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Abstract—It is important but challenging to assure the per-
formance of multi-tier Internet applications with the power
consumption cap of virtualized server clusters mainly due to
system complexity of shared infrastructure and dynamic and
bursty nature of workloads. This paper presents PERFUME, a
system that simultaneously guarantees power and performance
targets with flexible tradeoffs while assuring control accuracy
and system stability. Based on the proposed fuzzy MIMO
control technique, it accurately controls both the throughput
and percentile-based response time of multi-tier applications due
to its novel fuzzy modeling that integrates strengths of fuzzy
logic, MIMO control and artificial neural network. It is self-
adaptive to highly dynamic and bursty workloads due to online
learning of control model parameters using a computationally
efficient weighted recursive least-squares method. We implement
PERFUME in a testbed of virtualized blade servers hosting two
multi-tier RUBiS applications. Experimental results demonstrate
its control accuracy, system stability, flexibility in selecting trade-
offs between conflicting targets and robustness against highly
dynamic variation and burstiness in workloads. It outperforms a
representative utility based approach in providing guarantee of
the system throughput, percentile-based response time and power
budget in the face of highly dynamic and bursty workloads.

I. INTRODUCTION

Modern data centers apply virtualization technology to
host multiple Internet applications that share underlying high
density server resources for performance isolation, server
consolidation, and system manageability. The widely used
high density blade servers impose stringent power and cool-
ing requirements. It is essential to precisely control power
consumption of blade servers to avoid system failures caused
by power capacity overload. A common technique to server
power consumption control is to dynamically transition the
hardware components from high power states to low-power
states whenever the system power consumption exceeds a
given power budget [4]. However, it has significant influ-
ence on the performance of hosted applications as it may
result in violation of service level agreements (SLAs) in
terms of response time and throughput required by customers.
Furthermore, such an approach is not easily applicable to
virtualized environments where physical processors are shared
by multiple virtual machines. Changing the power state of
a processor will affect the performance of multiple virtual
machines belonging to different applications. Thus, power
management may threaten the performance isolation of hosted

applications. It is important to consider a holistic approach in
controlling power and performance in virtualized data centers.

Recent studies such as [22] found highly dynamic work-
loads of Internet services that fluctuate over multiple time
scales, which can have a significant impact on the process-
ing demands imposed on data center servers. Furthermore,
burstiness of Internet workloads has deleterious impact on
client-perceived performance [18]. It is challenging to design
autonomic resource provisioning techniques that are robust to
dynamic variation and burstiness in workloads.

Many research studies focused on treating either power or
performance as the primary control target in a data center
while satisfying the other objective in a best-effort manner.
Power oriented approaches [15], [19], [21], [25] disregard
the SLAs of hosted applications while performance oriented
approaches do not have explicit control on power consump-
tion [2], [27]. Recently, vPnP [5] was proposed for explicit
coordination of power and performance in virtualized data
centers using utility function optimization. Such an approach
can achieve different levels of tradeoff between power and
performance in a flexible way. However, it lacks the guarantee
on stability and performance of the server system especially
in the face of highly dynamic and bursty workloads.

Multiple-input-multiple-output (MIMO) control technique
has been applied for performance management of multi-tier
applications [27] and power control of high density servers
in an enclosure [25]. However, those MIMO control solutions
do not provide explicit coordination between power and per-
formance. Furthermore, they are designed based on offline
system identification for specific workloads [11], [25], [27].
Hence, they are not adaptive to situations with abrupt workload
changes though they can achieve control accuracy and system
stability within a range theoretically.

An important goal in data centers is to meet the SLAs with
customers. Many studies focused on the average end-to-end
response time within a multi-tier system [1], [5], [9], [20],
[23]. However, the average response time guarantee is not
sufficient for many applications, in particular for interactive
ones as it is unable to represent the shape of a delay curve [17].
Instead, providers of such services prefer percentile-based
performance guarantee. Metric such as the 95𝑡ℎ-percentile
response time has the benefit that is both easy to reason

978-1-4577-0103-0/11/$26.00 c⃝ 2011 IEEE



about and to capture individual users’ perception of Internet
service quality [16], [17], [23], [28]. But it is challenging
to control the percentile-based performance, even without a
power consumption cap, due to its strong non-linear relation
with resource allocation and workload dynamics [13].

