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Abstract—In recent years, approaches to control performance
and resource optimization for embedded control systems have
been receiving increased attention. Most of them focus on theory,
whereas practical aspects are omitted. Theoretical advances
demand flexible real-time kernel support for multitasking and
preemption, thus requiring more sophisticated and expensive soft-
ware/hardware solutions. On the other hand, embedded control
systems often have cost constraints related with mass production
and strong industrial competition, thus demanding low-cost solu-
tions.

In this paper, it is shown that these conflicting demands can be
softened and that a compromise solution can be reached. We ad-
vocate that recent research results on optimal resource manage-
ment for control tasks can be implemented on simple multitasking
preemptive real-time kernels targeting low-cost microprocessors,
which can be easily built in-house and tailored to actual applica-
tion needs. The experimental evaluation shows that significant con-
trol performance improvement can be achieved without increasing
hardware costs.

Index Terms—Adaptive resource management, control systems,
embedded systems, microcontroller, real-time kernel.

I. INTRODUCTION

N recent years, approaches to control performance and
I resource optimization for embedded control systems have
been receiving increased attention. As outlined in [1], these
efforts are consequence of the demands created by applications
that impose several resource constraints in terms of memory,
processing capacity, battery lifetime, etc.

Most of those approaches focus on theory, whereas practical
aspects are omitted. At the processor level, theoretical advances
demand flexible real-time kernel support for multitasking and
preemption. For example, a recurrent problem is how to as-
sign optimal sampling periods to control tasks such that aggre-
gated control performance is improved within the available re-
sources (e.g., [2]-[4] or [5]). When the systems are distributed,
those theoretical advances also demand flexible support for syn-
chronous traffic in the network, for example, to enforce the op-
timal sampling periods across distributed control transactions or
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generally to optimize the aggregated quality of service provided
to the application (e.g., [6], [7], or [8]).

Conversely to the initial problem targeted by these solutions,
that is, minimize resource requirements to meet tight cost con-
straints related with mass production and strong industrial com-
petition, research advances seem to require more sophisticated
and expensive software/hardware approaches.

In this paper it is shown that this contradiction is fictitious,
and that careful implementation of recent research results can
be achieved by low-cost solutions without compromising the
potential benefits offered by the theory.

Looking at the solutions to optimal sampling period selec-
tion for controllers, it has been shown that the most appropriate
period to be assigned to each control task depends on the state
of the controlled plant. This result suggests that implementing
control tasks using the traditional static cyclic approach will not
provide the best possible control performance. In fact, the cyclic
executive paradigm does not support dynamic task activation
rates.

The announced benefits of those solutions can be achieved
by a computing platform with real-time kernel support for dy-
namic resource management (e.g., see [9], [10], or [11] for rate
adaptation within available processor capacity, or [12] for an
energy aware rate adaptation approach). However, the available
real-time kernels or operating systems enhanced with rate adap-
tation are in general not suitable for simple microprocessor ar-
chitectures due to resource limitations. Also, simple existing
kernels targeting small architectures (e.g., [13]-[18]) do not pro-
vide support for task rate adaptation or their application to adap-
tive embedded control applications has not been reported. In any
case, they are complementary to our work.

Moreover, simple multitasking kernels are relatively easy to
implement. In fact, many graduate courses on real-time em-
bedded systems include building them as part of the respective
practical assignments. Such kernels are valuable software tools
that can be integrated into the applications and tailored to pro-
vide just the required services, avoiding excessive overhead and
unnecessary complexity.

In this work we use a simple homemade multitasking pre-
emptive real-time kernel targeting a low-cost microprocessor to
show the practicality of recent research results on optimal re-
source management for control tasks. The experimental evalua-
tion shows that a significant control performance improvement
can be achieved without increasing hardware costs.

The paper is organized as follows. The next section revisits
the sampling control period selection proposed in [2] and
discusses its implementation, presenting then the architecture
model and design choices underlying to this work. Then,
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Section III describes the kernel used to support the implemen-
tation of the optimal control period policy. Section IV contains
the main contribution of this paper showing the practicality of
that policy and exhibiting the achievable control performance
benefits even with simple resource constrained systems. Finally,
Section V presents the conclusions.

