
Performance Tradeoffs in the VLSI Implementation
of the Sphere Decoding Algorithm

A. Burg∗, M. Borgmann†, C. Simon†, M. Wenk∗, M. Zellweger∗, and W. Fichtner∗
∗Integrated Systems Laboratory

Swiss Federal Institute of Technology (ETHZ)

Zurich, Switzerland

Email: apburg@iis.ee.ethz.ch

†Communication Technology Laboratory

Swiss Federal Institute of Technology (ETHZ)

Zurich, Switzerland

Email: moriborg@nari.ee.ethz.ch

Abstract— Sphere decoding (SD) allows to solve high-
dimensional MIMO maximum likelihood detection problems
with significantly lower complexity than other methods. The
SD algorithm has, however, mostly only been analyzed with
DSP implementations in mind. We show that VLSI implementa-
tions call for new performance metrics, analyze the resulting
implementation tradeoffs for the decoding of complex signal
constellations, and we develop design guidelines and a generic
architecture. When using the `

∞-norm for the sphere constraint
instead of the `

2-norm, significant reductions in circuit complexity
and improvements in tree pruning efficiency are possible at a
minimum performance penalty. As a proof of concept, a high
performance ASIC implementation is presented.

I. INTRODUCTION

Many problems in mobile communications can be described

with a simple linear multiple-input multiple-output (MIMO)

model. Examples include multiantenna systems or multiuser

detection in CDMA. The corresponding complex-valued input-

output relation is

y = Hs + n (1)

where H is an N × M effective channel matrix and y is

the N -dimensional received vector, disturbed by the complex

additive white Gaussian noise vector n. The symbols s ∈ OM

are composed of values independently chosen from a complex

constellation O. Real constellations can be considered as a

special case. When H is known at the receiver, the maximum

likelihood (ML) detector is given by

ŝ = arg min
s∈OM

‖Hs− y‖2. (2)

In fading MIMO channels, ML detection exploits N th order

diversity, which is not achieved by linear and successive

cancellation receivers. Hence, ML detection is attractive in

the high SNR regime. Unfortunately, the complexity of an

exhaustive search implementation of (2) is exponential in

the transmission rate. For the case where OM is a (real)

integer lattice LM , sphere decoding (SD) has been proposed

by Pohst [1] as an alternative approach, which has recently

been introduced into communications. The algorithm achieves

ML performance with an expected complexity that is only

polynomial in the rate [2]. Numerous optimizations have

been proposed to reduce the implementation complexity of

the original SD algorithm on general purpose processors

and digital signal processors (DSPs) [3]. However, the VLSI

implementation of the algorithm has only received limited

attention so far.

Contributions: In this paper, we describe implementation

tradeoffs for high-throughput sphere decoding with complex

modulation schemes in VLSI and introduce an efficient ar-

chitecture. We also present slightly suboptimal numerical

simplifications that significantly reduce the circuit complexity

and increase the efficiency of the algorithm, while preserving

diversity order in fading MIMO channels.
Outline: In Section II, we review the state of the art in

sphere decoding and emphasize key concepts. Section III

introduces an efficient high-level VLSI architecture for high-

throughput SD implementations. In Section IV, implementa-

tion options for the realization of a complex SD are considered

and compared. In Section V, we propose the square-root

sphere criterion and its suboptimal variations that lead to

significantly reduced circuit complexity and higher throughput.

Section VI finally describes the implementation of a high

performance 4× 4 16-QAM sphere decoding chip.
Notation: ‖a‖p denotes the `p-norm of the vector a. When

the subscript is omitted, we tacitly mean the `2-norm (the

Euclidean norm). E{·} stands for the expectation operator.

II. STATE OF THE ART IN SPHERE DECODING

Under the term sphere decoding we subsume the original SD

algorithm [1] and all the variations and extensions proposed

later [4]–[6]. The algorithm consists of four key concepts that

need to be clearly differentiated:

A. Sphere Constraint

The main idea is to reduce the number of points that need

to be considered in the search for the ML solution. The list

of candidates is constrained to only those points Hs that lie

inside a sphere with a given radius C around the received

point y:

d(s) ≤ C2 with d(s) , ‖Hs− y‖2. (3)

We refer to equation (3) as the sphere constraint (SC).

