
Performance, validation and testing with the Network Simulation Cradle

Sam Jansen and Anthony McGregor
WAND Network Research Group

Waikato University
Hamilton, New Zealand

Abstract

Much current simulation of TCP makes use of simpli-
fied models of TCP, which is a large and complex pro-
tocol with many variations possible between implementa-
tions. We use direct execution of real world network stacks
in the network simulator ns-2 to compare TCP performance
between implementations and reproduce existing work. A
project called The Network Simulation Cradle provides the
real world network stacks and we show how it can be used
for performance evaluation and validation. There are large
differences in performance between simplified TCP models
and TCP implementations in some situations. Such differ-
ences are apparent in some reproduced research, with re-
sults using the Network Simulation Cradle very different
from the results produced with the ns-2 TCP models. In
other cases, using the real implementations gives very sim-
ilar results, validating the original research.

1. Introduction

The Transmission Control Protocol (TCP) is the ubiq-
uitous transport protocol used on the Internet today. TCP
has evolved significantly from its original specification in
1981 to include many extra mechanisms to handle situa-
tions where it was found to be inefficient [21]. Research
continues with attempts to make TCP adapt to fast long dis-
tance networks quickly, handle erratic link layers (such as
wireless links) and more. Much of the research employs
network simulation to test new modifications to TCP or test
TCP performance in a specific scenario.

Traditionally network simulators use simplified models
of the various parts of the network that is to be simulated.
This is true for TCP; the widely used network simulator ns-
2 [25] includes simple models for TCP that are not designed
to implement a specific implementation of TCP [8], do not
perform full segmentation, only send data in one direction
and do not implement a receivers advertised window (ns-2
also includes less abstracted “Full-TCP” models that allow

bidirectional transfer of data, but these are not as well val-
idated [7]). Despite this lack in functionality, the models
are validated and allow useful evaluation of TCP congestion
control algorithms [6] and have been used in many pieces of
research.

The Network Simulation Cradle [16] (NSC) is a project
that allows real world TCP implementations to be used in
the place of the simplified TCP models present in ns-2. It
allows a real TCP implementation to be used with only mi-
nor changes to the simulation script and only a small cost to
performance. Simulation with NSC makes possible a range
of performance evaluation of real world protocol implemen-
tations that would come at a large cost in time and resources
without such a framework. It also works as a validation tool,
as the real world TCP implementations can easily be used
instead of the original ns-2 TCP models in an existing sim-
ulation. These ideas are explored in this paper.

This paper shows results generated from simulations
with NSC. Section 3 presents NSC used as a tool for per-
formance evaluation of TCP implementations. The TCP
implementations in NSC and models in ns-2 are compared
in some simple scenarios to show how NSC can be used
to benchmark performance and test TCP implementations.
Reproduced simulations are reported on in section 4. This
shows NSC being used as a validation tool, providing fur-
ther evidence of results or giving extra insight into a sce-
nario. Related work that uses real world TCP implemen-
tations in simulation is reviewed briefly in section 5. The
Network Simulation Cradle is described in the following
section.

2. The Network Simulation Cradle

NSC is designed as two distinct objects that communi-
cate through a C++ interface. There is an ns-2 agent im-
plementing an ns-2 API which forms the transport protocol
in the simulator: this means the agent will be connected to
another agent and instructed to send data. The agent is re-
sponsible for managing and interacting with the other part
of NSC, the shared library. The shared library contains the

network stack that is simulated as well as supporting code.
NSC also has one other component that is used during the
build process. A global parser programmatically changes
references to global variables.

The C++ interface is designed to allow easy integration
of simulators. As of NSC version 0.2.11 that is used in the
simulations presented in this paper, only ns-2 is supported.
Ns 2.29 is used in the simulations presented in this paper.
There is interest in supporting OMNeT++ in the future. The
architecture allows any network stack to be used given that
the interface is implemented. The network stacks that are
available are: Linux 2.6.10, FreeBSD 5.3 and OpenBSD
3.5.

Each network stack is contained in a shared library. The
library contains a “cradle” that implements support func-
tions for the network stack. Each stack requires some
amount of support due to being removed from its original
environment. In the case of all the stacks supported the net-
work stack has been removed from a large monolithic oper-
ating system kernel. The facilities the operating system pro-
vide to the network stack are reimplemented in the cradle to
allow the stack to function in user space and communicate
with the simulator.