In this paper, we design and implement PERFUME, a
system that simultaneously provides explicit guarantee on
the power consumption of underlying server clusters and the
performance of multi-tier applications in a prototype virtual-
ized data center. We develop a fuzzy MIMO (FUMI) control
to minimize the deviation of power and performance from
their respective targets while assuring control accuracy and
system stability. We recognize that it may not always be
possible to simultaneously meet both power and performance
targets due to bursty Internet workloads. PERFUME provides
the flexibility to select varying tradeoffs between power and
performance. It is capable of dealing with the complexity of
multi-tier applications in a shared virtualized infrastructure
due to its FUMI control that integrates fuzzy modeling logic,
MIMO control and artificial neural network. The control action
is taken by adjusting the CPU usage limits among individual
tiers of multiple applications in a coordinated manner.

PERFUME provides performance guarantee for throughput
and percentile-based response time in the face of highly
dynamic and bursty workloads. It captures the nonlinearity
of percentile-based performance metric such as the 95𝑡ℎ-
percentile response time by applying the novel FUMI control.
The FUMI control is also applied to predict the power con-
sumption of underlying server clusters for various CPU usage
limits in hosted applications. PERFUME is self-adaptive to
highly dynamic workloads due to its online learning capability.
It automatically learns the fuzzy model parameters at run
time using a weighted recursive least-squares (wRLS) method.
Compared to a standard least-squares method used in vPnP [5],
wRLS method is computationally more efficient. It eliminates
the need to find a suitable moving window size for collecting
the data used for online learning of the system model.

We implement PERFUME on a testbed of virtualized server
clusters hosting two RUBiS applications [5], [20], [23], [28].
The testbed consists of a cluster of two HP ProLiant BL460C
G6 blade server modules using VMware virtual machines.
Experimental results demonstrate that PERFUME’s FUMI
model significantly outperforms a recently applied modeling
technique for web systems, ARMA (Auto Regressive Mov-
ing Average) [5], [20] in terms of prediction accuracy for
throughput, percentile-based response time and power average
consumption for both stationary and dynamic workloads.

Compared to vPnP [5], PERFUME delivers significantly
improved performance, in terms of power, throughput and
response time assurance with respect to the given targets in
the face of highly dynamic and bursty workloads. This is
due to its modeling accuracy, self-adaptiveness and control
theoretical foundation. Note that vPnP was originally applied
to a single tier, which was identified as the bottleneck of
a Web application. However, in practice, the bottleneck tier
can switch between multiple tiers depending on workload

patterns [1]. For fair comparison, we extend the vPnP im-
plementation to a multi-tier application. We also demonstrate
that PERFUME delivers consistent performance for various
flexible control options that tradeoffs between power and
performance guarantee.

In the following, Section II discusses related work. The
PERFUME system architecture is presented in Section III.
Section IV describes the modeling of power and performance
control. Section V discusses the design of FUMI control.
Section VI provides the testbed implementation details. Sec-
tion VII presents the experimental results and analysis. We
conclude the paper with future work in Section VIII.

II. RELATED WORK

Power management in computing systems is an important
and challenging research area. There were many studies in
power management in embedded mobile devices and Web
servers. For instance, the Dynamic Voltage Scaling (DVS)
technique was applied to reduce power consumption in Web
servers [3] and to improve power efficiency of server farms [4].

Today, popular Internet applications have a multi-tier archi-
tecture forming server pipelines. Applying independent DVS
algorithms in a pipeline will lead to inefficient usage of power
for assuring an end-to-end delay guarantee due to the inter-tier
dependency [7]. Wang et al. [25] proposed a MIMO controller
to regulate the total power consumption of an enclosure
by conducting processor frequency scaling for each server
while optimizing multi-tier application performance. Such
controllers are designed based on offline system identification
for specific workloads. They are not adaptive to situations
with abrupt workload changes though they can achieve control
accuracy and system stability within a range theoretically.

Modern data centers apply virtualization technology to con-
solidate workloads on fewer powerful servers for improving
server utilization, performance isolation and flexible resource
management. Traditional power management techniques are
not easily applicable to virtualized environments where phys-
ical processors are shared by multiple virtual machines. For
instance, changing the power state of a processor by DVS
will inadvertently affect the performance of multiple virtual
machines belonging to different applications [19], [27].

It is a trend that power and performance management of
virtualized multi-tier servers are jointly tackled. However, it is
challenging due to the inherently conflicting objectives.

