Performances of a Dynamic Threads Scheduler

Smail Niar' and Mahamed Adda’

' Université de Valenciennes BP 311 LAMIH-ROI
Valenciennes 59304 cedex France,
niar@univ-valenciennes.fr

> American University of Richmond, London
Queens’ Rd. TW10 6JP, Surrey, England
addame@richmond.ac.uk

Abstract. This paper presents the design and development of a dynamic
scheduler of parallel threads in the Multithreaded multiProcessor
Architecture (MPA). The scheduler relies on an on-chip associative
memory whose management time is overlapped with the execution of
ready threads. The scheduler efficiently assigns resources to threads,
and permits them to communicate with great flexibility. The results
achieved with small number of threads from programs with high degree
of parallelism are very satisfactory, even under various degrees of cache
misses.

1 Introduction

The next generations of processors provide a very high degree of integration. The
challenges focus around embedding several units of processing inside the chip and
offering them enough useful work to benefit from these technological advances.
However, because these processors are gaining in processing speed, memory units
and interconnection network can no longer follow their progression. Thread level
parallelism is one of the techniques adopted by computer designers to bridge the
speed gap between processors in one side, and memories and communication
networks in the other side. There exists so far two ways of integrating the multithread
mechanism:

1. Simultaneous multithreading (SMT)[1][2], which consists in using a super-
scalar platform containing several issue slots. These slots are filled by
instructions selected from several active threads.

2. Single chip Multiprocessor (CMP) [3], where several processors of simple
structure are integrated on the same chip. These processors co-operate on the
execution of a program containing several threads.

The MPA (Multithreading multiProcessing Architecture) project that we present in
this paper, although different in concept, follows the second [4]. With respect to other
multithreaded architectures, the following points characterize our MPA:

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 452-456, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Performances of a Dynamic Threads Scheduler 453

e The processor utilizes a hybrid execution model: Control-flow to execute a thread,
data-flow to synchronize communicating threads, and instruction-flow to pass
messages between threads.

e The thread scheduling is performed automatically with parallel threads detected at
compilation time. This scheduling does not impose any burden on the processors

e Each processor of the MPA network executes simultaneously several instructions
from different threads. Only one execution pipeline is embedded in the processor.

e The communication between threads uses a message passing mechanism (via
shared registers) that reduces the overhead when threads are not actives.

In this paper, we describe the mechanisms used by the MPA processors to extract
and schedule parallel threads from parallel loops to obtain high level of performance.

2 MPA Processor Structure

In the MPA, to each thread we associate a number of resources called “Context”
(Figure 1.(a)). Each context represents the state of a thread and consists of data
registers, a PC and status registers [4].

Context Table CT

Thid | Iter| LocRem [Conxt | State
ProcNus

Create (THId, Tter, Loc/Rem,
) Contxt ProcNum,, State)
Or

Destoy (Thld, Iter) Contexts

Decode o Exeaute Write

Unit Unit Unit
From I
1-Queug [-

|
[

—>

. Blocki
E-Pipe Uit

(a) * (b) Toy M-Queue

Fig. 1. (a) MPA processor internal structure in CMP environment and (b) its execution pipeline
unit with the context table

The fetch unit continuously feeds the execution pipe (E-pipe) with ready
instructions. The E-pipe consists of the decoding stage, followed either by the
execution and the write stage or by the blocking stage fig 1.(b).

To maintain the synchronization between threads each data register is tagged with
a presence bit p indicating the presence of an instruction or data. When an
instruction, using a value sent by another thread, progresses through the E-pipe the
availability of operands is checked before execution proceeds. If the operand is
generated by another thread, it is written in the register. The arrival of an instruction
requesting this data triggers the execution. When the operand is consumed, the
register returns to the empty state. However, when the register is in an empty state,
and an instruction requesting its data has entered the E-pipe, the instruction is

454 Smail Niar and Mahamed Adda

suspended and written into the register. The arrival of data activates the instruction
by sending it to the Instruction Queue (IQueue) and data is copied into the register in
one clock cycle. In general, instructions may arrive from the remote threads, from the
Pc-Queue, or from the pool of previously suspended instructions. This technique
supports migration of instructions, and hence gives a common view on the execution
of threads, regardless of their locations.