A program called the globaliser is used to allow multiple
instances of each network stack to independently operate.
The globaliser filters preprocessed C source code and mod-
ifies global variable declarations. This process program-
matically makes the code re-entrant, allowing independent
instances of the stack to run concurrently within the same
process space. NSC scales up to thousands of instances of
one complex network stack such as Linux 2.6.10 on a recent
desktop computer.

A discussion of the architecture, implementation, perfor-
mance and validity of NSC is presented in [16]. Further val-
idation studies showing that NSC is able to produce packet
traces that are very similar to real networks is shown in [17].

3. TCP performance comparisons

There is an enormous parameter space for TCP perfor-
mance evaluation. There are many TCP options and param-
eters which may be tuned on a real system (Linux 2.6.12
has 45 kernel parameters relating to TCP), many possible
network topologies and applications which may use TCP.
There are many metrics which can be tested, The IRTF
Transport Modeling and Research Group lists 11 metrics
for evaluating congestion control algorithms [9] and many
tools and characteristics to test with simulation or testbed
studies.

In the following sections we do not attempt to provide
a benchmark for TCP performance, but look at some sam-

1Available from: http://research.wand.net.nz/
software/nsc.php

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.01 0.1

G
oo

dp
ut

 (
M

b/
s)

Exponential delay scale

ns-2: Sack1
NSC: Linux 2.6

NSC: Linux 2.4
NSC: FreeBSD

NSC: OpenBSD

Figure 1. TCP goodput under packet reorder-
ing

ple situations where we analyse TCP implementations and
models in some simple scenarios. Such testing tradition-
ally requires large testbed networks and perhaps impractical
amounts of time and resources.

The TCP implementations are setup to use their default
parameters. MTU is set to 1500 bytes in all simulations.

3.1. Packet reordering

The results of a simulation designed to show how a
mechanism implemented in one TCP/IP stack produces dif-
ferent performance results are shown in figure 1. This sim-
ulation scenario has substantial packet reordering due to
packets being randomly delayed between the TCP source
and sink. The TCP stream is limited by a bottleneck link of
4Mb/s and has a round trip time of 100ms. Data is trans-
ferred in one direction and packets travelling in the direc-
tion of the data are delayed by a exponential random vari-
able. The scale factor (µ) of the exponential distribution
is shown on the x-axis of the graph. At µ = 0 no packet
reordering is performed. Each point on the graph was gen-
erated from the mean of 20 simulation runs with differing
random seeds. TCP goodput (the rate of bytes delivered to
the application from TCP) is measured after 200 seconds of
simulation time.

The ns-2 TCP model which uses TCP with selective and
delayed acknowledgements produces very similar results to
the FreeBSD and OpenBSD network stacks simulated with
the Network Simulation Cradle. However, both versions of
Linux have very different results.

The Linux TCP/IP stack has several mechanisms im-
plemented to aid TCP performance during packet reorder-
ing [24]. Duplicate selective acknowledgements [12]
(DSACK) help distinguish between packet loss and packet
reordering. The Linux TCP/IP stack uses TCP timestamps
to help detect spurious retransmissions similar to the TCP
Eifel [14] algorithm.

3.2. Dumbbell topology tests

The simulation scenario presented in this section is an
attempt to characterise how networking conditions in a con-
strained scenario affect TCP goodput. A dumbbell topology
is used with flows F flowing in one direction, R in the op-
posite direction and flow M in the direction of F flows. The
flows F and R have uniformly distributed RTTs in the inter-
val [8, 222]ms. The number of flows in F is varied between
0 and 100 and R is varied between 0 and 5. The routers
on the bottleneck link have queue sizes ranging from 6 to
50 packets. The bandwidth of the bottleneck link ranges
from 512kb/s to 10Mb/s. Each set of parameters is sim-
ulated with 10 random seeds. Flow M is measured and
has an RTT of 8ms. The TCP model is varied and good-
put recorded after 200 seconds of simulation time.