Power-oriented approaches aim to ensure that a server
system does not violate a given power budget while max-
imizing the performance of hosted applications [15], [19],
[21], [26], [25] or increasing the number of services that can
be deployed [6]. pMapper [24] tackles power-cost tradeoffs
under a fixed performance constraint. vManage [10] performs
VM placement to save power without degrading performance.
Co-Con [26] is a novel two-level control architecture for
power and performance coordination in virtualized server
clusters. It gives a higher priority to power budget tracking
and performance is a secondary goal.



Performance-oriented approaches aim to guarantee a per-
formance target while minimizing the power consumption [2],
[8], [11], [14], [16], [27]. However, they do not have explicit
control over power consumption.

Coordinated power and performance management with ex-
plicit trade-offs is recently studied in virtualized servers [5],
[9]. Mistral [9] is a control architecture to optimize power
consumption, performance benefit, and the transient costs
incurred by adaptations in virtualized server clusters. vPnP [5]
coordinates power and performance in virtualized servers
using utility function optimization. It provides the flexibility
to choose various tradeoffs between power and performance.
However, it lacks the guarantee on system stability and per-
formance, especially under highly dynamic workloads.

There are a few important studies in percentile-based delay
guarantee in multi-tier Internet services. A dynamic server
provisioning approach proposed in [23] is model dependent
and the application profiling needs to be done offline for each
workload before the server replication and allocation. A fuzzy
control based server provisioning approach proposed in [12]
is effective under stationary system workloads, but it does
not adapt to the very dynamic nature of Internet workloads.
A stochastic approximation technique proposed in [16] can
estimate the tardiness quantile of response time distribution.
But it is model dependent for a particular simulated workload.
An approach proposed in [28] can model the probability
distributions of response time based on CPU allocations on
virtual machines in a data center. The performance model
was obtained by offline training based on data collected from
the system. It is not adaptive online to dynamically changing
workloads. We designed a neural fuzzy control that is adaptive
to highly dynamic workloads [13]. But there was no power
control and power and performance tradeoff capability.

The trade-off flexibility and system stability requirements in
the face of highly dynamic and bursty workloads, together with
the percentile-based response time guarantee, demand novel
techniques for autonomous performance and power control.

III. PERFUME SYSTEM ARCHITECTURE

Hardware throttling is too rigid for power control in vir-
tualized environments because reducing CPU frequency of
a server inevitably affects the performance of all virtual
machines running on that server. Unlike previous approaches
which regulate a server-level or enclosure-level power con-
sumption, PERFUME controls the power consumption of
a virtual resource pool while assuring the performance of
multi-tier applications hosted in it. A resource pool is a
logical abstraction that groups the CPU and memory resources
provided by underlying server clusters. We regulate the power
consumption by applying CPU usage limits on VMware virtual
machines hosted on a cluster of blade servers. It constrains the
utilization of underlying physical processors thereby regulates
power consumption. It is feasible due the idle power man-
agement of modern processors, which can achieve substantive
savings when a processor is idle compared to it is active.
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Fig. 1. The system architecture of PERFUME.

Figure 1 illustrates the system architecture of PERFUME.
The computer system under control is a virtualized blade
server cluster hosting multiple multi-tier applications. Each tier
of an application is deployed at a virtual machine created from
a resource pool, which logically abstracts the CPU resources
provided by the underlying physical server clusters. The power
monitor, using VMware’s Intelligent Power Management Inter-
face (IPMI) sensors, periodically measures the average power
consumption of the server cluster at the resource pool level
and sends the value to the FUMI control. Measuring power
at the resource pool level allows FUMI control to achieve a
fine-grained power control, which is desirable in a virtualized
data center that uses different resource pools for different
customers. The performance monitor periodically measures the
throughput as well as the percentile-based response time of
each multi-tier application and sends the performance values
to the controller. FUMI control determines the CPU usage
limits on various tiers of multiple applications to regulate per-
application performance and the total power consumption of
the server cluster. It is based on the fuzzy model predictive
control theory. The resource allocator actuates the control
action to limit the CPU usage of each virtual machine by
using the VMware’s virtualization management module.