The program in figure 2 shows an example to create 10 parallel threads of a loop.

//Adding 1 to all the elements of a vector X of 10 elements starting from address 100 in memory

Main : Add #9, 10, rl /Ir1=9
NewTh: Create Increm, rl /[Create a thread for executing
// the Increm loop for iteration rl
Add rl, 10, r1, Increm, rl //send r1 to th. Increm[r1]
Sub #1,rl,rl // rl=rl-1
Jump pz, NewTh /fif (r1>=0) go to NewTh

Destroy main

Increm :
? Load #100, r1, 12 /Ireceive r1 from main and load
/ X[rl]in 2
Add #1,12,12 I 12++
Store #100, r1, 12 //store r2 in X[r1]

Destroy Increm

Fig. 2. An example of program written in the MPA language

3 Presentation of the Thread Scheduling

The scheduling of threads in the MPA processor is achieved by the usage of an on-
chip associative memory called the context table (CT) Fig.1.(b). Except for the first
thread in the first processor (the root thread), all the other threads are created and their
entries stamped into the CT, when a thread executes the instruction CREATE. Each
MPA processor maintains an active list of free contexts. When a thread is about to be
created, the scheduler examines the list of local free contexts. If the list, is not empty
the scheduler writes a new entry in the CT. However if the list is empty, the
instruction CREATE is forwarded to an other processor of the CMP via the M-Queue,
or is alternatively kept in the local processor until a context is freed. With the last
approach we have examined several scenarios. When a CREATE instruction cannot
be satisfied, the instruction is blocked in a special register or recycled in the I-Queue
to be re-considered few cycles later. In the former, additional resources need be
incorporated into the chip to hold instructions that cannot initiate a thread. In the
latter, the instruction CREATE keeps circulating in the pipeline consuming useful
cycles. The thread can carry on its execution even when there are insufficient
resources (refereed to by CAF for “Continuation After Failure”). Another technique,
consists of blocking the thread that initiated the unsatisfied CREATE. The instruction
is written in the I-Queue and no subsequent instructions are fetched from this thread,
until a context is freed (refereed to by SAF for “Stop After Failure”).

The access to the CT is only needed when an instruction is transferring a value to
another thread, and this is reported in the instruction. The access is performed during
the execution phase and it is overlapped with the computations involved in the ALU.
The search key is represented by the couple (thread starting address, iteration
number). If the destination context is not local, the CT supplies the address of the

Performances of a Dynamic Threads Scheduler 455

remote processor. In the latter, the address of the destination processor and the result
of the instruction is copied into the messages queue. The result is passed within a
“migrating instruction”.

4 Experimental Results

In order to measure the performances of our MPA processor, we have designed an
interactive graphical simulator. It enables the programmer to interactively change the
parameters of the machine. In this paper, we expose the results attained from
executing two programs on a single processor. Both programs are written in MPA
language. In all the scenarios, we set the access time of the L1 caches to 1 clock cycle
and the latencies of integer and floating functional units to 1 cycle.

4.1 Matrix Multiplication

Figure 3.(a) gives the execution time of the multiplication program of two matrices (C
= A * B) function of the L2 memory latency in clock cycles. A, B and C are square
matrices of 1600 (40*40) elements. The cache miss rate in L1 is fixed to 10% for all
cases. Three versions of the matrix multiplication have been tested, corresponding to
1, 40, and 1600 threads extracted from the program. The first version (sequential)
uses one thread and corresponds to the sequential program. In the second version
(CAF40 and SAF40) the program calculates the matrix C in a line by line manner. As
the processor has only 16 available contexts, a number of threads will be delayed until
a context is freed. Before starting a new line of C, we ensure that all the previous
threads have terminated their execution. Finally in the third version (CAF1600 and
SAF1600), the program creates 1600 threads corresponding to 1600 points of the
matrix C. We notice from figure 3.(a) that SAF method demonstrates higher
performance over the CAF method. The later is very penalizing with large number of
threads (1600). This is due to an increase in the number of recycling instructions.