To simulate this range of parameters 112500 indepen-
dent simulations were run. The simulations were spread
over a set of 99 computers. A total of 4.98 CPU-years were
spent simulating.

Figure 2 shows comparisons of TCP variants by plot-
ting the difference in measured goodput as a cumulative
percentage graph. A point at x = 1 on figure 2(a) means
the Newreno ns-2 model was measured to have twice the
goodput as the Sack ns-2 model.

Figure 2(a) shows the comparison of the ns-2 TCP mod-
els for Newreno and Sack. The comparison does not favour
either model largely, both attain more throughput than the
other a small percentage of the time with a slight bias
towards Newreno. Greater differences are shown in fig-
ures 2(b) and 2(c). Linux 2.4 simulated with NSC attains
more goodput than FreeBSD much of the time. This is ev-
ident in figure 2(b). The difference between Linux 2.6 and
FreeBSD is larger yet, with Linux 2.6 attaining more good-
put than FreeBSD approximately 70% of the time, only a
very small percentage of the time is more goodput recorded
for FreeBSD than Linux 2.6.

These results show how that in even a very simplistic
scenario there can be large differences in performance of
the TCP implementations studied when using goodput as
a metric. Not shown in figure 2 are graphs comparing the
ns-2 models with the NSC models. These also show large
differences, comparing ns-2’s TCP with selective acknowl-
edgements model to Linux 2.6 produces a graph similar to
2(c).

It is evident from viewing the raw data sorted by the dif-
ference in goodput that the largest differences are due to
extreme circumstances: many flows with small queue sizes
and small bandwidths. Often in such cases no goodput is
recorded for the ns-2 TCP models of Newreno and Sack, as
their connection establishment fails, where the real world
implementations are able to connect and send data. Figure 3
shows a visualisation of the mean difference encountered as

 0

 50

 100

-5 0 5

C
um

ul
at

iv
e

pe
rc

en
ta

ge

Difference

(a) ns-2: Newreno vs. ns-2: Sack

 0

 50

 100

-5 0 5

C
um

ul
at

iv
e

pe
rc

en
ta

ge

Difference

(b) NSC: FreeBSD5 vs. NSC: Linux 2.4

 0

 50

 100

-5 0 5

C
um

ul
at

iv
e

pe
rc

en
ta

ge

Difference

(c) NSC: FreeBSD5 vs. NSC: Linux 2.6

Figure 2. TCP performance comparisons with
cumulative graphs

 0
 20

 40
 60

 80
 100

Foward flows 1
 2

 3
 4

 5
 6

 7
 8

Bandwidth (Mb/s)

 1

 10

 100

 1000

Difference

Figure 3. Mean goodput difference

flows and bandwidth is varied. This shows how at a low
bandwidth and high amount of flows the difference is the
greatest and there is a general trend towards higher differ-
ences as the number of flows is increased.

This method of generating large amounts of performance
data of real world TCP implementations is something that is
extremely difficult and resource intensive without a frame-
work like the Network Simulation Cradle. The cradle, with
its multiple TCP implementations, make comparative per-
formance studies of TCP implementations over a range of
networks and parameters simple.

4. Reproduced simulations

This section shows the use of the Network Simulation
Cradle in reproductions of simulations and experiments
conducted in a range of TCP based research. The results
in this section show that using real world TCP implementa-
tions in research is feasible for actual research undertaken
with TCP simulation and more so that useful results and in-
sights are possible from using such implementations.

4.1. TCP fairness on high-speed networks

TCP over fast long distance networks is an active re-
search area: TCP increases its window very slowly and
is sensitive to packet loss, resulting in low link utilisation
on many fast long distance networks. Various schemes
have been invented to alleviate this problem, while remain-
ing compatible with TCP. Examples include BIC-TCP [27],
FAST TCP [18] and many others. These schemes often have
problems with fairness (sometimes exacerbating TCPs in-
herent RTT unfairness) and convergence times vary [22].