IV. MODELING OF POWER AND PERFORMANCE CONTROL

To achieve effective control over power consumption and
performance of multi-tier applications, PERFUME applies
fuzzy modeling to estimate the relationship between the
performance and CPU usage limits on the virtual machines
that deploy the applications. Both the throughput and the
percentile-based response time are used as performance met-
rics. We also apply the same fuzzy modeling technique to
predict the power consumption of the virtual resource pool
for different virtual machines’ CPU limit. A key strength of
fuzzy model is its ability to represent highly complex and
nonlinear systems by a combination of inter-linked subsystems
with simple functional dependencies.

We construct an initial fuzzy model by applying subtractive
clustering technique on data collected from the system. Each
obtained cluster represents a certain operating region of the
system, where input-output data values are highly concen-



trated. Clustering process partitions the input-output space
and determines the number of fuzzy rules and the shape of
membership functions. Then, we apply an adaptive network
based fuzzy inference system to further tune the fuzzy model
parameters. It uses a neural network learning technique for the
purpose. At run time, we apply a wRLS algorithm to learn the
model parameters for the PERFUME’s self-adaptiveness in the
face of highly dynamic workloads.

A. The Fuzzy Model

We consider a number of multi-tier applications hosted in
a virtual resource pool as a MIMO system. The inputs to the
system are CPU usage limits set at various tiers of the applica-
tions. The outputs of the system are the measured performance
of each application and the average power consumption of
the shared resource pool. We obtain two separate models
for power and performance of the system, respectively. The
system is approximated by a collection of MIMO fuzzy models
as follows:

y(𝑘 + 1) = R(𝜉(𝑘), u(𝑘)). (1)

Let y(𝑘) be the output variable and u(𝑘) = [𝑢1(𝑘), .., 𝑢𝑚(𝑘)]𝑇

be the vector of current inputs at sampling interval 𝑘. The
regression vector 𝜉(𝑘) includes current and lagged outputs:

𝜉(𝑘) = [y(𝑘), .., y(𝑘 − 𝑛𝑦))]
𝑇 (2)

where 𝑛𝑦 specifies the number of lagged values of the output
variable. Note that a regression vector may also include lagged
inputs to achieve even better accuracy of power and perfor-
mance prediction. R is a rule based fuzzy model consisting of
𝐾 fuzzy rules. Each fuzzy rule is described as follows:

R𝑖: If 𝜉1(𝑘) is Ω𝑖,1 and .. 𝜉𝜚(𝑘) is Ω𝑖,𝜚 and 𝑢1(𝑘) is Ω𝑖,𝜚+1

and .. 𝑢𝑚(𝑘) is Ω𝑖,𝜚+𝑚 then

y𝑖(𝑘 + 1) = 𝜁𝑖𝜉𝑖(𝑘) + 𝜂𝑖u(𝑘) + 𝜙𝑖. (3)

Here, Ω𝑖 is the antecedent fuzzy set of the 𝑖𝑡ℎ rule which
describes elements of regression vector 𝜉(𝑘) and the current
input vector u(𝑘) using fuzzy values such as ‘large’, ‘small’,
etc. 𝜁𝑖 and 𝜂𝑖 are vectors containing the consequent parameters
and 𝜙𝑖 is the offset vector. 𝜚 denotes the number of elements
in the regression vector 𝜉(𝑘). Each fuzzy rule describes a
region of the complex non-linear system model using a simple
functional relation given by the rule’s consequent part. The
model output is calculated as the weighted average of the
linear consequents in the individual rules. That is,

y(𝑘 + 1) =

∑𝐾
𝑖=1 𝛽𝑖(𝜁𝑖𝜉𝑖(𝑘) + 𝜂𝑖u(𝑘) + 𝜙𝑖)∑𝐾

𝑖=1 𝛽𝑖
(4)

where the degree of fulfillment for the 𝑖𝑡ℎ rule 𝛽𝑖 is the product
of the membership degrees of the antecedent variables in that
rule. Membership degrees are determined by fuzzy member-
ship functions associated with the antecedent variables. The
model output is expressed in the form of

y(𝑘 + 1) = 𝜁∗𝜉𝑖(𝑘) + 𝜂∗u(𝑘) + 𝜙∗. (5)

The aggregated parameters 𝜁∗, 𝜂∗ and 𝜙∗ are the weighted
sum of vectors 𝜁𝑖, 𝜂𝑖 and 𝜙𝑖 respectively.

