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Abstract

Functional MRI (fMRI) studies have traditionally relied on intersubject normalization based

on global brain morphology, which cannot establish proper functional correspondence

between subjects due to substantial intersubject variability in functional organization. Here,

we reliably identified a set of discrete, homologous functional regions in individuals to

improve intersubject alignment of fMRI data. These functional regions demonstrated

marked intersubject variability in size, position, and connectivity. We found that previously

reported intersubject variability in functional connectivity maps could be partially explained

by variability in size and position of the functional regions. Importantly, individual differences

in network topography are associated with individual differences in task-evoked activations,

suggesting that these individually specified regions may serve as the “localizer” to improve

the alignment of task-fMRI data. We demonstrated that aligning task-fMRI data using the

regions derived from resting state fMRI may lead to increased statistical power of task-fMRI

analyses. In addition, resting state functional connectivity among these homologous regions

is able to capture the idiosyncrasies of subjects and better predict fluid intelligence (gF) than

connectivity measures derived from group-level brain atlases. Critically, we showed that not

only the connectivity but also the size and position of functional regions are related to

human behavior. Collectively, these findings suggest that identifying homologous functional

regions across individuals can benefit a wide range of studies in the investigation of connec-

tivity, task activation, and brain-behavior associations.
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Author summary

No two individuals are alike. The size, shape, position, and connectivity patterns of brain

functional regions can vary drastically between individuals. While interindividual differ-

ences in functional organization are well recognized, to date, standard procedures for

functional neuroimaging research still rely on aligning different subjects’ data to a nomi-

nal “average” brain based on global brain morphology. We developed an approach to reli-

ably identify homologous functional regions in each individual and demonstrated that

aligning data based on these homologous functional regions can significantly improve the

study of resting state functional connectivity, task-fMRI activations, and brain-behavior

associations. Moreover, we showed that individual differences in size, position, and con-

nectivity of brain functional regions are dissociable, and each can provide nonredundant

information in explaining human behavior.

Introduction

In functional MRI (fMRI) studies, comparing functional characteristics between subjects or

groups requires aligning the individual’s data to an “average brain” based on global brain mor-

phology [1]. It is becoming increasingly recognized that interindividual variability exists not

only in macroscopic and microscopic brain anatomy [2–4] but also in the organization of

functional systems; i.e., the size, shape, position, and connectivity profile of the functional

regions may vary drastically across individuals [5,6]. Standard procedures for cross-subject

alignment according to macroscopic anatomy may not establish the proper functional corre-

spondence between subjects and can obscure biologically important signals both at the subject

level and the group level, especially in the heteromodal association networks that are not

strongly tied to anatomical structures [7,8]. For example, one of the best-studied function-

anatomy dissociations is in the language network, which may be dominated either by the left

hemisphere or by the right hemisphere in different subjects [9–11]. More generally, the high

level of intersubject variability in the association functions may be a fundamental principle of

brain organization and a critical outcome of human brain evolution [5 6,12]. Recognizing the

significance of intersubject variability in functional organization [13,14], the field of neuroim-

aging has been making rapid progress towards mapping functional regions at the level of indi-

vidual subjects [15–20], especially using connectivity measured by resting state fMRI. For

example, Hacker and colleagues proposed an artificial neural network to localize the motor

cortex in individual subjects [21]; integrating information derived from functional and ana-

tomical imaging, Glasser and colleagues proposed a multimodal approach to parcellate the

cerebral cortex into hundreds of areas [22]. We recently developed an iterative parcellation

procedure to map the individual subject’s cortical functional networks and demonstrated that

the results were comparable to the current gold standard, invasive cortical stimulation map-

ping, in patients undergoing brain surgery [17]. Focusing on subject-level analyses, Gordon

and colleagues [19] and Braga and colleagues [23] carefully examined a few subjects who were

densely sampled and discovered important features of brain networks that were missed in

group-based templates but are evident within the individuals. These technical advances in sub-

ject-level functional mapping will not only facilitate the investigation of within-subject func-

tional dynamics [24] that are necessary for personalized medicine [25–27] but will also benefit

traditional group-level functional studies by providing more meaningful landmarks for

between-subject comparison. Specifically, aligning subjects based on homologous functional

regions is expected to improve the specificity of functional signals in the networks being
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studied, and will lead to increased statistical power in group-level analyses [22,28]. Here, we

tested these hypotheses using large-scale resting state and task-fMRI data provided by the

Human Connectome Project (HCP) [29–31], and systematically examined how the individu-

ally specified functional regions may benefit group-level studies of functional connectivity and

task-evoked activations, and in turn facilitate the discovery of brain-behavior associations.

Results

Identifying common functional regions across individuals

Using a subject-specific, iterative functional network parcellation strategy that was guided by a

group-level functional atlas (Yeo’s atlas) [17,32], we mapped 18 cortical networks for each of

the 677 subjects provided by the HCP (selected from the HCP S900 release; see Materials and

methods for subject inclusion criteria). The resulting cortical networks were then compared

with the initial group-level atlas, which consisted of 116 discrete regions of interest (ROIs)

across the 18 cortical networks. Using a template matching approach, we localized the homolo-

gous ROIs in each individual subject’s cortical networks (see Materials and methods and S1

Fig). A majority of the 116 ROIs could be identified in each individual. Across the 677 subjects,

92 homologous ROIs were found in all subjects and these ROIs covered 85.6% ± 1.5% of the

cortical area (Fig 1A). A few small ROIs were not detected in all individuals, either due to tech-

nical limitations or because some functional regions may be truly absent in some subjects [15].

Functional ROIs extracted from the individuals’ networks also demonstrated good reproduc-

ibility across different days. Using the data of two scan sessions from the same individual, test-

retest reliability was quantified for each ROI. The mean Dice’s coefficient across all ROIs was

69.8% ± 12.9% (Fig 1B). Test-retest reliability was relatively low for the ROIs in the basal fron-

tal and temporal regions, which are more prone to MRI susceptibility artifacts. Importantly,

the individually specified ROIs exhibited substantial intersubject variability in size, shape, and

position (Fig 1C). These homologous ROIs established a one-to-one correspondence between

subjects and thus could be used as the basis for between-subject comparisons in functional

studies.

Revealing intersubject variability in the size, position, and connectivity of
the functional regions

Previous studies have repeatedly demonstrated that functional connectivity is highly variable

across individuals, especially in the higher-order association areas [5,33], and that the connec-

tivity variability could be related to individual differences in cognitive ability or behavior.

However, intersubject variability in connectivity was estimated after aligning data based on

brain anatomy; thus, it was influenced both by variability in network topography and variabil-

ity in connectivity strength among functional regions. Localizing homologous regions in indi-

vidual subjects allows one to directly evaluate intersubject variability in the size, position, and

connectivity strength of the functional regions and investigate their potential relationship to

behavior, respectively.

