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Performance versus Overhead for Fountain Codes over 𝔽𝑞

Gianluigi Liva, Member, IEEE, Enrico Paolini, Member, IEEE, and Marco Chiani, Senior Member, IEEE

Abstract— Fountain codes for packet erasure recovery are
investigated over Galois fields of order 𝑞 ≥ 2. It is shown through
development of tight upper and lower bounds on the decoding
failure probability under maximum likelihood decoding, that the
adoption of higher order Galois fields is beneficial, in terms of
performance, for linear random fountain codes. Moreover, it is
illustrated how Raptor codes can provide performances very close
to those of random fountain codes, with an affordable encoding
and decoding complexity. Non-binary Raptor codes turn out to
represent an appealing option for applications requiring severe
constraints in terms of performance versus overhead, especially
for small source block sizes.

Index Terms— Fountain codes, Raptor codes, maximum like-
lihood decoding.

I. INTRODUCTION

FOUNTAIN codes have been introduced in [1] as a pos-
sible solution for information delivery in broadcast and

multicast networks. A fountain encoder is capable to produce
an undefined amount of encoded symbols (or output symbols)
out of a source block formed by 𝑘 source symbols (or input
symbols). In broadcast and multicast networks, each user
collects symbols generated by the fountain encoder. Once a
sufficiently large amount of symbols has been received, the
user is able to recover the 𝑘 input symbols. For an ideal
fountain code this amount coincides with 𝑘: the decoder is able
to recover the source block from any set of 𝑘 output symbols.
For real fountain codes, the source block is recovered with a
probability that is non-decreasing with the number of symbols
received in surplus with respect to (w.r.t.) 𝑘. This integer
number is referred to as the overhead, here denoted by 𝛿.

Fountain codes are usually adopted in communication net-
works to recover lost packets. Here, an object (e.g., a file) is
divided into 𝑘 source packets, all of the same length 𝐿 [bits],
out of which the encoder produces an undefined amount of
encoded packets, each of length 𝐿 [bits]. If a binary fountain
code is used, each encoded packet may be obtained as a bit-
wise exclusive-or of a subset of the source packets. Similarly,
for a fountain code over a Galois field 𝔽𝑞 of characteristic two
with 𝑞 > 2, each source packet is regarded as a collection of
𝐿/ log2 𝑞 symbols in 𝔽𝑞: each encoded packet is obtained as
a symbol-wise sum (in 𝔽𝑞) of a subset of the source packets.
Hence, for a given object the encoding latency can be kept
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constant, regardless the Galois field order used for performing
the linear combinations.

In this letter, two classes of fountain codes are considered,
namely, linear random fountain (LRF) codes and Raptor codes
[2]. For both, maximum-likelihood (ML) decoding is adopted.
The decoding error probability of LRF codes over Galois fields
of order 𝑞 ≥ 2, as a function of the overhead, is investigated in
Section II. It is shown through tight upper and lower bounds
that, by adopting a code construction on non-binary fields,
the probability of decoding success can be largely increased
for the same overhead. In Section III, it is illustrated through
simulation how Raptor codes constructed on Galois fields of
order 𝑞 ≥ 2 are capable to closely approach the performance
of LRF codes even for small overheads. Final remarks follow
in Section IV.

II. LINEAR RANDOM FOUNTAIN CODES OVER 𝔽𝑞

Let 𝒄 = [𝑐𝑖]𝑖=0,...,𝑘−1 ∈ 𝔽
𝑘
𝑞 be a vector of 𝑘 input symbols.1

A LRF code over 𝔽𝑞 is a random linear map 𝔽
𝑘
𝑞 → 𝔽

ℕ
𝑞 , where

𝔽
ℕ
𝑞 denotes the set of all sequences over 𝔽𝑞. The encoder

generates the output symbol 𝑒𝑗 , 𝑗 ∈ ℕ, as follows:

∙ for each input symbol 𝑐𝑖, a coefficient 𝑔𝑗𝑖 ∈ 𝔽𝑞 is picked
independently with uniform probability;

∙ the output symbol 𝑒𝑗 is computed as 𝑒𝑗 =
∑𝑘−1

𝑖=0 𝑔𝑗𝑖𝑐𝑖,
where all operations are performed in 𝔽𝑞.