B. On-line Adaptation of the Fuzzy Model

Internet workloads to a data center vary dynamically in
arrival rates as well as characteristics [22]. This results in
significantly varying resource demands at multiple tiers of
Internet applications. It is time-consuming and may even be
infeasible to obtain a static system model that can provide
sufficient prediction accuracy of power and performance for
all possible variations in the workload. Hence, the system
control models need to adapt on-line in the face of dynamic
workloads. We apply a wRLS method to adapt the consequent
parameters of the fuzzy model obtained. The technique updates
the model parameters as new measurements are sampled from
the runtime system. The recursive nature of the wRLS method
makes the time taken for this computation negligible for
a control interval that is more than 10 seconds. It applies
exponentially decaying weights on the sampled data so that
higher weights are assigned to more recent observations.

We express the fuzzy model output in Eq. (4) as follow:

y(𝑘 + 1) = 𝑋𝜃(𝑘) + 𝑒(𝑘) (6)

where e(k) is the error value between actual output of the
system (i.e., measured performance or power) and predicted
output of the model. 𝜃 = [𝜃𝑇1 𝜃

𝑇
1 ..𝜃

𝑇
𝑝 ] is a vector composed of

the model parameters. 𝑋 = [𝑤1𝑋(𝑘), 𝑤2𝑋(𝑘), .., 𝑤𝑝𝑋(𝑘)]
where 𝑤𝑖 is the normalized degree of fulfillment or firing
strength of 𝑖𝑡ℎ rule and 𝑋(𝑘) = [𝜉𝑇𝑖 (𝑘), u(𝑘)] is a vector
containing current and previous outputs and inputs of the
system. The parameter vector 𝜃(𝑘) is estimated so that the
following cost function is minimized. That is,

𝐶𝑜𝑠𝑡 =

𝑘∑
𝑗=1

𝜆𝑘−𝑗𝑒2(𝑗). (7)

Here 𝜆 is a positive number less than one. It is called
“forgetting factor” as it gives higher weights on more recent
samples in the optimization. This parameter determines in
what manner the current prediction error and old errors affect
the update of parameter estimation. The parameters of fuzzy
model are updated by the wRLS method.

V. FUMI CONTROL DESIGN

We apply the fuzzy model predictive control principle to
design the FUMI control. FUMI control is well suited for
power and performance control in virtualized server clusters
due to its capability to solve constrained MIMO control
problems of complex non-linear systems. It determines control
actions by optimizing a cost function, which expresses the
control objectives and constraints over a time interval. Since
the system model is nonlinear, FUMI control linearizes the
fuzzy model at the current operating point in order to avoid
non-convex, time-consuming optimization. We formulate the
power and performance assurance of virtualized multi-tier
applications as a predictive control problem. Then, we present
detailed steps to transform the control formulation to a stan-
dard quadratic programming problem, which allows us to
design and implement the control algorithm based on an
effective quadratic programming method.



A. FUMI Control Formulation

FUMI control aims to minimize the deviation of power
consumption and performance of multi-tier applications from
their respective targets. It decides the control actions at every
control period 𝑘 by minimizing the following cost function:

𝑉 (𝑘) =

𝐻𝑝∑
𝑖=1

∣∣𝑟1− 𝑦1(𝑘 + 𝑖)∣∣2𝑃 +

𝐻𝑝∑
𝑖=1

∣∣𝑟2− 𝑦2(𝑘 + 𝑖)∣∣2𝑄

+

𝐻𝑐−1∑
𝑗=0

∣∣Δu(𝑘 + 𝑗)∣∣2𝑅. (8)

Here, 𝑦1(𝑘) is the power consumption of the resource pool.
𝑦2(𝑘) is a vector containing the percentile-based end-to-end
response time or the throughput of each application. The con-
troller predicts both power and performance over 𝐻𝑝 control
periods, called the prediction horizon. It computes a sequence
of control actions Δu(𝑘),Δu(𝑘+ 1), ..,Δu(𝑘+𝐻𝑐 − 1) over
𝐻𝑐 control periods, called the control horizon, to keep the
predicted power and performance close to their pre-defined
targets 𝑟1 and 𝑟2 respectively. The control action is the change
in CPU usage limits imposed on various tiers of the multi-
tier applications. 𝑃 and 𝑄 are the tracking error weights that
determine the trade-off between power and performance. The
third term in Eq. (8) represents the control penalty and is
weighted by 𝑅. This term penalizes big changes in control
action and contributes towards high system stability.