These TCP modifications are tested in simulation, on
testbeds and on the Internet. The simulations in this section
reproduce experiments conducted on testbeds presented by

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180

F
ai

rn
es

s

RTT (ms)

ns-2: Sack vs. ns-2: Sack
NSC: FreeBSD5 vs. NSC: FreeBSD5

NSC: OpenBSD3 vs. NSC: OpenBSD3

NSC: Linux 2.6 vs. NSC: FreeBSD5
NSC: Linux 2.4 vs. NSC: OpenBSD3

NSC: FreeBSD5 vs. NSC: OpenBSD3

(a) 10Mb/s network

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180

F
ai

rn
es

s

RTT (ms)

ns-2: Sack vs. ns-2: Sack
NSC: FreeBSD5 vs. NSC: FreeBSD5

NSC: Linux 2.6 vs. NSC: Linux 2.6

NSC: Linux 2.6 vs. NSC: FreeBSD5
NSC: Linux 2.4 vs. NSC: OpenBSD3

NSC: FreeBSD5 vs. NSC: OpenBSD3

(b) 250Mb/s network

Figure 4. Fairness between two TCP flows

the Hamilton Institute technical report [22]. This report has
been cited in research since being published [20, 15] and is
noted as a reference for the IETF Transport Modeling Re-
search Group led by Sally Floyd [10].

Presented in figure 4 are two graphs that reproduce the
“standard TCP” results in figure 6 of [22] and show ex-
tra information gained from using the Network Simulation
Cradle. The topology used in the experiments is a dumb-
bell topology. Path propagation delay (and hence round trip
time) is varied and the fairness between two TCP flows is
measured. The fairness is defined as the ratio of goodput
achieved by the two flows after 60 seconds. The queue size
is set to 20% of the bandwidth-delay product. Flow start
time is jittered by up to one RTT and each set of parame-
ters is simulated with 5 random seeds. The graphs show the
mean fairness over the 5 simulations for each data point.

The baseline or “standard TCP” cases in figure 6 of [22]
are reproduced in figure 4. The lines on the graphs without
points show the results which agree. The fairness measured
is near to 1, meaning the two TCP flows equally (fairly)
share the link bandwidth. At low RTTs on figure 4(a)
the fairness is less stable. As queue size is based on the
bandwidth-delay product, when both the RTT and band-
width are relatively low the queue size on the bottleneck
router is also very low (as low as 3 packets when RTT is
16ms). With higher RTTs and/or a higher bandwidth the
results are consistent.

These baseline results are expanded by comparing differ-
ent TCP implementations against each other with the Net-
work Simulation Cradle. The previous results discussed

 0

 2

 4

 6

 8

 10

 20 40 60 80 100 120 140 160 180 200

G
oo

dp
ut

 (
M

b/
s)

Number of flows (M)

ns-2: Sack1
NSC: Linux 2.6

NSC: Linux 2.4
NSC: FreeBSD5

NSC: OpenBSD3

(a) Goodput

 0.76
 0.78
 0.8

 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94

 20 40 60 80 100 120 140 160 180 200

Ja
in

 fa
irn

es
s

in
de

x

Number of flows (M)

ns-2: Sack1
NSC: Linux 2.6

NSC: Linux 2.4
NSC: FreeBSD5

NSC: OpenBSD3

(b) Fairness

Figure 5. 10Mb/s bottleneck, reverse traffic

are for when both TCP flows are from the same imple-
mentation. The results on the graphs in figure 4 with lines
and points show standard TCP implementations compared
against each other. Each of these results could be consid-
ered the fairness of standard TCP as used in [22].

Li, Leith and Shorten [22] compare new TCP variations
such as BIC TCP and H-TCP against their standard TCP,
which is the Linux 2.6.6 TCP implementation. The results
in figure 4 show that there are large differences in fair-
ness between standard TCP implementations, as much as
between some of the high-speed TCP variants at 10Mb/s.
Using real world network stacks in simulation means eval-
uating this situation is easy and not the prohibitive amount
of work it is without NSC.

4.2. Congestion control comparisons

Grieco and Mascolo [13] compare Westwood+, New
Reno and Vegas TCP congestion control algorithms and
show that Westwood+ is friendly and improves utilisation of
wireless links which are affected by non-congestion losses.
They simulate a single bottleneck scenario and present
goodput and fairness measures in figures 12 and 13 of [13].
They also present recorded goodput under the presence of
multiple congestion points in figure 18.