We first quantified intersubject variability in vertex-based functional connectivity maps

across the 677 subjects using the approach established in previous studies [5] and successfully

replicated the earlier findings (Fig 2A). Intersubject variability in size and position of the 116

ROIs, as well as connectivity among the individually specified ROIs, was then evaluated (Fig

2B–2D, see Materials and methods). We found that intersubject variability in vertex-based

functional connectivity maps was not only associated with the variability in connectivity

strength among the ROIs (r = 0.55, p< 0.001, S2 Fig) but was also associated with intersubject

Mapping homologous functional regions across individuals
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variability in position and size of the ROIs (r = 0.49, p< 0.001 and r = 0.26, p< 0.005, respec-

tively). These results indicated that previous findings of individual differences in connectivity

were likely influenced by variability in network topography. Intriguingly, when variability in

functional anatomy was controlled, functional ROIs in the visual and auditory cortices demon-

strated strong intersubject variability in their connectivity strength with other ROIs (Fig 2D),

although, traditionally, these primary functions were considered less variable. Thus, while

visual and auditory ROIs showed relatively low intersubject variability in position (Fig 2B and

2C), which is consistent with previous knowledge that visual and auditory functions are

strongly tied to anatomical structures, their connectivity profiles may be significantly more

variable across individuals than previously thought (Fig 2D). Taken together, our findings

indicated that the size, position, and connectivity of functional regions are dissociable and

may be related to different aspects of individual variability in brain functions.

Individual differences in functional anatomy predict individual differences
in task-evoked activations

Spontaneous brain activity and task-evoked activity are bound by the same anatomical con-

nectivity infrastructure; however, the exact relation between resting state connectivity and

task-evoked activations remains unclear. Here, we examined whether individual differences in

the cortical functional anatomy are related to individual differences in task activation patterns.

Fig 1. Homologous functional ROIs can be identified across subjects. (A) Most of the 116 functional ROIs originally defined in the group-level atlas can be
identified in individual subjects. The map demonstrates the percentage of the 677 subjects in whom a functional ROI could be detected. A few ROIs that were not
identified in all subjects tended to be smaller in size (shown in red and orange). (B) Within-subject test-retest reliability values of the 116 functional ROIs. The test-
retest reliability of each ROI was measured as the Dice’s coefficient of the results derived from the two scan sessions of each subject and then averaged across the 677
subjects. For each subject, if a region was undetected in one session, then the Dice’s coefficient of this region was set to zero. The mean Dice’s coefficient across the 116
ROIs was 69.8% ± 12.9% (mean ± SD). (C) ROIs in the TPJ extracted from three randomly selected subjects are illustrated as examples. The TPJ region is shown
because it consists of multiple small patches belonging to different functional networks. The ROIs were reliably identified across different scan sessions. Different ROIs
are represented by different colors. ROI, region of interest; TPJ, temporal-parietal junction.

https://doi.org/10.1371/journal.pbio.2007032.g001
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Intersubject variability in cortical functional anatomy was computed according to the Dice’s

overlap between two subjects’ functional ROI distributions (i.e., 1—Dice’s coefficient, “rest

distance”). Task-evoked activity was first estimated on the cortical surface of each individual

(i.e., beta values derived from the general linear model); intersubject variability was then mea-

sured as the “distance” between two subjects’ cortical activation patterns (i.e., 1—spatial corre-

lation between the two task-fMRI maps, “task distance”). We found that intersubject

variability in cortical functional anatomy was significantly associated with intersubject vari-

ability in task-evoked activations (Fig 3, r = 0.28, p< 0.001 for seven tasks combined and

p< 0.05 for all individual tasks except the motor task). In other words, subjects who showed

similar cortical distribution of the functional regions tended to show similar task activation

Fig 2. Intersubject variability in vertex-wise functional connectivity maps is associated with intersubject variability in the position of the functional
regions. (A) Intersubject variability in resting state functional connectivity was quantified at each vertex using the approach as described in Mueller and
colleagues [5]. The association cortices showed stronger intersubject variability than the visual and motor-sensory cortices. (B) Intersubject variability in ROI size
was quantified for each of the 116 ROIs, and the variability map showed a moderate correlation (r = 0.26) with the variability in vertex-wise connectivity. (C)
Intersubject variability in ROI position was quantified for each ROI and showed a strong correlation (r = 0.49) with the variability in vertex-wise connectivity. (D)
Intersubject variability in connectivity among individually specified ROIs was quantified and showed a strong correlation (r = 0.55) with the variability in vertex-
wise connectivity (also see S2 Fig for the scatterplots). The visual and auditory cortices demonstrated unexpectedly strong intersubject variability in connectivity
with other ROIs. All intersubject variability maps were corrected by underlying intrasubject variability (see Materials and methods). ROI, region of interest.

https://doi.org/10.1371/journal.pbio.2007032.g002
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maps. These findings provided a theoretical ground for using the ROIs derived from resting

state functional connectivity for task-fMRI studies.

Fig 3. Intersubject variability in cortical functional anatomy is associated with intersubject variability in task-evoked activations. Intersubject variability in
cortical functional anatomy was computed as the “distance” between two subjects’ functional ROI distributions (i.e., 1—Dice’s coefficient). Similarly, intersubject
variability in task-evoked activations was measured as the “distance” between two subjects’ cortical activation patterns (i.e., 1—spatial correlation between the two
maps). Intersubject variability in cortical functional anatomy showed significant correlations with intersubject variability in task activation maps for 6 tasks except
for the motor task (r values are displayed in each plot, Pearson’s correlation). Each circle represents the “distance” between a pair of subjects; 338 independent
pairs of subjects were randomly selected 99 times and the scatterplot of the median performance (correlation) is shown. See S1 Data for numerical values. fMRI,
functional MRI.

https://doi.org/10.1371/journal.pbio.2007032.g003

Mapping homologous functional regions across individuals

PLOS Biology | https://doi.org/10.1371/journal.pbio.2007032 March 25, 2019 6 / 27

https://doi.org/10.1371/journal.pbio.2007032.g003
https://doi.org/10.1371/journal.pbio.2007032


Aligning functional regions across individual subjects improves group-
level task-fMRI statistics

We examined whether task-evoked activity could be better aligned across individuals using the

individually specified functional ROIs than using the atlas-based ROIs. Task activation maps

were first estimated on the cortical surface of each individual using the general linear model,

and then activation values (beta values) were averaged within each ROI. A subject’s whole-

brain activation pattern was thus represented by the activation values in these ROIs. Similarity

between two subjects was estimated by correlating their activation patterns (Fig 4A). We

found that task-evoked activation patterns were significantly more similar between two sub-

jects when activations were estimated using our individually specified ROIs, as opposed to

using the ROIs from group-level atlases including Yeo’s atlas [32] and Glasser’s atlas [22]. This

remained true when the data were processed using MSMAll, an improved cross-subject regis-

tration approach based on a multimodal surface matching (MSM) algorithm and some useful

imaging modalities released by the HCP [28,34] (p< 0.001 for 5 of the 6 tasks in the HCP

data, block bootstrap test accounted for the family structure, 1,000 iterations. See Fig 4B for

the Language task andWorking Memory task as examples. See S3 Fig for the results of the

other tasks).

Improved cross-subject alignment may result in an increased statistical power in group-

level task-fMRI analyses. To test this hypothesis, a group-level one-sample t test was performed

using the individuals’ mean activation values (beta values) within each ROI. The task-relevant

regions were first identified using the full sample of 677 subjects. Group-level statistical analy-

ses were then carried out using subsets (20, 30, 40, 50 subjects) of the cohort, and the regions

showing significant activations were plotted to the brain surface (see Fig 4C for the results of

the Language and Working Memory tasks as examples). In these subsets of subjects, activa-

tions were more significant when the analyses were performed using the individually specified

ROIs than the atlas-based ROIs. Task-activated regions were also mapped using a series of sig-

nificance thresholds and compared with the maps derived from the full dataset of 677 subjects.