The control problem is subject to the constraint that the sum
of CPU usage limits assigned to all multi-tier applications must
be bounded by the total CPU capacity of the resource pool.
The constraint is formulated as:

𝑀∑
𝑗=1

(Δ𝑢𝑗(𝑘) + 𝑢𝑗(𝑘)) ≤ 𝑈𝑚𝑎𝑥 (9)

where 𝑀 is the number of applications hosted in a resource
pool and 𝑈𝑚𝑎𝑥 is the total CPU capacity of the resource pool.

B. Transformation to Quadratic Programming

To transform the MIMO control problem to a standard
quadratic programming problem, we linearize the fuzzy model
and represent it as a state-space linear time variant model in
the following form:

𝑥𝑙𝑖𝑛(𝑘 + 1) = 𝐴(𝑘)𝑥𝑙𝑖𝑛(𝑘) +𝐵(𝑘)u(𝑘).

y(𝑘) = 𝐶(𝑘)𝑥𝑙𝑖𝑛(𝑘). (10)

The state vector for the state-space description is defined as

𝑥𝑙𝑖𝑛(𝑘 + 1) = [𝜉𝑇𝑖 (𝑘), 1]
𝑇 . (11)

The matrices 𝐴(𝑘),𝐵(𝑘) and 𝐶(𝑘) are constructed by freezing
the parameters of the fuzzy model at a certain operating point
y(𝑘) and u(k) as follows. First, we calculate the degree of
fulfillment 𝛽𝑖 for the current inputs (i.e CPU usage limits)
chosen for the system and compute the aggregated parameters
𝜁∗, 𝜂∗ and 𝜙∗. Comparing Eq. (5) and Eq. (10), the state
matrices are computed as follows:

𝐴=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜁∗
1,1 𝜁∗

1,2 .. .. .. 𝜁∗
1,𝜚 𝜙∗

1

1 0 .. 0 0

0 1
.
.
. 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
𝜁∗
2,1 𝜁∗

2,2 .. .. .. 𝜁∗
2,𝜚 𝜙∗

2

0
.
.
.

. . .
.
.
.

.

.

.
𝜁∗
𝑝,1 𝜁∗

𝑝,2 .. .. .. 𝜁∗
𝑝,𝜚 𝜙∗

𝑝

0 0 1 0 0 0 1

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
0 .. 0 .. 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐵=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜂∗
1,1 𝜂∗

1,2 .. 𝜂∗
1,𝑚

0 .. .. 0

.

.

.
.
.
.

𝜂∗
2,1 𝜂∗

2,2 .. 𝜂∗
2,𝑚

0 .. .. 0

.

.

.
.
.
.

𝜂∗
𝑝,1 𝜂∗

𝑝,2 .. 𝜂∗
𝑝,𝑚

0 .. .. 0
0 .. .. 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐶=

[
1 0 .. .. .. .. 0

.

.

.
. . .

.

.

.
0 .. .. .. .. 1 0

]

where 𝜁∗𝑖𝑗 is the 𝑗𝑡ℎ element of aggregate parameter vectors 𝜁∗

for application 𝑖. Similarly, 𝜂∗𝑖𝑗 is the 𝑗𝑡ℎ element of aggregate
parameter vectors 𝜂∗ for application 𝑖.

Next, we express the objective of FUMI control, defined by
Eq. (8), as a quadratic program:

Minimize
1

2
Δu(𝑘)𝑇𝐻Δu(𝑘) + 𝑐𝑇Δu(𝑘) (12)

subject to constraint ΩΔu(𝑘) ≤ 𝜔.
The matrices Ω and 𝜔 are chosen to formulate the con-

straints on CPU resource usage as described in Eq. (9). Here,
Δu(𝑘) is a matrix containing the CPU usage limits on each
virtual machine over the entire control horizon 𝐻𝑐. And,

𝐻 = 2(𝑅𝑇
1𝑢𝑃𝑅1𝑢 +𝑅𝑇

2𝑢𝑄𝑅2𝑢 +𝑅). (13)

𝑐 = 2[𝑅𝑇
1𝑢𝑃

𝑇 (𝑅1𝑥𝐴𝑥(𝑘)−𝑟1)+𝑅𝑇
2𝑢𝑄

𝑇 (𝑅2𝑥𝐴𝑥(𝑘)−𝑟2)]𝑇 . (14)

The matrices 𝑅1𝑢, 𝑅1𝑥 are associated with the performance
models of hosted applications and matrices 𝑅2𝑢, 𝑅2𝑥 are
associated with the power model of the resource pool.