II. BACKGROUND

A. Optimal Sampling Period Selection

As outlined in the previous section, recent works have ad-
dressed this problem. Here the focus is on the solution presented
by [2], but the discussion will also cover other results. In [2] it
was proved that adapting the activation rate of each control task
according to each plant dynamics improved overall control per-
formance.

The embedded control system model considered in this work
is the following. A set of n control tasks have to execute on a
single processor. Each control task (or controller) and plant con-
stitute a control loop. Each controller performs sampling, con-
trol algorithm computation and actuation sequentially at each
task invocation. Within a range of sampling periods, each con-
troller fulfills the control specifications.

The key assumption is that controllers can not all simultane-
ously run at their highest possible sampling frequency because
of resource constraints, e.g., insufficient CPU bandwidth. Thus,
it is not possible to provide the best control performance (equiv-
alent to the one they would provide if they were running in iso-
lation). Therefore, the problem is how to allocate resources to
the control tasks so that the overall control performance is max-
imized.

In particular, we will focus on the computing resources and
thus on how to assign CPU capacity to the set of control loops,
adapting the respective sampling periods, such that all tasks
are schedulable and overall control performance is maximized,
knowing that the controllers will provide better performance
given more processor share, i.e., when given shorter periods.

The optimal resource allocation policy can be formulated
as a constrained optimization problem [2] in which each con-
trol task has a minimum guaranteed processor share, i.e., an
upper bounded sampling period, and the remaining available
processor capacity, herein referred to as slack, is assigned to
the control loop with largest error, where the error is defined as
a function of the plant state. Note that our definition of slack
refers to the computing resources that were not statically as-
signed to any task. Concerning the optimal resource allocation
policy we can make the following observations.

Observation 1: In terms of tasks periods, the solution states
that all controllers will run at their longest sampling periods
(slowest frequencies) except for the controller whose plant is
experiencing the biggest error, which will run at its shortest sam-
pling period (highest frequency).

Observation 2: The application of the optimal policy requires
the implementation of controllers capable of running with dif-
ferent sampling frequencies given different resource allocations
(for further details on controller design and stability analysis,
see [2] and references therein).
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B. Architecture Model and Design Decisions

In order to deploy the optimal policy referred above, we can
take advantage of a multitasking real-time kernel to provide iso-
lation and modularity among control tasks as well as the time-
liness guarantees needed to make sure that the controllers per-
form as expected. However, a stronger requirement to use such
an infrastructure is related to the need for rate adaptation sup-
port, which is the core of the optimal policy and cannot be easily
achieved with the monolithic cyclic executive approach typi-
cally used in embedded control systems.

The optimal policy can be implemented in the kernel or as
a task. The first approach implies specific code in the kernel
that may not be used in other scenarios. In the second approach,
similar to the feedback scheduling approach presented in [3] or
[5], a dedicated task performs the optimal resource allocation.
In this paper, the second approach is chosen because it is less
kernel intrusive and thus more general.

In addition, it is important to point out that the implementa-
tion requires specific data exchange between kernel and control
tasks. Its correct operation depends on two decision variables:
available slack and plant states. Slack is an information that
belongs to the kernel space and plant states is an information
that belongs to the applications space. Therefore, the optimal
policy also requires mechanisms for passing/accessing the de-
cision variables or related information, which are analyzed next.
In terms of kernel support, a reflective architecture for real-time
systems [19] is required.

A reflective system can react in a flexible manner to changing
dynamics within the system itself as well as the environment.
Reflection is a mechanism by which a program becomes “self-
aware,” checks its progress and is capable of adapting itself or
its own behavior. This is achieved by allowing applications to
access kernel data structures to obtain and modify information
about the current system state.

Fig. 1 illustrates the reflective architecture. A set of n tasks
dedicated to controlling a set of plants is considered. Each
ith task controls a plant, constituting a control loop. The
control is performed by means of the control signal u;, that is
computed by the task considering the plant state vector z; and
the current sampling period h;. Solid arrows illustrate control
operations within each control loop. The dedicated task in
charge of performing the slack redistribution and allocation
is also illustrated.