4.2.1 Single bottleneck scenario

The scenario simulated is a simple single-bottleneck or
dumbbell topology. A varying number of TCP flows, named

M henceforth, send data in the forward direction (the direc-
tion the measured data travels), while 10 TCP flows send
data in the reverse direction. All flows in M use the same
TCP congestion control mechanism. Round trip times are
uniformly distributed in the interval [20 + 230/M, 250]ms.
M ranges from 10 to 200. Simulations last 2000s and the
bottleneck link bandwidth is 10Mb/s.

Figure 5(a) shows the aggregate goodput for all M flows
as M is increased. This result agrees with the results pre-
sented in [13] as once M = 40 the goodput levels out at
approximately 9Mb/s. Figure 5(b) provides further insight
into this result.

Grieco and Mascolo use the Jain Fairness Index to deter-
mine fairness between the flows in M . This index is defined
in the following equation:

JFI =
(ΣM

i=1bi)2

MΣM
i=1b

2
i

Where bi is the goodput of the ith connection and M are
the connections sharing the bottleneck. The index belongs
in the interval [0, 1] where 1 is the fairest.

The Jain Fairness Index is plotted in figure 5(b). It is
evident that while the TCP models achieve similar goodput,
the fairness varies. The general trend of increasing fairness
as M increases agrees with the results presented in [13].
This trend is explained by at lower values of M there is a
greater variation of RTTs which increases TCPs unfairness.

The results in figure 5(b) further show the difference in
TCP implementations. The ns-2 Sack TCP model creates
results which are in the right ballpark but using ns-2 ab-
stracted models does not give any knowledge on the range
of values the real TCP implementations produce.

4.2.2 Multiple bottleneck scenario

Figure 6(a) shows the simulation scenario used by Grieco
and Mascolo to evaluate the affect of multiple congestion
points on TCP congestion control. The number of hops is
varied and the goodput of the flow C1 is measured. The ca-
pacity of the entry/exit links is 100Mb/s with 20ms propaga-
tion delay. The capacity of the links connecting the routers
is 10Mb/s with 10ms propagation delay. Router queue sizes
are set to 125 packets. Simulations last 1000 seconds where
the cross traffic is active all the time. The measured flow
C1 begins after 10 seconds of simulated time. The flows
generating cross traffic are controlled by the ns-2 Newreno
TCP model.

The results of this simulation scenario are shown in fig-
ure 6(b). ns-2’s Newreno agent achieves similar results to
ns-2’s Sack agent and the same trend as presented in fig-
ure 18 of [13]. Using real world TCP implementations
shows a greater range of performance, with both versions of

R R R R

Sink 1

C2 Sink 2 C4 Sink 4

Sink 3 C3 Sink 5 C5

C1

2nd hop1st hop

(a) Multi-hop simulation scenario (adapted from [13])

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6 7 8 9 10

G
oo

dp
ut

 (
M

b/
s)

Hops

ns-2: Newreno
NSC: Linux 2.6

NSC: Linux 2.4
NSC: FreeBSD5

NSC: OpenBSD3

(b) TCP goodput as number of congestion points is varied

Figure 6. Multi-hop simulations

Linux measuring substantially less goodput than FreeBSD
and OpenBSD.

4.3. Request latency for a SIP proxy

Lulling and Vaughan [23] simulated session initiation
protocol (SIP) requests aggregated through a TCP proxy
with different TCP variants. They compare Tahoe, Reno
and Sack variants of TCP with the ns-2 simulator and show
SIP request latency under unfavourable networking condi-
tions such as that found on a best-effort network such as the
Internet. The effect head of the line (HOL) blocking has on
latency of SIP requests aggregated through one TCP stream
is analysed.

Figure 7(a) shows the simulation topology used in the
SIP simulations. Nodes 0 and 3 are the SIP proxies us-
ing the TCP variants studied. Traffic is generated using a
stationary Poisson model to generate the arrival times of
512-byte session establishment requests at node 0. This
models a SIP session establishment “INVITE” request ar-
riving from a user to a SIP proxy. The requests are immedi-
ately forwarded to the proxy at node 3 and the arrival time
recorded. SIP would usually respond with a “100 Trying”
response, though this is not modelled here. The TCP MSS
is set so a SIP message occupies one TCP segment. TCP
delayed acknowledgements are disabled.