𝑅𝑖𝑢=

⎡
⎢⎣

𝐶
𝐶𝐴

.

.

.
𝐶𝐴𝐻𝑝−1

⎤
⎥⎦ 𝑅𝑖𝑥=

⎡
⎢⎣

𝐶𝐵 0 .. 0
𝐶𝐴𝐵 𝐶𝐵 .. 0

.

.

.
.
.
.

. . .
.
.
.

𝐶𝐴𝐻𝑝−1𝐵 𝐶𝐴𝐻𝑝−1𝐵 .. 𝐶𝐴𝐻𝑝−𝐻𝑐𝐵

⎤
⎥⎦

C. FUMI Control Interface

Figure 2 shows the interface between the FUMI online
learning and MIMO control components. The starting point
of the continuous chain of interaction is the fuzzy model
of multi-tier applications hosted in virtualized servers. The
model is initially obtained offline as described in Section IV.
The optimizer of FUMI Control decides the CPU resource
allocation, 𝑢(𝑘), at each interval to minimize the deviation of
power consumption and performance of multi-tier applications
from their respective targets, denoted by 𝑟𝑒𝑓 . The online learn-
ing algorithm wRLS adapts the fuzzy model automatically
in response to dynamic workloads. It learns the fuzzy model
parameters by utilizing the current and previous measurements
of actual power consumption and system performance 𝑦(𝑘+1),
and the control actions 𝑢(𝑘).
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Fig. 2. Interface between FUMI control and learning components.

VI. PERFUME IMPLEMENTATION

A. The Testbed

We have implemented PERFUME on a testbed consisting
of two HP ProLiant BL460C G6 blade server modules and a
HP EVA storage area network with 10 Gbps Ethernet and 8
Gbps Fibre/iSCSI dual channels. Each blade server is equipped
with Intel Xeon E5530 2.4 GHz quad-core processor and 32
GB PC3 memory. Virtualization of the cluster is enabled by
an enterprise-level virtualization product, VMware ESX 4.1.
VMware’s vSphere module controls the disk space, memory,
and CPU share in MHz allocated to the virtual machines. It
also provides an API to support the remote management of
virtual machines. We create a resource pool from the virtual-
ized server cluster to host multi-tier applications. PERFUME
system architecture is shown in Figure 1. Each tier of an
application is hosted inside a VMware virtual machine with 2
VCPUs, 4 GB RAM and 15 GB hard disk space. The guest
operating system used is Ubuntu Linux version 10.04.

As many related studies [5], [20], [23], [28], our work uses
an open-source multi-tier application benchmark RUBiS in the
testbed. RUBiS implements the core functionality of an eBay
like auction site: selling, browsing and bidding. We configure
the RUBiS clients to generate workloads of different mixes as
well as workloads of time-varying intensity.

B. PERFUME Components

1) Power Monitor: The average power consumption of the
server cluster is measured at the resource pool level by
using a new feature of VMware ESX 4.1. Since the
power consumption of resource pool depends on that
of its underlying physical hosts, VMware gathers such
data through IPMI sensors. The power monitor program
runs on a separate virtual machine and collects power
measurement data by using VMware vSphere API.

2) Performance Monitor: PERFUME uses a sensor program
provided by RUBiS client for performance monitoring.
We modify the sensor to measure the client-perceived
percentile-based end-to-end response time and through-
put over a period of time. The number of requests
finished during a control interval is throughput.

3) FUMI Controller: The controller first updates the fuzzy
models based on power and performance data measured
online at every control interval of 30 seconds. This
control interval is chosen by considering the trade-off
between noise in the sensor measurements and faster
response of the controller. Then, it invokes a quadratic
programming solver, quadprog, in MATLAB to execute

the control algorithm described in Section V. The solu-
tion of the control algorithm in terms of VM CPU usage
limits is sent to the resource allocator.

4) Resource Allocator: VMware’s vSphere module is used
to impose CPU usage limits on the virtual machines
supporting different tiers of the hosted applications. The
controller issues commands to the resource allocator by
using VMware vSphere API 4.0.