B. Tree Pruning

Efficient checking of the SC only becomes feasible after

transforming (2) into an equivalent problem with triangular

channel matrix. Assuming that N ≥ M , this goal can, for

example, be achieved using the QR decomposition of the

channel H = QR with the M ×M upper triangular matrix

R and the N ×M unitary matrix Q. In this case, the SC (3)

becomes

d̂(s) ≤ Ĉ2 with d̂(s) , ‖Rs− ŷ‖2



where the M -dimensional ŷ = QHy, and where in the case

N > M the radius C needs to be adjusted to yield the modified

radius Ĉ. As a result of the triangular structure of R, the

distance d̂(s) can now be computed recursively as follows:

Ti(s) ← Ti+1(s) +

(
ŷi −

M∑

j=i+1

Rijsj −Riisi

)2

(4)

with TM+1(s) ← 0 for all s ∈ OM . Finally, d̂(s) = T1(s).
We term Ti(s) the partial Euclidean distance (PED) of a

symbol s at level i. All possible symbols s ∈ OM can now

be considered by tree traversal with the root at i = M + 1.

Since the PED increases monotonically from level to level, a

branch together with all its children can be pruned whenever

its PED exceeds Ĉ2. The remaining branches belong to an

admissible set of constellation points that need to be followed

further. Ideally this set should constitute only a small subset of

the constellation O. The goal of the SD algorithm is to prune

large parts of the tree, such that the complexity of the search

for the ML solution is greatly reduced.

One of the main issues with the original Pohst algorithm

is the choice of the sphere radius Ĉ. If chosen too small,

no solution is found — however, too many nodes need to be

considered for a radius chosen too large. If we set Ĉ2 = d̂(s)
whenever an admissible point s is found [6], the sphere

radius decreases throughout the algorithm, and as a result

fewer points need to be considered. This radius updating can

be performed in a smart fashion, such that a restart of the

algorithm with each radius update can be avoided [3].

C. Admissible Intervals

When the underlying constellation O is real, e.g., if it

constitutes a real lattice, we can easily verify that at a given

level i, any constellation point si that lies between two

admissible points is also admissible. As a consequence, the

admissible set is actually an interval. Checking whether si is

in the admissible set therefore only amounts to comparing si

to the boundaries of that interval.

The latter point often leads to the impression that sphere de-

coding concepts are only applicable to real lattices. However,

it is crucial to realize that only the first two ideas described

above are actually prerequisites for the tremendous complexity

savings of the SD algorithm over a brute force search. In fact,

sphere decoding is applicable to arbitrary sets of constellation

points, in particular to complex lattices [7], [8]. In this case,

the PED computation becomes

Ti(s) ← Ti+1(s) +

∣∣∣∣ŷi −
M∑

j=i

Rijsj

∣∣∣∣
2

(5)

but membership in the admissible set cannot simply be deter-

mined using the bounds of an admissible interval. We shall

explore solutions to this problem in Section IV.

D. Schnorr-Euchner Enumeration

Without radius updating, the order in which nodes are

visited is irrelevant for the pruning of the tree. However, radius

updating leads to the greatest complexity reduction if symbols

with smaller distance are visited first. Also, in order to find

admissible symbols as fast as possible, depth-first traversal

of the tree is mandatory. With the Schnorr-Euchner (SE)

enumeration [5], on each level nodes with the smallest PED

are followed first, leading to a more rapid shrinkage of the

sphere radius. Hence the tree is pruned more efficiently. As an

additional advantage of the SE enumeration, the initial sphere

radius can be set to infinity. In that case, the first admissible

point found is always the so called Babai point or zero-forcing

decision-feedback point.

Summarizing, combined radius updating with SE enumer-

ation is highly recommended, whenever applicable. We shall

investigate how to perform the enumeration in practical im-

plementations in Section IV.

III. CONSIDERATIONS FOR VLSI IMPLEMENTATION

Dedicated VLSI architectures differ from implementations

on DSPs through their potential for massively parallel pro-

cessing and the availability of customized operations and

operation sequences that can be executed in a single cycle. The

potential of an algorithm to exploit these properties is crucial

to guarantee an efficient high-throughput implementation.