This simulation setup is used to test SIP request latency
under varying loss conditions. Figure 7(b) shows the aver-
age request latency for increasing packet drop rates. The
ns-2 TCP models for Tahoe, Reno and Sack are shown and

10 2 3
2Mb/s

15ms

10Mb/s

15ms 15ms

10Mb/s

(a) Simulation scenario (adapted from [23])

 0

 2

 4

 6

 8

 10

 12

 0 0.1 0.2 0.3 0.4 0.5 0.6

A
ve

ra
ge

 r
eq

ue
st

 la
te

nc
y

(s
)

Packet loss rate (%)

NSC: FreeBSD
NSC: OpenBSD

ns-2: Tahoe
ns-2: Reno

ns-2: Sack

(b) Average request latency for increasing loss rates

Figure 7. SIP proxy simulations

agree with the results presented in figure 9 of [23]. In-
cluded are results using the Network Simulation Cradle for
the FreeBSD and OpenBSD TCP implementations. Both
stacks use TCP selective acknowledgements and are there-
fore comparable with ns-2’s Sack model. Linux is not in-
cluded because delayed acknowledgements cannot be dis-
abled in the Linux TCP stack — a socket option called
QUICKACK disables delayed acks for only a short period,
not the entire TCP connection duration.

Lulling and Vaughan analyse the delays under these loss
conditions and check whether the latency is within a 2 sec-
ond bound. This bound is due to ISDN switches used to
interconnect within the public switched telephone network
(PSTN) which may abandon a call if a reply from a setup
attempt is not received with 2 seconds. They are able to con-
clude that TCP Sack is the only TCP variant that is able to
satisfy this bound under all loss rates tested. As figure 7(b)
shows, simulating with real world code provides extra in-
sight into this scenario: FreeBSD has an average latency of
over 4 seconds at a loss rate of 0.5% where OpenBSD has a
very large latency once the loss rate is greater than 0.3%.

It is uncertain why such a low segment size was chosen
for this simulation scenario as Internet MTUs are generally
higher [5]. It is possible this is an attempt to reduce delay
and jitter. When a higher MTU such as 1500 is used the
request latency is much lower than presented in figure 7(b).
Conversely, delayed acknowledgements are widely used in
real TCP implementations [1] and increase the SIP request
latency under random loss.

4.4. Performance over a complex topology

The simple dumbbell topology (otherwise known as a
barbell topology) is often used when conducting simula-
tion based research [11] even though they are often Internet
studies and it is not clear such topologies represent Internet
dynamics [11]. This is argued in [2] by analysis of Internet

2

9

8

Router

0

1

3

4

5 11

7

6

10

Multiple congestion−point flows A

Flows X
Flows Y

20Mb/s, 3ms delay
1Gb/s, 5ms delay
20Mb/s, 10ms delay
10Mb/s, 3ms delay

Source

Sink

(a) Simulation scenario (adapted from [2])

 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19

 0 20 40 60 80 100 120 140 160

G
oo

dp
ut

 (
M

b/
s)

Number of flows

ns-2: Sack
NSC: Linux 2.6

NSC: FreeBSD
NSC: OpenBSD

(b) TCP goodput over a multi-bottleneck topology

Figure 8. Multi-bottleneck simulations

measurements and creation of a multiple-bottleneck simu-
lation topology that presents results differing largely from
a dumbbell topology. The simulation topology studied is
shown in figure 8(a).

The number of flows in X and Y of figure 8(a) is fixed at
five each. The number of flows in A varies, as does the type
of TCP source and sink used for the flows of A. The flows
in X and Y use ns-2’s Newreno TCP agent with a delayed
acknowledgements enabled. Simulations last 300 seconds.
Start times for all TCP streams are randomly distributed in
the interval [0, 10.0], goodput is measured from when all
flows have completed connection establishment and the ap-
plication has received data. Each set of simulation parame-
ters is simulated 10 times with the random seed varied. The
mean of the 10 runs is reported here.

Figure 8(b) presents the results of reproducing the sim-
ulation setup of figure 3 in [2]. The Network Simulation
Cradle TCP stacks are used in addition to the ns-2 models
used in the original study. The results presented here agree
with the original research: as the number of flows in A in-
creases the aggregate goodput decreases.