Assume the fountain encoder generates a stream of 𝑛 output
symbols. Denoting these symbols by 𝒆(0,...,𝑛−1), we have
𝒆(0,...,𝑛−1) = G(0,...,𝑛−1) 𝒄 where

G(0,...,𝑛−1) =

⎡
⎢⎣

𝑔00 . . . 𝑔0 𝑘−1

...
𝑔𝑛−1 0 . . . 𝑔𝑛−1 𝑘−1

⎤
⎥⎦ .

Note that, in general, G(0,...,𝑛−1) is a dense matrix.
The index 𝑗 ∈ ℕ assigned to the output symbol 𝑒𝑗 is also

known as the encoded symbol identifier (ESI). For an ESI 𝑗,
we let Θ𝑗 = {𝑔𝑗𝑖 : 𝑖 = 0, . . . , 𝑘 − 1}.

Assume 𝑘+𝛿 ≥ 𝑘 output symbols 𝒆(𝑗1,...,𝑗𝑘+𝛿) are collected
at the receiver (the other transmitted symbols being erased by
the channel) and let 𝐽 = {𝑗1, . . . , 𝑗𝑘+𝛿} be the set of ESIs of
these symbols. We have

G(𝑗1,...,𝑗𝑘+𝛿) 𝒄 = 𝒆(𝑗1,...,𝑗𝑘+𝛿) (1)

where G(𝑗1,...,𝑗𝑘+𝛿) is the ((𝑘 + 𝛿) × 𝑘) matrix composed of
the 𝑘+𝛿 rows of G(0,...,𝑛−1) whose indexes belong to 𝐽 . ML
decoding consists of solving (1) through Gaussian elimination
to recover all 𝑘 input symbols 𝒄. Note that, to this purpose,
for each collected output symbol 𝑒𝑗 , the decoder needs the

1Throughout the letter vectors will be intended as column vectors.
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Fig. 1. Lower and upper bounds on the decoding error probability of LRF
codes over 𝔽𝑞 , for 𝑞 = 2, 4, 8, 64, 256. The bounds are independent of 𝑘.

corresponding Θ𝑗 .2 Decoding is successful if and only if
rank(G(𝑗1,...,𝑗𝑘+𝛿)) = 𝑘. The decoding error probability is then
given by (see, e.g., [3])

𝑃𝑒(𝑘, 𝛿, 𝑞) = 1−
𝑘∏

𝑖=1

(
1− 𝑞𝑖−1

𝑞𝑘+𝛿

)
(2)

= 1− (𝑞−𝑘−𝛿; 𝑞)𝑘 (3)

where the formulation (3) uses the 𝑞-Pochhammer symbol.
Proposition 1: The decoding failure probability of a LRF

code over 𝔽𝑞, under ML decoding, fulfills

𝑞−𝛿−1 ≤ 𝑃𝑒(𝑘, 𝛿, 𝑞) <
1

𝑞 − 1
𝑞−𝛿 (4)

with equality for the lower bound if and only if 𝑘 = 1.3

Proof: The lower bound is obtained by observing that
1 − 𝑃𝑒(𝑘, 𝛿, 𝑞) =

∏𝑘
𝑖=1(1 − 𝑞𝑖−1−𝑘−𝛿) ≤ (1 − 𝑞𝑘−1−𝑘−𝛿) =

1 − 𝑞−1−𝛿, where the inequality is due to each factor being
less than 1. Note that equality holds if and only if 𝑘 = 1.

The upper bound is proved by induction on 𝑘. The bound
holds for 𝑘 = 1. In fact, 1 − 𝑃𝑒(1, 𝛿, 𝑞) = 1 − 𝑞−1−𝛿 =
1 − 1

𝑞 𝑞
−𝛿 > 1 − 1

𝑞−1𝑞
−𝛿. Assuming the bound is true for

𝑘, then it is true also for 𝑘 + 1. In fact, 1−𝑃𝑒(𝑘 + 1, 𝛿, 𝑞)
=

∏𝑘+1
𝑖=1 (1−𝑞𝑖−1−𝑘−1−𝛿) = [1−𝑃𝑒(𝑘, 𝛿+1, 𝑞)](1−𝑞−1−𝛿) >

(1 − 1
𝑞−1𝑞

−1−𝛿)
(
1− 𝑞−1−𝛿

)
> 1 − 1

𝑞−1𝑞
−𝛿 where the first

inequality is due to the bound for 𝑘, and the second inequality
can be easily verified.