The interface between the RT kernel and tasks, i.e., reflec-
tive information, is used to exchange data between kernel and
tasks, illustrated with dashed arrows. The dedicated task needs
to know the available slack Uy, which is made accessible by the
RT kernel, as well as, each plant state vector, x;, which is made
accessible by all control tasks. With both informations, the new
activation period for all tasks h; is calculated and made avail-
able to the kernel as well as to the control tasks.

In summary, the optimal policy requires a preemptive mul-
titasking real-time kernel based on a reflective architecture ca-
pable of providing 1) the required flexibility to accommodate
task period changes, and 2) the communication mechanisms be-
tween kernel and tasks for information exchange.
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Fig. 1. Conceptual reflective kernel architecture.

III. KERNEL DESCRIPTION

The hardware platform used in the experiments is based on
the Microchip PIC18FXX8 micro-controllers family.! These are
28/40-Pin microcontrollers, enhanced with flash, and with con-
troller area network (CAN) communications.

In order to provide the required real-time capabilities a simple
preemptive multitasking kernel was developed for this platform.
For the purpose of this work, two other requirements were con-
sidered, namely the capability to adapt the tasks periods online
and the support for the exchange of reflective information be-
tween tasks and kernel.

A. Properties

The kernel was named RTKPIC18 and fully written in the
C language, compiled using PICC-18 v8.20PL4 of HI-TECH
Software. It supports periodic tasks with offset control, specifi-
cation of deadlines equal or shorter than the period and temporal
policing. The time management is carried out using a periodic
tick that can be configured from 2 ms to 65 534 ms. Periods, off-
sets and deadlines are expressed as integer multiples of the tick
duration.

The scheduling policy can be specified at system startup.
Three policies are already predefined, namely earliest deadline
first (EDF), rate-monotonic (RM), and deadline-monotonic
(DM). Other scheduling policies require the addition of the
corresponding function to the kernel. Beyond the scheduling
policy, it is also possible to specify the preemption mode in
which the system will operate, i.e., whether preemption will be
allowed on not.

The kernel supports up to 13 periodic tasks plus a back-
ground task. This number was chosen because of the execution
overhead of the tick handler when using the EDF scheduling
policy (see end of Section III-C). It is, nevertheless, an adequate
number to many embedded control applications that typically
require a low number of tasks.

The kernel code takes 2900 words out of a total of 32000
words available, i.e., about 8.8% of the program memory. Con-
cerning the more constrained data memory, the kernel takes 39
bytes plus 31 bytes per task from a total of 4000 bytes of RAM,
representing a footprint that varies from 101 bytes (2.5%) for
one periodic task plus background to 473 bytes (11.6%) for the
maximum number of tasks.

thitp://www.microchip.com/

v

create_system (tick_ms, task _sch, preempt)

v

create_task(task 1)
create_task(task2)
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config_system()
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release_system()

v

background task

Fig. 2. Structure of the main function.

Moreover, to minimize the memory footprint and reduce the
computational overhead, the kernel was provided with the min-
imum functionality to meet the referred requirements. In partic-
ular, task synchronization features were reduced to simple pre-
emption control with a global flag and task communication was
reduced to the use of global variables.

B. Programming Model

The structure of the main function in an application is shown
in Fig. 2. The program starts invoking the create_system system
call to specify the duration of the tick in milliseconds, the
scheduling policy (EDF, RM or DM) as well as the preemption
mode (PREEMPT or NOPREEMPT). This system call also
creates and initializes all the internal structures of the kernel,
still holding the time management off.

The following step corresponds to the actual creation of the
tasks, one by one, using the create_task system call, which asso-
ciates the code of each task to a rask control block (tcb) internal
to the kernel and to a block of memory to save the task context,
allows specifying the task timing attributes and executes the ini-
tialization code inside the task, leaving it ready for the periodic
execution. Then, the config_system system call must be invoked
to initialize the priorities of the tasks according to the sched-
uling policy chosen.

Finally, the actual start of operation of the whole application,
synchronously, is carried out by invoking the release_system
system call, which initiates the tick handling activity and the
timing management inside the kernel. All task offsets are
counted with respect to this moment in time. Then the system
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void task_example (void)
{
/* Declaration of task dynamic variables «*/
/* Initialization of task variables «*/
(..0)
task_init ();
/+ task_create() executes the task code up to the
end of the task_init () system call, thus
the actual periodic execution starts from here */
while (1)
{
/+ Code of each periodic instance =/
(...)
end_cycle();

}

Fig. 3. Programming model of periodic tasks.