Anagnostakis et. al. [2] provide a thorough analysis of
this result with different queueing mechanisms, queue sizes,
TCP models and round trip times. The results of using the
Network Simulation Cradle in figure 8(b) provide another
level of validation for this experiment. At the same time
this result is further evidence that the Network Simulation

Cradle is valid.
There is at times large variation amongst TCP implemen-

tations and between real implementations and simulated ab-
stractions, though this is not always true. The research
presented in [2] was a pervasive result that was not depen-
dent on the TCP variant or implementation. The results are
reproduced independently and expanded on by simulating
with real world TCP implementations. These extra simula-
tions further serve to validate the original work.

5. Related work

Various simulators have used real world code to simu-
late TCP. The approaches are generally limited to one TCP
implementation, often a version of BSD. x-sim [4], Glo-
MoSim [28] and OppBSD [3] are all examples of this. The
code is manually modified in OppBSD to support multiple
instances. None of these approaches contain more than one
TCP implementation or provide a methodology for includ-
ing multiple implementations.

The Lunar [19] project modifies a Linux 2.4 series kernel
to allow it to run in user-space with the goal of using it for
TCP simulation. The approach to moving the kernel to user
space is very similar to that used in the Network Simulation
Cradle. This project again only supports one network stack.

NCTUns [26] is a simulator which attempts to make use
of a real world network stack for simulation. NCTUns uses
the local machines network stack via a tunnel network inter-
face. Tunnel devices are available on most UNIX machines
and allow packets to be written to and read from a special
device file. To the kernel, it appears as though packets have
arrived from the link layer when data is written to the de-
vice file. This means the packet will go through the normal
TCP/IP processing. When a packet is read from the tunnel
device, the first packet in the tunnel interfaces output queue
is copied to the reading application.

Recent versions of NCTUns only support Linux and sim-
ulation machines are required for every different version of
every operating system that is to be simulated. Simulation
machines also require kernel patches.

6. Conclusions and future work

We present some results of simulations performed with
ns-2 and the Network Simulation Cradle. Earlier work [16]
described the implementation and some validation of NSC
with only a small set of results. The results discussed
here show NSC being used for validation and performance
testing of TCP. We show TCP implementations differing
amongst themselves and with respect to traditional ab-
stracted simulation models. Simulations and testing done
by previous researchers is reproduced with NSC, validating

past work and giving extra insight into the situations stud-
ied.

Our results show that simulating TCP with real world
implementations is useful:

• there can be a wide variation between TCP implemen-
tations;

• TCP implementations differ substantially from simpli-
fied models; and

• simulating with real implementations can be used as a
validation tool.

Future work could include further comparative perfor-
mance testing of TCP implementations with NSC. It could
be used for quick feedback on TCP performance, measur-
ing metrics such as those defined by the Transport Model-
ing and Research Group [9]. Results can be gathered at lit-
tle cost before conducting real network tests. There is also
interest in extending the simulation cradle with additional
network stacks such as the Open Solaris TCP/IP stack.

References

[1] M. Allman and A. Falk. On the effective evaluation of TCP.
SIGCOMM Computer Communications Review, 29(5):59–
70, October 1999.

[2] K. G. Anagnostakis, M. B. Greenwald, and R. S. Ryger. On
the sensitivity of network simulation to topology. In IEEE
Symposium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunications Systems (MASCOTS), Wash-
ington, DC, USA, 2002. IEEE Computer Society.

[3] R. Bless and M. Doll. Integration of the FreeBSD TCP/IP-
stack into the discrete event simulator OMNeT++. In Winter
Simulation Conference, pages 1556–1561, December 2004.

[4] L. S. Brakmo and L. L. Peterson. Experiences with network
simulation. In ACM SIGMETRICS, volume 24, pages 80–
90, New York, NY, USA, May 1996. ACM Press.

[5] K. Cho, K. Mitsuya, and A. Kato. Traffic data repository
at the WIDE project. In USENIX, FREENIX Track, pages
263–270, San Diego, CA, June 2000.