Remarkably, the upper bound and the lower bound in (4)
are independent of the number 𝑘 of input symbols, which
allows to develop considerations valid for all 𝑘. The bounds
are depicted in Fig. 1 as functions of 𝛿 for 𝑞 = 2, 4, 8, 64 and
256. The two bounds converge for large 𝑞 and the gap between
them is very small for all 𝑞. It can be verified that the upper
bound is extremely tight even for 𝑞 = 2 and 𝑘 in the order of
a few tens. Fig. 1 reveals an inherent advantage, in terms of

2In real systems, Θ𝑗 is not usually transmitted as it is obtained by
the decoder through the same pseudo-random generator used for encoding,
starting from ESIs. Therefore, is is sufficient to transmit the ESI together with
the corresponding output symbol.

3The upper bound for the binary case, 𝑃𝑒(𝑘, 𝛿, 2) < 2−𝛿 , appeared in [4].
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Fig. 2. Block diagram of the systematic Raptor encoder specified in [6].

performance for the same overhead, of constructing the code
on higher order Galois fields for a given 𝑘. For example, with
only one symbol of overhead, we have 𝑃𝑒 ≃ 2.5 ⋅10−4 for all
𝑘 over 𝔽64, while we have 𝑃𝑒 ≥ 2.5 ⋅ 10−1 for all 𝑘 over 𝔽2.

The independence of the two bounds from 𝑘 and the small
gap between them emphasize a weak dependence of the
performance on 𝑘, for a given overhead and Galois field order.
Note that using a large block size 𝑘 increases the fountain code
efficiency defined as 𝜂 = 𝑘/(𝑘 + 𝛿). However, LRF codes
are not practical for large source blocks due to prohibitive
𝒪(𝑘3) complexity of ML decoding, in terms of both number
of additions and number of multiplications in 𝔽𝑞.

Given a value of error probability, the efficiency gain of a
non-binary code w.r.t. a binary one becomes remarkable for
small blocks (i.e., small 𝑘). Hence, the use of non-binary codes
is appealing for small objects.

III. A CLASS OF RAPTOR CODES OVER 𝔽𝑞

A Raptor code is obtained by concatenating an outer
high rate code (pre-code) with an inner Luby-transform (LT)
code [5]. We derive Raptor codes on 𝔽𝑞 from their binary
counterparts. In the process, we focus on the class of binary
Raptor codes specified in [6], whose encoder is depicted in
Fig. 2. A non-systematic LT encoder generates the output
symbols from 𝑙 = 𝑘 + 𝑠 + ℎ symbols 𝒇 , known as the
intermediate symbols. These latter symbols are generated by
pre-coding the 𝑘 symbols 𝒅𝑘. We have 𝒇𝑇 = [𝒅𝑇

𝑘 ∣𝒅𝑇
𝑠 ∣𝒅𝑇

ℎ ],
where the 𝑠 symbols 𝒅𝑠 are known as the LDPC symbols
and the ℎ symbols 𝒅ℎ as the half symbols. The (𝑠 × 𝑘) and
(ℎ× (𝑘+𝑠)) encoding matrices GLDPC and GH, the encoding
matrix GLT of the inner LT code and the parameters 𝑠 and ℎ,
depend on 𝑘 and are specified in [6]. A systematic Raptor
encoder is obtained through a rate-1 linear pre-coder that
generates the 𝑘 symbols 𝒅𝑘 from the 𝑘 input symbols 𝒄. This
precoder can be represented as the product between 𝒄 and a
properly chosen full-rank (𝑘 × 𝑘) matrix, denoted by G−1

T
in Fig. 2. Adopting the same notation as Section II, we now
have 𝒆(0,...,𝑛−1) = GLT(0,...,𝑛−1) 𝒇 . Note that, as opposed to
G(0,...,𝑛−1) for a LRF code, GLT(0,...,𝑛−1) is a sparse matrix.

We derive Raptor codes over 𝔽𝑞 by extending to non-binary
fields the encoder structure depicted in Fig. 2, i.e., by replacing
all component encoders with non-binary counterparts. Specif-
ically, we replace each non-zero entry in GLDPC, GH and
GLT(0,...,𝑛−1) with an element picked randomly in 𝔽𝑞∖{0}.