A

RUN \
preemption R ” end _cycle
dispatch
| READY | IDLE e xctiate

Fig. 4. Tasks state machine.

enters an infinite loop executing the background task, which
is preempted for the execution of the periodic tasks, even in
nonpreemptive mode.

The programming model of each periodic task is shown in
Fig. 3. It follows the common model with an initialization part
followed by an infinite loop that corresponds to the recurrent ex-
ecution of the periodic instances. The initialization part includes
the initialization of the task local variables and finishes with a
call to the fask_init system call, which initializes the task con-
text (tcpuctx) and prepares the task for the periodic execution
that will start at this point, i.e., right after the call to task_init.
The infinite loop contains the code that will be executed in each
periodic instance and must terminate by invoking the end_cycle
system call, which transfers the execution control to the kernel
so that another ready task, if any, can be dispatched.

C. Implementation Details

The RTKPIC18 kernel was developed following the guide-
lines provided in [20]. It carries out two main activities, i.e.,
tasks and time management. The former makes use of an array
of task control blocks that contain, each, the timing attributes
of the respective task, a pointer to the associated code, its cur-
rent execution status and its context that includes all task dy-
namic variables and current CPU registers, particularly program
counter and status register. The execution status can be one of
three, IDLE (interval of time between the end of the previous
instance and the beginning of the next), READY (upon periodic
activation and waiting for CPU time) and RUN (executing). The
state machine is shown in Fig. 4.
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Fig. 5. Internals of the end_cycle system call.

When preemption is disabled, a task with higher priority,
which becomes ready while another one with lower priority
is executing, must wait for the termination of the latter, thus
becoming blocked. This is normally represented by a specific
blocked state. However, in our case we avoid this extra state
keeping the tasks in such circumstances in the READY state and
simply not allowing preemption to take place. Tasks will execute
by priority order as soon as the CPU becomes free or preemption
is re-enabled. On the other hand, when preemption is enabled, it
takes place synchronously with the ticks since it is the tick han-
dler that causes the periodic tasks activation, i.e., transition from
IDLE to READY states. The rescheduling points, i.e., where the
scheduling function is invoked to retrieve the highest priority
task in the READY state, are the ticks handling, as just men-
tioned, and the tasks terminations within the end_cycle system
call (Fig. 5).

One interesting aspect concerns the implementation of the
tasks contexts. These data structures are frequently imple-
mented in one or multiple stacks. However, the PIC18FXX8
microcontroller has only a very limited stack of a few bytes to
store the return addresses from routines. To work around this
limitation, the compiler allocates the memory space for the
dynamic variables statically in RAM, when linking the code.
Such memory space is overlapped for all independent functions
and exclusive for functions that call one another. Note that with
a single execution thread, independent functions never overlap
in time and so when a function starts execution any previous
function has terminated and the memory space of its local
(dynamic) variables released, thus free for the variables of the
starting function. This does not hold for dependent functions
that can be active at the same time.

In our case, due to preemption, several execution threads can
be active at the same time thus, for consistency, is it important
that all contexts are exclusive, which is achieved invoking the re-
cursive_call system call in the main. This call tells the compiler
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Fig. 6. Structure of the tick_handler.

that the functions that constitute the tasks must be considered as
dependent, despite not calling each other.

The other major role played by the kernel is time manage-
ment. This is carried out, essentially, within the tick handler.
Fig. 6 shows the flowchart of this handler that starts by ac-
counting for the passage of time, then scanning for periodic ac-
tivations and finally rescheduling and dispatching a new task if
needed. The detection of missed deadlines just sets a flag in the
task context that allows it to take reflective measures.