In these subsets of subjects, a higher percentage of task-relevant regions could be detected

when the group-level statistical analyses were carried out using the individually specified ROIs

than the atlas-based ROIs, across different selections of significance thresholds (Fig 4D, see S3

Fig for results of other tasks). Finally, we found MSMAll processing could improve cross-sub-

ject alignment but did not outperform our approach based on individually specified ROIs (Fig

4D).

Functional connectivity among the individually specified ROIs better
predicts fluid intelligence than connectivity among the atlas-based ROIs

Functional regions identified in individuals may capture the idiosyncrasies of subjects and

lead to the discovery of meaningful imaging biomarkers for cognitive functions and behavior.

Here, we explored the possibility of predicting individual subjects’ levels of fluid intelligence

(gF) based on connectivity among the individually specified ROIs. A support vector regression

(SVR) algorithm combining the leave-one-family-out cross validation (LOFOCV) was

employed for the prediction (see Materials and methods). A variety of potential confounds,

including sex, age, age2, sex�age, sex�age2, head size, overall head motion, and acquisition date,

were regressed from both the imaging measures and the gF scores before the prediction. The

prediction analysis was first carried out using functional connectivity values among the indi-

vidually specified ROIs derived from our method. The predicted gF scores showed a significant

correlation with the observed gF (Fig 5A, r = 0.303, p< 0.001, permutation test accounted for

the family structure, 1,000 permutations). Connections that were most predictive of gF
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involved ROIs in the frontoparietal network (FPN), salience network (SAL), default mode net-

work (DMN), and motor-sensory network (MOT) (Fig 5B). Specifically, higher gF appeared to

be associated with stronger connectivity strength between FPN and some other networks,

including the DMN, SAL, and MOT. In contrast, the correlation between the predicted and

observed gF was reduced (p = 0.002, z = 2.849, Steiger’s z test) when the model was trained

using connectivity among the 92 corresponding ROIs defined in Yeo’s atlas [32] (Fig 5C, r =

0.207, p = 0.028, permutation test accounted for the family structure, 1,000 permutations).

More importantly, the predictive connections identified using these two approaches were

largely different (Fig 5B and Fig 5D) and only showed small overlap (Dice’s coefficient = 0.25,

see S4A Fig). To better understand why atlas-based connectivity became less predictive of gF

compared with individually specified connections, we directly examined the correlation

between gF and connectivity values among ROIs. Correlations between gF and these predictive

connections derived from individual ROIs were significantly stronger (p< 0.001, t = 4.49,

paired t test, see S4B Fig) than correlations between gF and the same connections defined

using group-level ROIs. This result indicated that brain-behavior correlation was already

obscured by the group-level atlas before the prediction model was applied, thus impairing the

prediction of gF. Repeated analysis using another group-level atlas provided by Glasser and

colleagues [22], which consisted of 360 ROIs, yielded similar results (correlation between pre-

dicted and observed gF: r = 0.215, p = 0.041, permutation test accounted for the family struc-

ture, 1,000 permutations, see S5 Fig).

Size, position, and functional connectivity of the individually specified
ROIs provide complementary information for predicting gF

Our analysis above indicated that intersubject variability in the size, position, and connectivity

of the functional regions can be dissociated using the individually specified ROIs (Fig 2). Here,

we examined whether the topographic features (size and position) of the functional regions are

behaviorally relevant. We found that the size and position of the individually specified ROIs

could also predict gF scores (Fig 6, r = 0.266, p< 0.001 for size; r = 0.274, p< 0.001 for posi-

tion; r = 0.298, p< 0.001 for size and position combined; permutation test accounted for the

family structure, 1,000 permutations). Specifically, we observed a mild negative correlation (r

= −0.125, p = 0.001) between gF and size of the DMN regions (network 15 and 16, see S7 Fig

for the network labels) but a positive correlation between gF and the size of the motor-sensory

regions (r = 0.095, p = 0.013). Additionally, higher gF may be related to a more anterior posi-

tion of a functional region (network 17) in the inferior frontal gyrus, which is likely related to

language (r = 0.099, p = 0.010). Using functional connectivity and topography features

together, the correlation between the predicted and observed gF increased to r = 0.347 (p<

Fig 4. Aligning functional regions across individual subjects improves group-level task-fMRI analyses. (A) Similarity of task activations between pairs of
subjects. For each subject, task activation values (beta values) were averaged within each ROI; thus, the whole-brain activation pattern was represented by
activations in ROIs. Similarity between two subjects was estimated by correlating their activation pattern in these ROIs. (B) The bar plots demonstrate the mean
between-subject similarity values during the language and working memory tasks estimated by different approaches. Task activation patterns were more similar
between two subjects if the ROIs were individually specified compared with atlas based (whether or not the data were aligned by MSMAll) (�p< 0.001, block
bootstrap test, 1,000 permutations). Error bars indicate 2 standard deviations. See S3 Fig for the results of other tasks. (C) Group-level statistical analyses were
performed in the individually specified ROIs and atlas-based ROIs using the mean activation (beta values) within each ROI (one-sample t test, p< 0.000001 for
language and working memory tasks, Bonferroni correction for 92 comparisons). Results of the language and working memory tasks in subsets of the cohort
(n = 20, 30, 40, 50) and in the full cohort were plotted (see S3 Fig for the results of other tasks). (D) Task-relevant regions could be better detected using the
individually specified ROIs than using the atlas-based ROIs, independent of the selection of a significance threshold. Group-level task-activated regions were
mapped using a series of significance thresholds. The results were then compared with the task-activated regions identified in the full cohort to determine the
detection rate. The detection rate was higher for individually specified ROIs (red curves) than atlas-based ROIs (black curves). The MSMAll (dashed curves)
improved the task activation but not as much as the individual ROIs. See S1 Data for numerical values. fMRI, functional MRI; MSM, multimodal surface
matching; ROI, region of interest; Sub, subject.

https://doi.org/10.1371/journal.pbio.2007032.g004
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Fig 5. Functional connectivity among the individually specified ROIs can better predict gF than connectivity among the atlas-based ROIs. (A) gF was predicted
based on connectivity values among the individually specified ROIs. The scatterplot demonstrates the correlation between the predicted and observed gF scores (Pearson’s
correlation, r = 0.303, p< 0.001). Each circle represents a subject. Correlation significance was determined using 1,000 permutations. (B) ROI pairs contributing to the
prediction. Ninety-two homologous ROIs extracted from the 18 networks are represented by rectangles on a wheel. ROIs are color coded according to the 18 networks.
Group-level maps of the 18 functional networks are shown on the cortical surface outside the wheel. ROIs derived from the 18 networks could be grouped according to 7
well-studied canonical networks. The 25 ROI pairs that are most predictive of gF are indicated by thick lines in the wheel. Connections positively correlated with gF scores
are shown in red, and connections negatively correlated with gF scores are shown in blue. Regions involved in these predictive connections are also plotted on the brain
surface (bottom row). Warm colors indicate positive correlations between connectivity and gF. Cold colors indicate negative correlations between connectivity and gF. (C)
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0.001, permutation test accounted for the family structure, 1,000 permutations). These results

indicated that the size, position, and connectivity of the functional ROIs provide nonredun-

dant information for the prediction of behavior.