Next, encoding and decoding are described. The set of
constraints on the Raptor output symbols can be represented
in a compact way, including the constraints imposed both by
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Fig. 3. Decoding failure rate vs. overhead for 𝑞-ary Raptor codes (𝑞 = 2, 4)
with 𝑘 = 64 and 𝑘 = 512, compared to the upper bound (valid for all 𝑘) on
the error probability of LRF codes over 𝔽2 and 𝔽4.

the pre-coder and by the LT encoder, as

A(0,...,𝑛−1) 𝒇 =

[
0

𝒆(0,..,𝑛−1)

]

where 0 is the length-(𝑠 + ℎ) all-zero column vector and
A(0,...,𝑛−1) is a ((𝑠 + ℎ + 𝑛) × 𝑙) matrix over 𝔽𝑞 called the
constraint matrix, given by

A(0,...,𝑛−1) =

⎡
⎣ GLDPC I𝑠 Z

GH Iℎ
GLT(0,...,𝑛−1)

⎤
⎦ .

Here, I𝑠 and Iℎ are the (𝑠 × 𝑠) and (ℎ × ℎ) identity
matrices, respectively, and Z is the (𝑠 × ℎ) all-zero matrix.
In general, A(0,...,𝑛−1) is a sparse matrix. We use next the
notation A(𝑗1,𝑗2,..,𝑗𝑟) to indicate the ((𝑠 + ℎ + 𝑟) × 𝑙) sub-
matrix of A(0,...,𝑛−1) obtained by selecting only the rows of
GLT(0,...,𝑛−1) corresponding to ESIs (𝑗1, 𝑗2, .., 𝑗𝑟).

Encoding exploits the (𝑙× 𝑙) sub-matrix A(0,...,𝑘−1) formed
by the first 𝑙 rows of A(0,...,𝑛−1). Since encoding is systematic,
we have 𝒄 = 𝒆(0,...,𝑘−1) from which

A(0,...,𝑘−1) 𝒇 =

[
0
𝒄

]
. (5)

Encoding consists of first solving (5) through Gaussian elimi-
nation to calculate the intermediate symbols 𝒇 ∈ 𝔽

𝑙
𝑞, and then

performing LT encoding of 𝒇 to obtain 𝒆(0,...,𝑛−1).
Assume now 𝑘 + 𝛿 ≥ 𝑘 output symbols with set of ESIs

{𝑗1, . . . , 𝑗𝑘+𝛿} are collected at the decoder. ML decoding is
performed by first solving the system

A(𝑗1,𝑗2,..,𝑗𝑘+𝛿) 𝒇 =

[
0

𝒆(𝑗1,𝑗2,..,𝑗𝑘+𝛿)

]
(6)

through Gaussian elimination to obtain the intermediate sym-
bols 𝒇 . Once 𝒇 has been recovered, the input symbols are
obtained as 𝒄 = GLT(0,...,𝑘−1) 𝒇 .

Raptor codes present advantages in terms of encoding and
decoding complexity w.r.t. LRF counterparts. More specifi-
cally, efficient methods for the solution of (5) and (6) exist,
which exploit the sparseness of system of equations [7] [8].

Originally proposed for solving sparse systems of equations
in 𝔽2, the extension of these algorithms to 𝔽𝑞 is straightfor-
ward. Although exploiting such approaches the number of
required additions and multiplications in 𝔽𝑞 remains cubic
(in 𝑙), the cubic cost function is multiplied by a very small
constant, making the overall complexity affordable.

In Fig. 3 the decoding failure rate under ML decoding of
binary Raptor codes from [6], with 𝑘 = 64 and 𝑘 = 512,
and of their extension to 𝔽4 are depicted, as functions of the
overhead. The (tight and valid for all 𝑘) upper bounds on the
performance of LRF codes over 𝔽2 and 𝔽4 are also shown.
Raptor codes approach closely the upper bounds, and the same
was observed for codes on higher order fields. This example
shows that Raptor codes over 𝔽𝑞 obtained with the simple
proposed technique achieve a performance very close to that
of random codes, sharing the same performance advantages
of adopting higher order Galois fields.

IV. CONCLUSIONS

In this letter, the performance of LRF codes over 𝔽𝑞 has
been analyzed through tight upper and lower bounds, and the
advantage of adopting higher-order Galois fields in the code
construction illustrated. A class of Raptor codes over 𝔽𝑞 has
been then presented showing, through numerical simulation,
how their performance is very close to that of LRF codes,
while offering a manageable encoding and ML decoding com-
plexity. Non-binary Raptor codes represent a very appealing
option in the presence of severe performance versus overhead
requirements, especially for small source block sizes. The
bounds derived in Proposition 1 can be confidently used to
estimate their performance down to moderate error rates.
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