The graphic in Fig. 7 gives the worst-case execution time of
the tick_handler for the EDF and RM/DM schedulers as a func-
tion of the number of tasks activated simultaneously. The mea-
surements were carried out on a platform based on the 18F258
processor operating at 20 MHz. When using EDF, the dynamic
priorities are computed online using the EDF_prt_set function,
which carries out a sorting algorithm thus causing an execution
penalty. This EDF implementation is simple and integrates well
within the tick handler, but its efficiency seems to be subop-
timal, limiting the maximum number of tasks that can be acti-
vated simultaneously. For example, for a tick period of 2 ms the
maximum number of tasks is 13. Note, however, that in general
not all tasks are activated every tick, thus strongly reducing the
overhead it implies. This makes the current solution practical for
several applications such as mobile robots and machine control,
in which it has been used successfully. Nevertheless, more ef-

Variation of the tick_handler worst-case response time with the number of tasks
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Fig. 7. Tick_handler worst-case execution time as a function of the number of
tasks activated simultaneously.

ficient EDF implementations are currently being considered for
future kernel developments.

D. Reflective Layer

The reflective layer shown in Fig. 1 is implemented with an
adequate shared structure that contains the required information
not included in the kernel, namely the control plants state x;.
By means of this structure, such information is made available
to the task that redistributes the slack available in the system
which, using the current system slack obtained from the kernel
(Us), sets the adequate sampling periods for the control tasks
h;.

In order to operate on this structure, a few functions were
developed and made available to the tasks, namely mutex_write
and mutex_read, which write and read information from the
reflective layer in a nonpreemptive way, respectively. The
reflective information that is maintained by the kernel is di-
rectly accessed with the associated primitives, as shown earlier
in the text, namely get_CPU_util, which returns the current
CPU utilization and is used to compute the current system
slack, get_sys_time, get_my_id, get_deadl_stat, get_period,
and set_period. In particular, note that the changes in the tasks
periods are enforced on the next periodic activation of the
respective tasks, only, which prevents the potential occurrence
of transient overloads during the period switching.

IV. IMPLEMENTING THE OPTIMAL SAMPLING POLICY

The goal of the paper is to show that advanced theoretical re-
sults on control performance and resource optimization for em-
bedded control systems can be implemented using low-cost so-
lutions. In this section we present a simple experiment involving
the implementation of the optimal policy on a prototype im-
plementation of the RTKPIC18 kernel built for the PIC18458F,
with two control tasks competing for the CPU. The example
simply aims at illustrating the practicality of a recent theoretical
result using a rather constrained embedded system. Although
more control tasks could be added, this would not alter the re-
sults herein presented.

A. Experimental Setup

The scheme for the complete hardware and software setup is
illustrated in Fig. 8. The kernel concurrently executes two con-
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trol tasks, as well as the task in charge of performing the slack
allocation, which is not illustrated in this figure. All tasks are
scheduled using the EDF scheduling algorithm, which is more
efficient in terms of CPU utilization for guaranteed schedula-
bility. Moreover, EDF does not introduce any additional asym-
metry among tasks, as opposed to fixed priority schemes. The
two control tasks, labeled Control 1 and Control 2, execute the
code explained in Section IV-C to control each voltage stabi-
lizer.

The electronic components of both stabilizers in the form of
RCRC circuits are R; = 330 k2, C; = 100 nF, Ry = 330 k€2,
and C> = 100 nF. Each circuit can be modeled in terms of the
currents ¢; at each R; by the following equations:

) 1
O+ (1 — )5 =

Vin 1
o (D
. 1 1

G2R2 + (g2 — (11)0 + 2= G =0. (2)

Taking into account the components values, a state-space form
is given by

.ii?l _ 0 1 I
i | = | -91827 —90.90] | s
0
+ [918.27} K ®)
—u 0|7 @

where u is the control signal, y is the plant output, z; corre-
sponds to the voltage in Co, and x5 is ¢2/C5. The control ob-
jective is to maintain the output voltage V. of Co at 2.4 V
regardless of the load perturbations that may affect the system.
This is achieved by the control signal generated by each con-
trol task sent to the circuit, as illustrated by V;,,. The sampled
controlled variable is V¢, as illustrated by z1,,cqsured- Each
circuit is perturbed by the load voltage, as illustrated by V44,
which is randomly generated following an uniform distribution.