For comparison, we repeated the prediction analysis using ROIs defined in group-level

atlases and data aligned by MSMAll [34]. After this multimodal alignment, functional connec-

tivity strength among the atlas-based ROIs could better predict gF compared with connectivity

derived from the unaligned data (r = 0.255 for Yeo’s atlas with MSMAll versus r = 0.207 for

Yeo’s atlas without MSMAll; r = 0.300 for Glasser’s atlas with MSMAll versus r = 0.215 for

Glasser’s atlas without MSMAll; see S5A Fig). Specifically, Glasser’s atlas combined with data

aligned using MSMAll could predict gF with an accuracy comparable to that based on connec-

tivity strength among the individualized ROIs. However, because the size and position of an

individual subject’s brain regions cannot be specifically examined after MSMAll alignment,

this atlas-based strategy (r = 0.300) did not outperform our individualized approach

(r = 0.347), which takes advantage of individual differences in both connectivity strength and

network topography.

Interestingly, we also found a negative correlation between gF and head motion (r = −0.122,

p = 0.001 in the 677 subjects, see S6 Fig for analyses on the effect of head motion), consistent

with previous reports [35]. The correlation increased when we included the subjects with

greater head motion. In the 815 subjects who had completed resting state fMRI runs, the corre-

lation between gF and head motion was r = −0.176 (p = 4.4 × 10−7). To investigate whether the

prediction of gF was influenced by head motion, we calculated the partial correlation between

predicted and observed gF, while controlling for head motion. We found that controlling for

head motion had little effect on the correlations, indicating the correlations between observed

and predicted behaviors were not driven by motion (S5B Fig). Finally, we repeated the predic-

tion analysis based on the individual-specified features, using 10-fold cross validation, and

found that our conclusions remained unchanged (correlation between predicted and observed

gF was as follows: r = 0.295 for connectivity, r = 0.249 for ROI size, r = 0.270 for ROI position,

see Materials and methods).

Prediction of gF was largely driven by between-network connectivity

When inspecting the functional connections that were predictive of gF (as shown in Fig 5B),

we found that the majority of them were connections between different functional networks

rather than connections within the same network. In these predictive connections, many

between-network connections appeared to be positively correlated with gF (red lines in Fig

5B), although some connections showed a negative correlation (blue lines in Fig 5B). To exam-

ine how between-network connectivity is related to gF, we averaged the connectivity values of

all predictive between-network connections and found that mean between-network connectiv-

ity showed a mild positive correlation with gF (r = 0.131, p = 6.09 × 10−4), indicating that sub-

jects with higher gF tend to have stronger between-network connectivity, especially between

the FPN and several networks, including the DMN, SAL, and MOT. To understand why

between-network connectivity derived from individually specified ROIs could better predict

gF than that derived from atlas-based ROIs, we investigated how between-network connectiv-

ity was changed by the functional alignment. We found that the strength of between-network

The correlation between the predicted and observed gF scores was weaker (p = 0.002, z = 2.849, Steiger’s z test) when connectivity was estimated using the atlas-based
ROIs (Pearson’s correlation, r = 0.207, p = 0.028). Correlation significance was determined using 1,000 permutations. (D) Twenty-six atlas-based ROI pairs that are most
predictive of gF are plotted. See S1 Data for numerical values. ATN, attention; DMN, default mode network; FPN, frontoparietal network; gF, fluid intelligence; LMB,
limbic; MOT, motor-sensory network; ROI, region of interest; SAL, salience network; VIS, visual.

https://doi.org/10.1371/journal.pbio.2007032.g005
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connectivity showed an average decrease of 12.07% when the ROIs were individually specified

compared with group-level ROIs based on the Yeo atlas (S7 Fig, p< 0.001 for 16 of 18 net-

works, paired t test, Bonferroni correction for 18 comparisons). These findings indicated that

Fig 6. Topography of individually specified ROIs can predict gF. (A) Size of brain regions can predict gF. Regions with prediction weight values above the global
mean were mapped on the surface. Warm colors indicated regions whose size showed positive correlations with gF scores. Cold colors indicated regions whose size
showed negative correlations with gF scores. (B) Position of brain regions can predict gF. Brain regions whose coordinates on the anterior-posterior axis could predict
gF were plotted on the brain surface. Warm color indicates that more anterior position is related to higher gF. Cold color indicates that more posterior position is
related to higher gF. (C, D) Combining topography and functional connectivity features can improve the prediction of gF. See S1 Data for numerical values. gF, fluid
intelligence; ROI, region of interest.

https://doi.org/10.1371/journal.pbio.2007032.g006
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between-network connectivity values were significantly overestimated in studies that directly

applied the group-level atlas to individual subjects; thus, it must be interpreted with caution

because the inflated connectivity values are more prone to type I errors [36]. Intriguingly,

although the absolute values of between-network connectivity were significantly reduced after

the functional alignment, they became more predictive of gF, suggesting that our individual-

ized ROIs improved the specificity and accuracy of functional connectivity estimates.

Discussion

Establishing proper functional correspondence between subjects is a prerequisite for group-

level analyses of functional imaging measures. The present study explored the potential of con-

ducting fMRI analyses based on a set of homologous regions identified in individuals. Taking

advantage of a subject-level functional network parcellation technology, we were able to reli-

ably identify the homologous functional regions across individuals. Intersubject variability in

size, position, and connectivity of these functional regions was largely dissociated. We found

that previously reported intersubject variability in vertex-wise functional connectivity maps

was related to the variability in position of the functional regions. The homologous functional

regions can be used to align task-fMRI maps across subjects and significantly improved group-

level estimates of task-evoked activations in comparison with atlas-based alignment. Impor-

tantly, the individually specified ROIs were also able to capture the idiosyncrasies of subjects

and better predicted individual differences in gF than atlas-based connectivity measures. We

further demonstrated that not only the functional connectivity among ROIs but also the size

and position of the ROIs are related to individual differences in human behavior. Collectively,

these findings suggest that localizing functional regions in individual subjects can benefit a

wide range of studies in the investigation of resting state functional connectivity, task activa-

tion, and brain-behavior associations.

Identifying functional regions in individual subjects is essential for
functional imaging research

Standard imaging processing procedures use volume-based [37,38] or surface-based [39,40]

registration to align an individual subject’s functional data to a population-level brain tem-

plate. These registration methods are based on anatomical features such as brain shape, curva-

ture, sulcal depth, or their derivatives (e.g., spectral features of cortical anatomy) [41]. While

they can align the macroanatomy of subjects to some extent, these approaches are not capable

of aligning functional regions that are often dissociated from macroscopic anatomical land-

marks. Recent progress in resting state functional connectivity research has made it possible to

align data across subjects based on resting state networks and shows great promise in improv-

ing the estimate of connectivity and task-fMRI activations [28]. The functional alignment pro-

cedure aims to control for the “nuisance variance” introduced by the topography of networks;

thus, one can accurately measure the connectivity strength or task-evoked activation across a

group of subjects (but see Discussion below). In the present study, we showed that data align-

ment using subject-specific functional regions could significantly improve the group-level esti-

mates of task activations (Fig 4) and functional connectivity, especially for the connections

between different networks that tend to be overestimated by traditional methods (S7 Fig). The

improved connectivity measures in turn can benefit the discovery of imaging biomarkers for

cognitive abilities (Fig 5 and Fig 6).