A. General Architecture

The VLSI architecture of a high-throughput SD application

specific integrated circuit (ASIC) should be designed to ensure

that the decoder examines the branches of a new node in

each cycle and that no node in the tree is ever visited twice.

This paradigm guarantees maximum throughput efficiency. It

is achieved by partitioning the decoder into two parallel units:

1) The metric computation unit (MCU) starts from Ti+1(s)
(i.e., the metric of the branch that leads to the current

node) and finds the starting point for the SE enumeration

along with the PED Ti(s) of the corresponding branch.

When the bottom of the tree is reached, the MCU

stores the symbol corresponding to the current path and

updates the radius. In this case, or if the admissible set is

empty, a new node branching off the current path further

up in the tree is visited next. If no more valid branches

are found, the decoder stops.

2) The metric enumeration unit (MEU) operates solely on

nodes that have already been visited by the MCU. It

carries out the SE enumeration to find the branch with

the smallest PED among those that have not been visited

yet. It keeps a list of these admissible children for all

nodes on the current path. When the MCU reaches a

leaf or a dead end, the MEU can decide immediately

where the search should be continued in the next cycle.

Tree traversal is performed depth-first.

The described procedure is exemplified in Fig. 1 for M =
3 and BPSK modulation. On the left, the branches that are

examined by the MCU on the way down are marked. The

MEU follows along the same nodes with one cycle delay and

computes the PED of the branch that would follow next in

the SE enumeration. After cycle 3, the MCU has found the

first complete candidate symbol. In the meantime, the MEU

has determined that only the branch to node B still meets the

updated SC and has already computed its PED. Therefore, the

MCU can proceed immediately to check the branch leading to
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Fig. 1. Tree traversal example with M = 3 and BPSK. The order and cycle
number in which the MCU and MEU examine the branches is shown

node C in cycle 4 and finally to the leaf E in cycle 5. Note that

no cycles are wasted to slowly climb up the tree step-by-step.

B. Complexity and Performance Metric

For the architecture described above, we introduce suitable

metrics that characterize throughput and implementation com-

plexity:

1) Performance: The recursive tree-pruning scheme applied

in the SD algorithm suggests that the described processing of

a single node in one step (i.e., in one cycle) is the maxi-

mum degree of parallelism that can be achieved while fully

preserving its complexity advantage over an exhaustive search.

Processing multiple subsequent nodes in parallel would instead

gradually lead back to the implementation of an exhaustive

search decoder [9]. Although this approach opens up further

tradeoffs between chip area and throughput, we do not pursue

it here. In a one node per cycle architecture, the overall

performance of the decoder is governed by two criteria:

1) the average number of visited nodes E{K} before the

ML solution is found, which determines the number of

cycles per symbol

2) the cycle time tCLK, which is given by the critical path

through the longest chain of consecutive operations in

one cycle.

The first criterion characterizes the efficiency of the tree

pruning and can be considered purely on an algorithmic level.

The second criterion is concerned with the efficiency of the

hardware implementation. The overall throughput is given

by Φ = M log2|O|/(E{K} tCLK). Note that, as opposed to

optimizations that target DSPs, the pure number of operations

(FLOPs) is of little significance.

2) Circuit Complexity: The circuit complexity is measured

by the area required for the integration of all processing ele-

ments and the memory. Just as the delay it varies significantly

depending on the type of operation and on the associated word-

width. While tradeoffs between area and delay are possible,

we strive for maximum throughput in this paper.

IV. SCHNORR-EUCHNER ENUMERATION IN ARBITRARY

SETS AND COMPLEX LATTICES

The most critical part in the design of a SD is finding the

admissible set, and the implementation of the SE enumeration.

In the complex case, there is no admissible interval. Three

approaches to identify the admissible set have been proposed:
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Fig. 2. Number of visited nodes vs. number of complex dimensions using
real lattice decomposition and directly on the complex 16-QAM constellations

1) Real Decomposition: In the case of rectangular (com-

plex) Q-QAM constellations, a common procedure is to de-

compose the M -dimensional complex problem into an equiv-

alent real-valued problem according to
[
<{y}
={y}

]
=

[
<{H} −={H}
={H} <{H}

] [
<{s̄}
={s̄}

]
+

[
<{n}
={n}

]

The result is a real lattice L2M of dimension 2M with
√

Q
constellation points per dimension. The decoder can now

explicitly compute the center point of an admissible interval,

from which it proceeds with the enumeration in a zig-zag

fashion [5] until a constellation point is outside the admissible

interval. This condition can be checked based on explicit

computation of the boundaries or by simply checking the

SC [3].