[6] K. Fall and S. Floyd. Simulation-based comparisons of
Tahoe, Reno and SACK TCP. SIGCOMM Computer Com-
munications Review, 26(3):5–21, July 1996.

[7] K. Fall, S. Floyd, and T. Henderson. Ns simulator tests for
reno fulltcp, 1997.

[8] S. Floyd. Simulator tests. Technical report, Lawrence Berke-
ley Laboratory, May 1997.

[9] S. Floyd. Metrics for the evaluation of congestion control
mechanisms. Internet Draft, October 2005.

[10] S. Floyd. The transport modeling research group (tmrg).
http://www.icir.org/tmrg/, Accessed 2006.

[11] S. Floyd and E. Kohler. Internet research needs better
models. SIGCOMM Computer Communications Review,
33(1):29–34, January 2003.

[12] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Ex-
tension to the Selective Acknowledgement (SACK) Option
for TCP. RFC2883, July 2000.

[13] L. A. Grieco and S. Mascolo. Performance evaluation and
comparison of westwood+, new reno, and vegas tcp con-
gestion control. SIGCOMM Computer Communications Re-
view, 34(2):25–38, April 2004.

[14] A. Gurtov and R. Ludwig. Responding to spurious timeouts
in TCP. In IEEE INFOCOM, volume 3, pages 2312–2322,
2003.

[15] S. Ha, Y. Kim, L. Le, I. Rhee, and L. Xu. A step toward real-
istic performance evaluation of high-speed TCP variants. In
Fourth International Workshop on Protocols for Fast Long-
Distance Networks, 2006.

[16] S. Jansen and A. McGregor. Simulation with real world net-
work stacks. In Winter Simulation Conference, December
2005.

[17] S. Jansen and A. McGregor. Validation of sim-
ulated real world TCP stacks. Under submission,
available http://www.wand.net.nz/pubDetail.
php?id=218, 2006.

[18] C. Jin, D. Wei, and S. Low. Fast tcp: Motivation, architec-
ture, algorithms, performance. In IEEE INFOCOM, 2004.

[19] C. C. Knestrick. Lunar: A user-level stack library for net-
work emulation. Master’s thesis, Virginia Tech, February
2004.

[20] K. Kumazoe, K. Kouyama, Y. Hori, M. Tsuru, and Y. Oie.
Can high-speed transport protocols be deployed on the inter-
net? : Evaluation through experiments on JGNII. In Work-
shop on Protocols for Fast Long-Distance Networks, 2006.

[21] S. Ladha, P. D. Amer, A. Caro, and J. R. Iyengar. On
the prevalence and evaluation of recent TCP enhancements.
In IEEE Global Telecommunications Conference (GLOBE-
COM), volume 3, pages 1301–1307, 2004.

[22] Y.-T. Li, D. Leith, and R. N. Shorten. Experimental evalu-
ation of TCP protocols for high-speed networks. Technical
report, Hamilton Institute, NUI Maynooth, 2005.

[23] M. Lulling and J. Vaughan. A simulation-based performance
evaluation of Tahoe, Reno and SACK TCP as appropriate
transport protocols for SIP. Computer Communications,
27(16):1585–1593, October 2004.

[24] P. Sarolahti and A. Kuznetsov. Congestion control in linux
TCP. In Proceedings of the FREENIX Track: 2002 USENIX
Annual Technical Conference, pages 49–62, Berkeley, CA,
USA, 2002. USENIX Association.

[25] The network simulator - ns-2. http://www.isi.edu/nsnam/ns/,
Accessed 2006.

[26] S. Y. Wang, C. L. Chou, C. H. Huang, C. C. Hwang, Z. M.
Yang, C. C. Chiou, and C. C. Lin. The design and implemen-
tation of the NCTUns 1.0 network simulator. Computer Net-
works: The International Journal of Computer and Telecom-
munications Networking, 42(2):175–197, 2003.

[27] L. Xu, K. Harfoush, and I. Rhee. Binary increase conges-
tion control (bic) for fast long-distance networks. In IEEE
INFOCOM. IEEE, 2004.

[28] X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: A library
for parallel simulation of large-scale wireless networks. In
Workshop on Parallel and Distributed Simulation, pages
154–161, 1998.

