Conclusion 

In this study, a specially designed data capturing 

system was utilized to collect point cloud data from 

multiple laser scanners; while multiple video camera 

arrays were used to rapidly recognize and track the 

selected dynamic construction equipment objects 

including a backhoe loader and a crane. The validation 

of the proposed method was implemented at a real 

world construction jobsite. The concave hull of the 

crawler crane was generated in less than 0.5 seconds, 

and then the data were smoothly transferred to the 

operator in a cabin. The test results indicate that the 

proposed rapid workspace modeling approach can 

improve the heavy equipment operations by 

distinguishing surface-modeled dynamic target objects 

from the point cloud of existing static environment in 

3D views in near real time.  

While the surface modeling time is sufficiently fast 

enough for real-time operation, the data collection time 

should be carefully configured based on the types of 

equipment (e.g., size and moving speed), distance, 

ambient lighting, and reflectivity.  

For future work, the research will continue to 

improve the resolution of laser scanner data while 

reducing data collection time. With an increase in 

scanning speed, the scanned resolution is lowered 

accordingly. To resolve this issue, a smart scanning 

approach with differentiated scan speeds will be further 

developed, to allow faster rotations for the areas to be 

skipped, and slow the scan speed for the target areas. 

Improving surface modeling speed using a higher 

performance computer and surface model quality will 

be another future research focus. 
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