Identifying functional regions in individual subjects not only improves task-fMRI and con-

nectivity estimates, but also enables the investigation of intersubject variability in functional

network topography (Fig 2). For example, we found that ROIs in association areas are highly
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variable in terms of their spatial distribution. In contrast, positions of the functional regions in

the visual and auditory cortices are less variable across individuals, which is consistent with

our previous knowledge that visual and auditory functions are more strongly tied to anatomi-

cal structures than association functions. However, after aligning the data based on homolo-

gous functional regions, intersubject variability in connectivity strength demonstrated an

unexpected distribution (Fig 2D) and showed a high degree of intersubject variability in these

primary functional areas. This implies that intersubject variability of visual and auditory func-

tions may be mostly reflected in their connectivity strength with other brain regions. Further

work is required to investigate how the connectivity strength variability in these areas may

relate to individual differences in auditory and visual functions. This unexpected observation

may lead to new testable hypotheses about individual differences in auditory and visual

processing.

Using functional regions derived from resting state connectivity for task-
fMRI studies

An important question in the field of neuroimaging that has yet to be answered is whether

resting state functional connectivity could serve as the “functional localizer” for task-fMRI

analyses. Some previous studies have used simple fMRI tasks to localize functional ROIs in

individual subjects prior to quantitative analyses of functional signals at the population level

and have shown great potential in improving statistical power [42–45]. Nevertheless, func-

tional mapping using task-based MRI at the single subject level generally suffers from poor sig-

nal-to-noise ratio (SNR), limited test-retest reliability [46–48], and inconsistency with respect

to the current gold standard of functional mapping in individuals, i.e., invasive electrical corti-

cal stimulation (ECS) [49,50]. Intrinsic functional connectivity may be an alternative, as it has

demonstrated great strengths in individual-level functional mapping; however, understanding

the exact relationship between intrinsic connectivity and task-evoked activation remains one

of the key questions in brain imaging. At the population level, regions with strong intrinsic

functional connectivity at rest tend to co-activate during tasks [51], indicating that spontane-

ous and task-evoked activity were bound by common functional configurations. In addition,

the network architecture revealed by resting state connectivity is present across a wide variety

of task states [52]. In line with these findings, we have previously demonstrated that at the sin-

gle subject level, the whole-brain functional connectivity network architecture derived from

task-fMRI data largely resembles that derived from resting state data [17]. Using a machine

learning strategy, Tavor and colleagues recently showed the possibility of predicting individual

subjects’ task-evoked activity based on combinations of resting state functional connectivity

maps [53]. In the present study, we directly quantified the correlations between individual dif-

ferences in cortical functional anatomy and individual differences in task-evoked activation

patterns. The results indicate that spontaneous and task-evoked activity are tightly related to

each other (Fig 3), supporting the possibility of using resting state connectivity as the func-

tional localizer for task-fMRI analyses. We further showed that task-evoked activations were

more robustly detected in the individually specified functional ROIs than in the atlas-based

ROIs (Fig 4C and 4D). It was recently hypothesized that fMRI analyses based on the signals

averaged within functional parcels might benefit from a “neurobiologically constrained”

smoothing, which could improve the SNR and statistical power by avoiding the deleterious

effects of spatial smoothing [22]. We found that task activations averaged within the individu-

ally specified ROIs were significantly more similar between individuals than activations aver-

aged in the atlas-based ROIs (Fig 4B), thus suggesting that the improved statistical power can

not only result from the neurobiologically constrained smoothing within subjects but also
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from the more accurate alignment of functional regions between subjects. Taken together,

these data demonstrate the feasibility and advantages of using connectivity as the functional

localizer for task-fMRI studies.

Exploring brain-behavior associations based on individually specified
functional regions

Recent evidence suggests that individual differences in human behavior and cognition, such as

intelligence quotient, musical skills, and reading ability, may be related to variability in brain

connectivity [54–60]. In a previous study, we carried out a meta-analysis and demonstrated

that loci predicting individual differences in the behavioral and cognitive domains are pre-

dominantly located in the association cortex, including the language, executive control, and

attention networks that are known to be wired more differently between individuals than the

unimodal regions [5]. This observation implies that associations between functional connec-

tivity estimates and behavioral measures may be underestimated or undetected if functional

regions are not tailored to individual subjects. Previous studies mostly quantified functional

connectivity within regions of population-based atlases, and then correlated these estimates

with the individual subject’s behavioral and cognitive measures [59,61,62]. Here, we showed

that performing analyses based on individually specified functional regions will improve the

correspondence of functional connectivity and cognitive as well as behavioral measures,

thereby facilitating the discovery of new imaging biomarkers for cognition and behavior.

Importantly, we found that between-network connectivity measurement will greatly benefit

from the subject-specific ROIs. Although the absolute values of between-network connectivity

were significantly reduced after functional alignment, they became more predictive of gF. We

observed that individuals with higher gF tend to show stronger between-network connectivity,

especially between the FPN and several networks, including DMN, SAL, and MOT. Moreover,

accurate qualification of between-network connectivity based on individualized ROIs will

have particularly strong implications for clinical research, as recent studies have suggested that

changes in between-network connectivity may signify normal brain development [63] as well

as pathological changes [64]. The analytical framework developed in this study can be conve-

niently extended to the investigations of brain-behavior associations in clinical populations

[65,66].

Position and size of the functional regions are behaviorally relevant

A particularly important finding of this study is that not only the functional connectivity but

also the size and position of the functional regions are related to gF (Fig 6), which is also

known to be substantially heritable [67]. Our observations are in line with two recent studies

that both stressed the importance of network topography. Bijsterbosch and colleagues [68]

examined how individual differences in topographic features may influence the modelling of

brain connectivity and demonstrated that the spatial arrangement of functional regions could

predict nonimaging measures of behavior and lifestyle. By comparing the spatial topography

of 17 networks across subjects, Kong and colleagues [69] also showed evidence that individual

differences in large-scale network topography could predict individual differences in multiple

behavioral phenotypes across cognition, personality, and emotion. While our results are con-

sistent with these recent findings, the present study has proposed a framework that allows one

to investigate the brain-behavior association for each discrete functional region and specifically

examine imaging features that are largely dissociable, including the size, position, and connec-

tivity of each region.
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The significance of network topography in human brain function and behavior has been

indicated in numerous studies (e.g., [70]) but has not been systematically investigated at the

whole-brain level until recently. In our previous study, we observed that the sizes of some func-

tional networks demonstrated strong hemispheric lateralization, which was also related to

handedness and task-fMRI activation [17]. Here, we not only showed that individual differ-

ences in network topography are associated with individual differences in task activation pat-

terns (Fig 3) but also showed that they are behaviorally relevant (Fig 6). These observations

strongly suggest that variance in size and position should not be treated as nuisance variance

and simply removed by the alignment procedure. Finally, given that gF is a heritable trait,

future research can take advantage of our parcellation approach and specifically investigate

whether the size, position, and connectivity strength of functional regions are influenced by

different genetic factors.