B. Slack Management

The optimal policy can make use of dynamic slack (reserved
but unused resources) or static slack (unreserved resources). In
the experimental setup, we limit the application of the optimal

T

L
-

policy to static slack and therefore, we consider that the avail-
able slack is constant. The primitive get_ CPU_util computes the
CPU utilization from the period and worst case execution time
of each task in the system, information that is stored in each task
control block. Using only static slack limits achievable control
performance improvement. On the other hand, it simplifies oper-
ation because using dynamic slack involves performing execu-
tion time measurements and associated operations, which com-
plicate the kernel and increase overhead [21]. In any case, the
results show that efficiently using static slack can already im-
prove control performance.

Provided that slack is constant, the optimal policy mandates
to run each control task at two rates given by a shortest and
longest sampling period. Specifically, the experiment is de-
signed to guarantee the minimum rate (longest period) for each
control task but both tasks cannot simultaneously run at their
maximum rate (shortest period). However, the available slack
is enough to run one task at its maximum rate while the other
runs at its minimum rate.

The task dedicated to the slack allocation reads the error value
stored in the reflective memory by each control task. It also ex-
ecutes get_CPU_util, which implies scanning the list of n tasks
and computing and accumulating their utilizations. With these
values, it sets the new two tasks periods as mandated by the
optimal policy. In general, the complexity of the algorithm im-
plemented in the task doing the slack management is O(n), i.e.,
linear with n, the number of tasks [2].

In this particular implementation, the task implementing the
optimal policy assigns the shortest sampling period to the task
with greatest error while the other task is given the longest pe-
riod. The new tasks periods are updated in each task control
block. The dedicated task executes at slower rate than the control
tasks. In our experiments, its period is set to 200 ms. It is out of
the scope of this paper to analyze which optimal period should
the slack allocation task have. The shortest its period, the more
reactive will the system be, thus improving the error tracking
and increasing the potential for better performance. However,
this would also imply more overhead due to its execution.

C. Controller Design and Implementation

As mandated by the optimal policy, each control task will
have to run with two different sampling periods. At the control
algorithm level, this is accommodated by switching controller
gains according to the period that applies. Therefore, two con-
troller gains have been calculated. Optimal LQ control [22] has
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[rkxkkxkkxkkxkkkxkkx CONLrol task *kxxkkxhkxkkxkhxx/

Output [v]
2451 1 void taskl (void) {
DY - — D = /% Definitions x/
2.35} i K1,K2: Controller gains for fast and slow periods;
Obl, Ob2: Observers for fast and slow periods;
23} | ref: set point reference;
‘ fast_period: constant;
2.25 ] [ — Start Up */
22 b task_init (); //Real-Time Command
tl=get_my_id();
2.15 E while (1)
{
21} 4 inc = READPORTI1; //Read Input
205t /e 22 ms execution /*———— Select the Right Control and Observer —-——-——-— */
’ —— 38 ms execution
NE ) ) if (get_period()==fast_period)
0 0.05 0.1 time [5] { , , ,
/* use right observer and right gain =/
. . ob = obl;
Fig. 9. Systems dynamics for both controller rates. K=K22;
}
else
{
been the basis for controller design. The quadratic cost function ob = ob2;
K=K38;

to be minimized is given by

J:i/“}xTQx+uTRmdt 5)
0

where

400 1
Qz{l 0} R=1 (6)

That is, since the focus of the controller is to ensure fast
tracking, errors between the output variable and the desired
output variable are severely penalized. In terms of pole lo-
cation, the previous specification is equivalent to localize
the continuous closed-loop poles at —103.93 + 587.1 and
—103.93 — 387.1. The corresponding discrete closed-loop
poles depend on the control task period (i.e., sampling period).

In the implementation, the two sampling periods for each con-
trol task are 22 ms and 38 ms. With these periods, the two gains
are koo = [4.274 0.048] and k33 = [2.068 0.025]. In addition to
the controller gains, deadbeat reduced observers for estimating
the second state variable have been designed for the two task
rates. The expected dynamics for the plant with these two gains
are illustrated in Fig. 9.

The pseudo-code of the control task is given in Fig. 10. The
pseudo-code starts by defining variables, constants, etc. Only
the most significant ones are shown: two gains K22 and K 38,
observer matrices for the two reduced observers Obl and Ob2,
the reference set point, and constant “fast_period” that is used
to differentiate between the two possible rates. The reference in
our experiments is constant, but it could be changed within the
software. After this, the task is initialized.