However, traversing the resulting, deeper tree with fewer

branches per node reduces the potential for parallel processing

compared to a more shallow tree with more branches per node.

Since the number of visited nodes is the main performance

metric in VLSI implementations, the decomposition of the

complex into a real lattice entails a significant performance

degradation (cf. Fig. 2). Moreover, on a circuit level, no

advantage can be taken from the orthogonality of the real and

complex part and the symmetries in the complex constella-

tions. Additionally, the computation of the center point of the

admissible interval for SE enumeration is slow. Consequently,

decomposition into a real lattice is not advisable for a high-

throughput VLSI implementation.

2) Exhaustive Search: To directly determine the admissible

set, an exhaustive search over the full constellation O can be

performed. Explicit sorting of the PEDs is subsequently used

to realize the SE enumeration. As opposed to the first solution,

this method allows for arbitrary complex constellations and

does not increase the depth of the search tree.

At first sight, the full search appears to have a very high

implementation complexity as the PEDs need to be computed

for all candidate constellations. However, (5) can easily be

decomposed into

Ti(s) = Ti+1(s) + |bi(s)|2 − 2<{b∗i (s)Riisi}+ |Rii|2s∗i si



TABLE I

APPROXIMATIONS FOR
p

x2 + y2

`1-norm |x| + |y|

`∞-norm max(|x|, |y|)

hybrid 1 3

8
(|x| + |y|) + 5

8
max(|x|, |y|)

hybrid 2 max
“

max(|x|, |y|), 7

8
max(|x|, |y|) + 1

2
min(|x|, |y|)

”

with bi(s) = ŷi −
∑M

j=i+1
Rijsj . As a result, most of the

costly operations can be shared among all candidate points.

The drawback of this approach is that all PEDs on the

path down need to be stored to perform the enumeration.

Additionally, the decision for the smallest metric in the MCU

involves a search over all constellations, which is slow and

leads to a long cycle time.

3) Hybrid Schemes: Depending on the constellation, hybrid

approaches between exhaustive search and ordered enumera-

tion may also be possible, as proposed in [7]: Starting from

PSK modulation, admissible intervals are defined based on

the phase of the constellation points. Subsequently, QAM

modulation is described as the union of PSK subsets, within

which enumeration is straightforward. SE ordering across

subsets is achieved through explicit sorting of the PEDs.

The difficulty in the application of this approach is the

computation of the starting points for the PSK enumerations.

However, with a specific modulation scheme in mind it can

be performed by simple direct comparisons between the real

and imaginary parts, and no angles need to be computed, as

opposed to [7]. As a result, this approach generally yields the

lowest circuit complexity for QAM modulation and requires

only a few PEDs to be stored and compared.

V. THE SQUARE ROOT SPHERE CRITERION

The computation of the PED on each level can be decom-

posed into the computation of an error term ei(s) and the

recursive update of the PED:

ei(s) ← ŷi −
M∑

j=i

Rijsj (6)

Ti(s) ← Ti+1(s) + |ei(s)|2. (7)

The squaring operation in (7) consumes a large chip area and

is slow, limiting the performance of the PED computation.

Moreover, controlling the dynamic range of the numbers be-

comes a more severe issue after squaring. In order to eliminate

the square, we have proposed to operate on the square root

T̃i(s) =
√

Ti(s) of the PEDs [8], which yields an equivalent

detector. By taking the square root of (7), we obtain

T̃i(s) ←
√

T̃i+1(s)2 + |ei(s)|2. (8)

For this type of expression, numerous approximations of the

form
√

x2 + y2 ≈ f(|x|, |y|) are available. Four approxima-

tions with efficient VLSI implementations are given in Table I.