Clinical relevance of performing functional analyses based on individually
specified regions

Remarkable progress and exciting discoveries have been made in the field of functional imag-

ing research over the past two decades; however, only few of them have been directly con-

nected to clinical interventions. A critical bottleneck for expanding the clinical use of fMRI is

the ability to robustly localize functional circuits relevant to disorders in individual patients.

For example, previous work using functional connectivity to identify potential biomarkers of

neurological [71–74] and psychiatric [75–77] illnesses has repeatedly found evidence for

altered network architecture in patients, as compared with healthy control participants. And

yet, such group-level observations have failed to yield any biomarkers that can predict treat-

ment response or provide confirmatory evidence of a patient’s current symptoms and diagno-

sis. To meet clinical demands, a marker must reliably reflect a patient’s current or future

symptom load in a manner that can be applied to the management of individual patients [78].

Here, we demonstrated that individually specified functional regions can improve the detec-

tion of associations between imaging measures and cognitive abilities at the group level (Fig 5

and Fig 6), implying that this approach may facilitate the identification of neural circuits asso-

ciated with symptom severity in patients. Critically, this subject-specific strategy may not only

help to identify the symptom-related circuits but, at the same time, can map these circuits onto

the individual patient’s brain, thus providing personalized targets for intervention.

Limitations and caveats

There are several limitations related to the methodology employed in the present study. First,

the functional ROIs were derived from a connectivity network parcellation, which uses a “win-

ner-takes-all” approach. However, the resting state of the human brain is not a single static

state, but consists of multiple states that dynamically emerge and dissolve. Functional network

parcellation based on connectivity should thus be seen as a statistical estimate of the co-activa-

tion probability among brain regions, as opposed to a collection of fundamental functional

units separated by sharp boundaries. Second, the functional regions identified in individual

subjects depend on the validity of the network parcellation. The present study is based on the

18-network parcellation that has been widely used in the literature [32]. However, the optimal

number of networks is yet to be investigated and will most likely remain equivocal. Moreover,

the 18-network parcellation cannot reveal fine-grained subdivisions of important areas such as

the auditory and visual cortices. Taking this crude parcellation as the basis for constructing

individual-level parcels will inevitably limit its usage in the investigation of highly specialized

functions within some areas. Third, performing group-level analyses using the subject-specific
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ROIs relies on the identification of homologous regions across subjects. Because the functional

localization problem is inherently ambiguous, the procedure of matching homologous func-

tional regions across individuals may introduce error or bias. For example, although the indi-

vidualized parcellation approach may be able to segment the hemispheres of people with left-

lateralized and right-lateralized language dominance differently, in extreme cases when the

language area is missing in one hemisphere, it may not improve “true” functional alignment

relative to a group atlas because it would not match one subject’s right-lateralized language

region to another subject’s left-lateralized one. Fourth, the present study only focused on corti-

cal regions; it did not include functional regions in subcortical structures. The involvement of

cortico-subcortical circuits in various cognitive processes and brain disorders is well recog-

nized. Future work on functional network parcellation in individual subjects’ subcortical struc-

tures will greatly advance our ability to characterize functional brain architecture. Finally, the

reliability of functional ROIs is also dependent on the scan length. Recent studies, including

our own [16,79], have provided evidence that sufficient scan length is crucial for the individ-

ual-level test-retest reliability of functional connectivity measurements. The relatively low test-

retest reliability of the individualized parcellation boundaries in several brain regions may

introduce noise relative to group atlases, which are defined with many more data than the data

collected for a single subject. Whether functional ROIs derived from short resting state scans

can benefit group-level functional analyses must be further explored.

Materials andmethods

Ethics statement

The present study used data made publicly available by the HCP, supported by the WU-Minn

Consortium. Written informed consent was obtained from each participant in accordance

with relevant guidelines and regulations approved by the local institutional review board at

Washington University in St. Louis (IRB #201204036).

Participants and data acquisition

The present study used data from the HCP S900 data release, which consisted of 955 young

healthy subjects. After quality control, 677 subjects (372 female, age range 22–35 years, except

for one subject who was over 36 years) were selected for subsequent analyses. Each participant

underwent two fMRI sessions on two different days. Each fMRI session consisted of two

15-minute resting state runs and about 30 minutes of task-fMRI. A battery of behavioral tests

was performed by each participant. The present study examined the association between gF

and neuroimaging measures. gF was selected because its association with functional connectiv-

ity has been reported in previous studies [54,59,80,81]. gF is one’s capacity to solve problems

in novel situations.

More details about the participants and data acquisition can be found in S1 Text.

Data processing

The “ICA-FIX” denoised fMRI data of the HCP subjects, represented as time series of grayor-

dinates [28], were used. The data were already preprocessed in the HCP pipeline using FSL

(FMRIB Software Library), FreeSurfer, and ConnectomeWorkbench’s command line func-

tions [28,31,82,83]. Each subject’s preprocessed resting state fMRI data were resampled to a

common standard cortical surface mesh representation (fs_LR 32k mesh). Studies have

reported that global physiological noise and motion-related artifacts were not fully removed by

ICA-FIX method [28,84]. We took the following additional processing procedures for resting
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state fMRI analysis: (1) normalizing the resting state fMRI time series at each vertex to zero

mean and unit variance; (2) linear detrending and band-pass filtering (0.01–0.08 Hz); (3)

regressing out 12 head-motion parameters and whole-brain signal; and (4) smoothing on the

32k fs_LR surface using a Gaussian smoothing kernel (sigma = 2.55 mm). Task-fMRI data

were already preprocessed and analyzed by the HCP on the fs_LR 32k surface [31,85]. Task

activation maps with 4-mm Gaussian smoothing were downloaded from the HCP, and we did

not perform any additional processing on the task-fMRI data. For the group-level analyses on

task activations shown in Fig 4, we computed the mean beta values in our individually speci-

fied ROIs, as well as in the ROIs defined by the atlas. Here, we used beta values (task effect

size) instead of Z values (a ratio between beta and unexplained variance); thus, we could esti-

mate the BOLD signal changes induced by tasks within a parcel [22]. The significance levels

were estimated for each ROI using a one-sample t test.

For comparison purposes, we included resting state and task data that were processed using

MSMAll, which is the improved intersubject registration based on a MSM algorithm and fea-

tures from multiple imaging modalities released by the HCP [28,34]. Except where noted, the

description of analysis applies to data aligned using the traditional cortical folding-based regis-

tration method.

Population-level functional atlas

A population-level functional atlas including 18 cortical networks was obtained using data

from 1,000 healthy subjects [17,32]. The original atlas consisted of 17 networks and was further

divided into 114 discontinuous ROIs. The hand sensorimotor areas were then defined using a

hand motor task and separated from other regions [86], resulting in 116 ROIs in total. Vertices

at the boundaries of the ROIs were excluded because of the indefinite network affiliations.

These population-level cortical ROIs were used as the functional template, and the homolo-

gous ROIs were identified in each individual subject.

Identifying functional ROIs in individuals

The procedure to localize functional ROIs in individual subjects consisted of the following

steps:

Step 1. Cortical functional networks were mapped in individual subjects using the iterative

parcellation approach described in our previous work [17]. The algorithm was initially

guided by the group-level functional network atlas derived from 1,000 healthy subjects.