In figure 3.(b), the latency of L2 is fixed to 10 cycles. Across all the spectrum of
the cache misses, the method SAF remains the most significant over the method CAF
and, in particular over the single threaded program (even with larger size L1 cache,
miss = 0%). The single thread program pays a penalty of 2 clock cycles for every
branch instruction. The SAF method on the other hand tends to fill these wasted
cycles with some useful instructions from other threads.

1400 L2lat
1450 | 3
O sequential © o1
1250 = 5™
£ [5
e , 1050 ‘ B CAF40 g 1000 ms
Eo =
=3 850 5 800
52 OSAF40 £
£8 650 = 600 oo
82 s
=<7 450 1 0 CAF1600 3 4001 020
250 S 0o
50 - W SAF1600 50
miss=0% miss=10% miss=20% 07

Sequential CAF40 SAF40 CAF1600 SAF1600

(a) (b)

Fig. 3. Experimental results for the matrix multiplication program

456 Smail Niar and Mahamed Adda

4.2 DNA Sequence Alignment

In the second program, we implement the code of aligning two DNA sequences using
Smith Waterman algorithm. In our multithreaded program, each thread calculates the
elements of one column of the matrix result. In this section we use the SAF method.
The size of the 2 sequences to align has been fixed to 100. Fig.4.(a) shows that for a
L1 miss rate of 5% and 10%, the execution time increases barely with the memory
latency. Even for higher cache miss, the increase in execution time is not dramatic,
considering the increase of the memory latency. In Fig.4.(b) we have fixed the L1
miss rate to 10%. For all memory latencies, the execution time diminishes as the
number of thread increases. When the number of contexts, goes beyond 16, the
execution pipe operates at its maximum throughput. We can also notice that because
of the thread management overheads in a single threaded program, the sequential
version of the algorithm performs better.

550
500

< <
© [
2% 450+ £ $
L 4
- g 400)
25 350 8
88 300 g e
@ 250 - @
200 -
5% 10% 20% 30% L N e e d a2
L1 Cache Miss Rate Number of Contexts
(a) (b)

Fig. 4. Experimental results for the DNA sequence alignment program

5 Conclusions and Perspectives

In this paper we have presented the multithread scheduler for the MPA. The adopted
approach is based on the utilization of an on-chip associative memory for stocking the
information about the created threads. With a moderate number of parallel threads, it
is possible to obtain higher performances in terms of execution time. The next stages
of the project will be directed towards: the extension of the simulator to support
multiple processors and to integrate speculative thread scheduling technique.

References

1. Tullsen, D. M. et al.: Simultaneous Multithreading: Maximizing on-chip parallel-
ism. In Proc. Of the 22nd. annual. Intl. Symp. On computer architecture - 1995.

2. Marcuello, P., , Gonzélez, A.: Exploiting Speculative Thread-Level Parallelism
on a SMT Processor - Proc. of the Int. Conf. on High Perf. Computing and Net-
working - 1999.

3. Hammond, L., Nayfeh, B. A., Olukotun , K. : A Single-Chip Multiprocessor -
IEEE Computer Special Issue on "Billion-Transistor Processors", p 79-85, Sep-
tember 1997.

4. Adda, M., Niar, S. : Thread Synchronization and Scheduling in a Pipelined Mul-
tithreaded Processor - 1st International Symposium on Advanced Distributed
Systems - March 2000.

	Introduction
	MPA Processor Structure
	Presentation of the Thread Scheduling
	Experimental Results
	Matrix Multiplication
	DNA Sequence Alignment

	Conclusions and Perspectives
	References