They all lead to new (suboptimal) detectors, which can be

interpreted as minimizing another norm for the triangularized
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Fig. 3. Number of visited nodes vs. SNR for the square root sphere detector
with different approximations. Modulation: 16-QAM, N=M=4

problem (instead of the Euclidean or `2-norm, which corre-

sponds to the ML solution). In particular, the first approxima-

tion leads to the minimization of the `1-norm of Rs− ŷ [10]:

ŝ = arg min
s∈OM

M∑

i=1

|ei(s)| = arg min
s∈OM

‖Rs− ŷ‖1.

The second approximation leads to a minimax optimization,

or the minimization of the `∞-norm:

ŝ = arg min
s∈OM

max
i∈{1,2,...,M}

|ei(s)| = arg min
s∈OM

‖Rs− ŷ‖∞.

The remaining approximations correspond to hybrid norms.

Note that only the `2-norm exhibits the property that the

minimization on the original and the triangularized problem

yield the same solution.

In the complex case, the same approximations can be used

to compute the absolute value of the complex error term |ei(s)|
from its real and imaginary part. The reduction in circuit

complexity is significant. Still, the impact on bit error rate

(BER) is small. We use the exact absolute value computation

in our simulations.

1) Impact on Complexity: Since

‖Rs− ŷ‖∞ ≤ ‖Rs− ŷ‖2 ≤ ‖Rs− ŷ‖1
the accumulated distance at the bottom of the tree is smallest

for the `∞-norm. After the radius update, it is therefore more

probable that the PED for a certain node further up in the

tree is larger than the new radius, as compared to the `2-norm

case. Therefore, more branches in the tree will be pruned. The

situation is just the opposite for the `1-norm, therefore tree

pruning becomes less effective. The impact on complexity is

clearly visible in Fig. 3. It is remarkable that employing the

`∞-norm almost halves the complexity at low SNR.

2) Impact on Bit Error Rate: The approximations of the

`2-norm warp the sphere that is searched when looking for

the ML solution. However, we can show analytically that

full diversity is preserved regardless of the particular norm

employed. This fact can be verified in Fig. 4. Among the

approximations considered, the `∞-norm detector shows the
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most pronounced constant loss in BER, although the degrada-

tion may well be acceptable in many cases.

Concluding, the `∞-norm approximation represents a very

attractive approach as it leads to greatly reduced search com-

plexity as well as reduced chip area at only a minor BER

penalty.

VI. ASIC IMPLEMENTATION RESULTS

As a proof of concept, a SD ASIC for a 4 × 4 system

with 16-QAM modulation has been realized in a 0.25 µm
technology. It is based on a direct implementation of complex

SE enumeration using a decomposition into three nested PSK

constellations. For the metric computation, the square root

sphere algorithm is used in conjunction with the `∞-norm. The

critical path starts with the computation of bi(s), followed by

the part of the MCU that finds the starting point for the PSK

enumeration, and the metric computation. It then continues

with the selection of the minimum and into the MEU, adding

up to a total delay of 13.5ns, allowing for a clock of 75MHz.

The active core area of the chip covers only 1 mm2.

The implementation is about two times smaller and exceeds

the throughput of the K-best lattice decoder in [11] by about

a factor of three at SNR = 20 dB. Compared to a previously

presented implementation [8], it only requires a third of the

area and achieves a 50% higher clock rate. Also, fewer

iterations are required for the decoding due to the complexity

reduction by the `∞-norm approximation and other minor

optimizations. The result is a more than doubled throughput at

SNR = 20dB. The technical specifications and the throughput

of the ASIC at different SNRs are given in Fig. 5 together with

the layout.

VII. CONCLUSIONS

We have presented a VLSI architecture for high perfor-

mance sphere decoding in complex lattices. Implementation
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Fig. 5. Layout and summary of technical data of the sphere decoder ASIC

techniques to realize Schnorr-Euchner enumeration in complex

sets are described and compared. To reduce circuit complexity

and cycle time, approximations to the ML criterion are pro-

posed, which preserve diversity order. In particular, an `∞-

norm approximation is shown to additionally improve the tree

pruning process in the SD significantly with only a small

SNR penalty. The feasibility was shown with an actual ASIC

implementation that, to the best of our knowledge, exceeds the

throughput of all other presented VLSI realizations.
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