However, the influence of the atlas on the individual brain parcellation was not identical for

every subject or every brain region and was thus flexibly adjusted based on the known dis-

tribution of interindividual variability and the SNR distribution in a particular subject. The

influence of the population-based information gradually decreased as the iteration pro-

ceeded, allowing the final map to be completely driven by the individual subject’s data. The

details of the iterative functional parcellation algorithm are described in Wang and col-

leagues [17].

Step 2. The cortical networks of individual subjects derived from Step 1 were segmented into

discrete “patches” using a clustering algorithm (wb_command “metric-find-clusters” in the

Connectome Workbench). To minimize the impact of noise and the matching costs, each

cortical network on the surface was spatially smoothed using a Gaussian kernel function

(sigma = 1 mm). The smoothing only affected the template matching procedure described

below. Once a homologous ROI was recognized, the original unsmoothed region was used

for subsequent analyses.
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Step 3. Discrete patches in individual subjects were matched to the 116 cortical ROIs extracted

from the population-level atlas that was used to guide the search of an individual subject’s

networks. The template matching procedure was performed for each cortical network,

ensuring that ROIs from one network will not be matched to ROIs from a different net-

work. Here, our assumption is that a group-level ROI should roughly represent the center

of the homologous ROIs from different individuals. Thus, to match ROIs across individu-

als, we use the group-level ROI as the common reference. If a subject-specific ROI falls

within a certain distance from (not necessarily overlapping with) a group ROI of the same

network, then it is reasonable to assume that the subject-specific ROI is corresponding to

the group ROI. Because each network only has very few ROIs (usually one or two) in each

lobe, this “finding the nearest neighbor” approach can very efficiently match ROIs across

individuals. The detailed procedure is as follows: (1) if an individual-level patch overlapped

(more than 20 vertices) with a single ROI in the group-level network, then the patch was

labeled as the same ROI in the atlas. (2) If an individual-level patch overlapped with more

than one ROI in the network, then the patch was split into multiple smaller patches. Specifi-

cally, vertices overlapping with the group-level ROIs were labeled according to these ROIs,

forming the centers of several smaller patches. The remaining vertices in the original patch

were then assigned to the nearest ROIs according to the geodesic distance on the brain sur-

face. (3) If a patch did not overlap with any group-level ROI, then the patch was assigned to

its nearest ROI if the shortest distance between the patch and the ROI was within a certain

threshold; otherwise, the patch was labeled as “unrecognized”. In our algorithm, this thresh-

old was selected as the mean distance between any two vertices in the nearest ROI.

Calculating functional connectivity among ROIs

The individual subject’s connectivity profile was represented by the connectivity strength

among ROIs. The mean signal of an ROI was computed by averaging the preprocessed BOLD

signal across all vertices within the ROI. Connectivity between two ROIs was then estimated

using Pearson’s correlation and converted into Z values using Fisher’s Z transformation.

When ROIs were individually specified, we used the 92 ROIs that were consistently detected in

all 677 HCP subjects; as a result, each individual subject’s connectome was represented by a

92 × 92 matrix.

For comparison purposes, functional connectivity was also estimated using the correspond-

ing 92 ROIs in the population-level functional atlas [32] (“Yeo’s atlas”) and Yeo’s atlas with

fMRI data aligned using MSMAll [34] (“Yeo’s atlas with MSMAll”). We applied the ROIs from

Yeo’s atlas in the main analysis to ensure the number of ROIs was consistent with our individ-

ualized ROIs. In another comparison, 360 ROIs in a fine-grained atlas derived from the multi-

modal parcellation of the cortex proposed by Glasser and colleagues [22] (“Glasser’s atlas”)

and the corresponding ROIs with fMRI data aligned using MSMAll (“Glasser’s atlas with

MSMAll”) [22] were applied.

Estimating within-network and between-network functional connectivity

Functional connections were separated into within-network and between-network connec-

tions according to whether they connected two ROIs in the same network or different net-

works (see S7 Fig). Within-network and between-network connectivity values were estimated

for each subject. To compute the within-network connectivity of a specific network, we aver-

aged the connectivity values of all ROI pairs within the network. To compute the between-
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network connectivity of a specific network, we averaged the connectivity values of all ROI

pairs that involved an ROI within the network and an ROI outside the network.

Estimating intersubject variability in size, position, and connectivity of the
functional regions

The size of a functional region was calculated as the number of vertices that fell within that

region. For each ROI, intersubject variability in size was calculated as the standard deviation of

size across subjects. Intrasubject variability was estimated as the difference in ROI size between

two scan sessions. To control for the impact of noise and other technical confounds on inter-

subject variability estimates, intersubject variability in size was corrected by regressing out the

mean intrasubject variability using the similar strategy described in Mueller and colleagues

[5]. The position of a functional region was represented by the coordinates of its center of

mass. For each ROI, intersubject variability in ROI position was estimated as the average geo-

desic distance among the ROI centers across subjects. Intrasubject variability in ROI position

was estimated as the geodesic distance between the ROI centers localized in two sessions.

Intersubject variability in position was also corrected by regressing out the mean intrasubject

variability. For a given ROI, intersubject variability in size and position was evaluated using

only the subjects in whom the homologous ROIs could be detected.

Intersubject variability in vertex-wise and ROI-based functional connectivity was estimated

using an approach similar to Mueller and colleagues [5]. For each vertex in the fsLR_32k sur-

face mesh (59,412 vertices), the functional connectivity profile was represented by its connec-

tivity with other vertices on the fsLR_32k surface. The functional connectivity profile for each

individually specified ROI on the surface was computed as its connectivity with all other ROIs.

Intersubject variability in ROI-based functional connectivity was also corrected by regressing

out the mean intrasubject variability.

Predicting gF using functional connectivity, size, and position of the
functional ROIs

A SVR algorithm (L2-regularized L2-loss SVR model) implemented in the LIBLINEAR pack-

age (https://www.csie.ntu.edu.tw/~cjlin/liblinear/) was used to predict gF based on functional

connectivity. Prediction performance was evaluated using LOFOCV. Family structure was

kept intact in the prediction; i.e., subjects from the same family were not split into the training

and testing datasets.

During the LOFOCV, model parameters were trained using the data of left-in subjects, and

then the trained model was applied to the left-out subjects (i.e., one family) to predict the sub-

jects’ gF scores; the procedure was repeated for each family to predict the gF score of all sub-

jects. The performance of the prediction model was evaluated by the correlation between

predicted and observed gF scores. Specifically, each LOFOCV procedure included feature

selection, model learning, and testing. Before selecting effective features, covariates including

sex, age, age2, sex�age, sex�age2, brain size, head motion, and acquisition quarter were

regressed from the features and the observed gF scores. The regressing weights were applied to

the left-out dataset.

To reduce redundant information and prevent possible over-fitting, functional connectivity

that showed significant correlations with the gF scores in the training dataset were selected to

train the model. We applied different significance thresholds (p< 0.001 and p< 0.0005) in

feature selection, corresponding to large and small numbers of features. The de-confounded

features from the testing data were inputted into the trained model to derive the predicted gF

scores. To compare prediction performance based on different methods for defining
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functional ROIs or cross-subject alignment, the maximum correlation between predicted and

observed gF was obtained from a different number of selected features.