Then, an infinite loop contains the main code for the task.
First, the output variable is read and its value stored in inc. With
the value and the reference (generated by software), and after
checking the current period with get_period, the appropriate

}

/+ Observer computation */
x_obs = f_ob(ob,x_obs_old,
/+ Control Computation */
u = f_ctrl(x_obs, ref, inc, K);
WRITEPORTOL1 (u) ; //Write Output

u_old, inc);

[r————= Update States —————————————————————— */
x_obs_old = x_obs; //Observer
u_old = u; //Output

mutex_write(tl, f(x_obs)); //Write reflective inf.

end_cycle();

}

Fig. 10. Control task pseudo-code.

control signal u is computed, taking into account the estima-
tion given by the observer. It is therefore at this point where the
specific controller gain is applied. Index ¢1 is the task identi-
fier obtained with get_my_id. This control signal is written to
the output port, state updates are performed, and the system call
end_cycle notifies the kernel that the control task has finished
execution of a periodic instance.

Note that in the state updates, the error of the controlled plant
is written in the reflective memory shared between tasks and
kernel via mutex_write. This value will be read by the task per-
forming the slack allocation. The error is a quadratic function
of the circuit states.

The actual code of the task also prevents saturation on the
control signal. Here it has been omitted for the sake of clarity.

Differently to approaches like [3], [4], or [5], in which sta-
bility is guaranteed by solving the control performance and re-
source allocation problem, using the optimal policy [2] requires
a separate stability check. Many existing stability techniques
can be applied. For example, it is easy to check that there is
a common Lyapunov function [23] that guarantees stability for
each control loop regardless of any changes in tasks periods.
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Fig. 11. Static versus dynamic.

D. Results

To assess the benefits of the optimal policy, a baseline static
policy has been also implemented. In the static policy both con-
trollers run at a fixed rate, and no slack allocation is performed.
One controller runs at fixed 38 ms and the other at fixed 22 ms.
Therefore, they implement the traditional controller, that is, a
constant controller gain, which coincides with the optimal gain
designed in Section I'V-C.

Fig. 11 shows the results in accumulated cost, i.e., control
error, of both static and dynamic (optimal) policies. The ac-
cumulated cost is the evaluation of the cost function (5) over
the experiment time. The lower the curve, the better the perfor-
mance. Both systems were run for two minutes.

As it can be seen in the Fig. 11, the scenario with slack alloca-
tion (dynamic) outperforms the static by more than 10%. Note
that the resource utilization in both runs is the same. In the dy-
namic case, the two control tasks cannot execute at the highest
rate, so they alternate between 22 and 38 ms, giving an average
for each task of 30 ms. In the static, both tasks always execute
at a fixed rate, with average of 30 ms.

V. CONCLUSION

Recently, approaches to control performance and resource
optimization for embedded control systems have been receiving
substantial attention. Nevertheless, such approaches have essen-
tially focused on theory, without sufficient concern with prac-
tical aspects. Several of the theoretical advances require the sup-
port of a software infrastructure such as real-time kernels thus
requiring more sophisticated and expensive software/hardware
solutions. This requirement conflicts with the frequently severe
cost constraints that embedded control systems are subject to,
for example related with mass production and strong industrial
competition.

In this paper, however, we showed that using a minimal
kernel just supporting task and time management with reflec-
tivity allows achieving the desired goal of supporting modern
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and efficient control techniques, particularly with rate adap-
tation and multiple closed-loops integration, with low-cost
microcontrollers, namely those of the PIC18Fxx8 family.

The paper presents the referred kernel, the RTKPICI1S,
which supports preemptive and nonpreemptive multitasking,
automatic management of periodic task releases, EDF, RM
and DM task scheduling, and access to reflective information
to support application adaptation. Then, the paper discusses a
case study that illustrates the integration of multiple control
loops with online rate adaptation, how they can be implemented
using the referred kernel, and the benefits of rate adaptation
by means of practical experiments and quantitative results.
Further work will focus on improving specific performance
aspects of the kernel, namely reducing the worst-case execution
time of the EDF scheduler, and on analyzing how to tune the
period of the adaptation task for an optimal balance between
the reactivity of the adaptation, the overhead imposed and the
overall performance gains.
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