To predict gF based on the size or position of the ROIs, we also used the SVR model

described above. The position of a functional region on the cortical surface was evaluated as

the coordinates of the region’s center of mass in the right–left axis, anterior–posterior axis,

superior–inferior axis (RAS) coordinate system. In each LOFOCV, imaging features (i.e., size

and/or position of ROIs) in the training data were applied to train the model. To test if topo-

graphic features from individually specified ROIs and functional connectivity among them

can provide nonredundant information for the prediction of gF, we also trained the prediction

models using different features and then averaged the outputs from different models.

The above prediction analyses based on connectivity, ROI size, and ROI position were also

repeated using 10-fold cross validation. Specifically, we trained the model using 90% of the

families and tested the model in the remaining 10% of the families. We ensured that family

members were not split between folds. The 10-fold cross validation was repeated 50 times, and

the mean prediction accuracy was reported.

To ensure that the prediction was not affected by head motion, we also investigated the rela-

tion between motion and gF scores, ROI size, and ROI reliability (See S6 Fig).

A nonparametric permutation test was performed to determine whether the prediction of

gF scores exceeded the chance level. The observed gF values were randomly reshuffled among

the subjects (1,000 permutations), and the prediction procedures were repeated. To account

for family structure, members in one family were not split during the permutation [87]. The

permutation p-value was estimated by calculating the percentage of permutations that yielded

a prediction-observation correlation value higher than the prediction-observation correlation

based on the real data. Contributions of the functional connections (connection weight) were

averaged across all LOFOCV folds. If one feature was not selected in one fold, its contribution

was set to zero in this fold. The contribution of a given ROI was calculated by summing up the

contributions of all connections involving that ROI. If one ROI was not associated with any of

the selected features, its contribution to the prediction was set to zero.

Visualization

For the purpose of visualization, all imaging results were visualized using the Connectome

Workbench display tool provided by the HCP (https://www.humanconnectome.org/) [83,88].

The connectograms in Fig 5B and Fig 5D were created using Circos (http://circos.ca/).

Supporting information

S1 Text. Participants and data acquisition.

(DOCX)

S1 Data. Numerical values underlie the summary data displayed in figures.

(XLSX)

S1 Fig. The procedure for identifying the homologous functional regions in individuals.

This method utilized the following steps: (1) Cortical functional networks were mapped in

individual subjects using an iterative parcellation approach [10]. (2) Each network was spa-

tially smoothed and then segmented into multiple discrete patches. (3) A population-based

atlas derived from a cortical network parcellation approach [11] was segmented into 116 dis-

crete functional regions (ROIs). (4) Patches derived from each individual brain network were

matched to the ROIs extracted from the same functional network in the population atlas. A

patch may be matched to a single ROI or split to multiple smaller ROIs, and will be discarded
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when there is no matching ROI in the atlas. (5) Patches that matched the atlas-based ROIs

were labeled as the homologous ROIs in the individual. ROI, region of interest.

(TIF)

S2 Fig. Intersubject variability in vertex-wise functional connectivity is influenced by inter-

subject variability in topography and connectivity strength of the functional regions. (A)

Intersubject variability in resting state functional connectivity quantified at each vertex was

summarized in ROIs from Yeo’s atlas. (B) Intersubject variability in ROI size showed a moder-

ate correlation (r = 0.26) with the variability in vertex-wise connectivity. (C) Intersubject vari-

ability in ROI position showed a strong correlation (r = 0.49) with the variability in vertex-

wise connectivity. (D) Intersubject variability in connectivity among individually specified

ROIs showed a strong correlation (r = 0.55) with the variability in vertex-wise connectivity.

See S1 Data for numerical values. ROI, region of interest.

(TIF)

S3 Fig. Task-activated regions detected in subsets of the cohort (n = 20, 30, 40, 50) and in

the full cohort. (A) Between-subject similarity values during 4 tasks estimated by different

approaches. (B) Group-level statistical analyses (one-sample t test) were performed for 4 tasks

in the HCP data (Gambling, Relational, Social, and Emotional tasks) using the activation val-

ues in our individually specified ROIs or atlas-based ROIs. Regions with a significance value of

p< 0.0001 (Bonferroni corrected for 92 comparisons) are displayed. (C) Group-level task-acti-

vated regions mapped in subsets of the subjects using a series of significance thresholds (loga-

rithmic scale). See S1 Data for numerical values. ROI, region of interest.

(TIF)

S4 Fig. (A) Functional connections that were predictive of gF scores from individual ROIs

(red) and connections that were predictive of gF scores from group-level ROIs (blue) show

moderate overlap (Dice’s coefficient = 0.25). (B) The same predictive connections showed

weaker correlations (p< 0.001, paired t test) with gF when the connections were defined using

the atlas (black) compared with connections defined in individuals (red). Each circle repre-

sents the correlation value between one predictive connection and gF. See S1 Data for numeri-

cal values. gF, fluid intelligence; ROI, region of interest.

(TIF)

S5 Fig. (A) The bar plots show correlation between the observed gF and gF predicted using

different approaches, including using ROIs in Yeo’s atlas [11], ROIs in Glasser’s atlas [12],

Yeo’s atlas and Glasser’s atlas ROIs on data aligned by MSMAll [13], as well as our individually

specified ROIs. (B) Controlling head motion had little effect on the prediction results. The bar

plots show partial correlation values between predicted and observed gF, while controlling for

motion. See S1 Data for numerical values. gF, fluid intelligence; MSM, multimodal surface

matching; ROI, region of interest.

(TIF)

S6 Fig. Head motion effects. (A) Pearson’s correlations between mean relative motion and

node reliability. For each ROI, node reliability was calculated as the Dice’s overlap between the

ROIs derived from the two scan sessions of the same subject. The map shows the uncorrected

significance values (logarithmic scale) for the correlations between motion and node reliabil-

ity. The reliability of two ROIs (indicated by the arrows in the map) was significantly corre-

lated with motion. We used a significance threshold of p< 0.05 after Bonferroni correction

(logarithmic scale: −log10(0.05/116) = 3.37). (B) Correlation between head motion and node

size. No significant correlation was found between motion and node size. (C) Head motion
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effect on the similarity (Dice’s overlap) between the individualized ROI and atlas-based ROI

(Yeo’s atlas). One ROI in the temporal pole (indicated by the arrow) was significantly affected

by motion. (D) Negative correlation (r = −0.122, p = 0.001) was found between head motion

and gF. Each subject is represented by a circle in the scatterplot. See S1 Data for numerical val-

ues. gF, fluid intelligence; ROI, region of interest.

(TIF)

S7 Fig. Between-network connectivity was more accurately estimated using individually

specified ROIs than using atlas-based ROIs. The strength of between-network connectivity

showed an average decrease of 12.07% when the ROIs were individually specified compared

with atlas based (p< 0.001 for 16 of 18 networks, paired t test, Bonferroni correction for 18

comparisons). The individualized functional ROIs were determined in each individual using

data from the first scan session, while between-network connectivity values were estimated

using data from the second scan session. See S1 Data for numerical values. ROI, region of

interest.

(TIF)
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