VII. PERFORMANCE EVALUATION

A. Modeling Accuracy of the FUMI Control

The accuracy of the fuzzy model has significant impact
on effective resource allocation for joint control of power
and performance in PERFUME. Thus, we first evaluate the
accuracy of the fuzzy models obtained by the FUMI control
approach for power and performance prediction.

We obtain a system model for predicting the performance
of one RUBiS application and the total power consumption
of both RUBiS applications hosted in the virtual resource
pool. The FUMI control module conducts the initial system
modeling based on offline power and performance measure-
ments collected from the testbed. The data is collected by
randomly allocating various CPU usage limits on each tier of
the two RUBiS applications. Each application has a workload
of a browsing mix of 1000 concurrent users. Applying fuzzy
subtractive clustering on the collected data, we obtain a fuzzy
model consisting of four rules with different input membership
functions and consequent parameters. Then, we tune the
consequent parameters by applying a neural network based
training, which converges within 24 iterations.

Figures 3(a) and 3(b) show that FUMI models can accu-
rately predict the performance in terms of throughput and
the 95𝑡ℎ-percentile response time for various CPU allocations
at different sampling intervals. Figure 3(c) shows that the
FUMI model is able to accurately predict the average power
consumption for various CPU allocations at different sampling
intervals. The accuracy is measured by the normalized root
mean square error (NRMSE), a standard metric for deviation.
Figures 3(a), 3(b) and 3(c) show that the checking data and
FUMI prediction are very close, with the NRMSE 12.5%,
17.6% and 15.2% in the three scenarios respectively.

B. Self-adaptiveness of the FUMI Control

We evaluate the self-adaptiveness of FUMI model by mea-
suring its prediction accuracy when the workload is changed
from browsing mix of 1000 concurrent users to bidding mix of
500 concurrent users and vice versa. The prediction accuracy is
again quantified by the normalized root mean square error. We
compare our results with a popular and recently used technique
for modeling Internet systems, ARMA [5], [20].

Figures 4(a) and 4(b) show that FUMI model outperforms
ARMA model in predicting performance of a multi-tier ap-
plication for both stationary and dynamic workloads. On
average, the improvement in performance prediction accuracy
for the throughput and 95𝑡ℎ-percentile end-to-end response
time are 35% and 43%, respectively. The improvement in
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Fig. 3. The prediction accuracy of performance and power by FUMI models.
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Fig. 4. The prediction accuracy comparison between FUMI and ARMA models under a dynamic workload.

power prediction accuracy is shown in Figure 4(c). Compared
to the ARMA modeling FUMI modeling has an additional
benefit, that is, it eliminates the need to find a suitable moving
window size for collecting the data used for online learning
of the performance and power control models.

It is difficult to obtain a static system model that can provide
sufficient prediction accuracy of power and performance for all
possible variations in highly dynamic and bursty workloads.
The fuzzy models obtained by the FUMI approach are self-
adaptive in the face of dynamically varying workloads. This
is due to the fact that FUMI control integrates the strengths
of fuzzy logic, MIMO control and artificial neural network
and achieves fast online learning using a wRLS method.
FUMI updates the model parameters as new measurements
are sampled from the runtime system.

C. Power and Performance Assurance of PERFUME

1) Flexible tradeoffs: A key feature of PERFUME is its
ability to assure joint power and performance guarantee with
flexible tradeoffs while assuring control accuracy and system
stability. The tradeoffs between inherently conflicting power
and performance objectives can be specified by a data center
administrator. The system stability is measured in terms of rel-
ative deviation of power and performance from their respective
targets, as defined in vPnP [5]. We experiment with power-
preferred, performance-preferred and balanced control options
under a highly dynamic workload [13]. Figure 5(a) shows the
dynamic changes in the number of concurrent users.

PERFUME achieves the specified tradeoffs by tuning the
tracking error weights, 𝑃 and 𝑄, in the MIMO control
objective defined by Eq. (8). Figure 5(b) compares the control
accuracy of vPnP with PERFUME in assuring the throughput
target for various tradeoffs between power and performance.

Our results demonstrate that, compared to vPnP, PERFUME
delivers average improvement of 30% in performance assur-
ance in terms of relative deviation for various control options.
We obtained similar results with the average improvement of
25% for relative deviation in power consumption with respect
to its power cap target, as shown in Figure 5(c). Note that the
control accuracy of the power-preferred option is the highest
for power assurance but the lowest for throughput assurance.
Whereas, the control accuracy of the performance-preferred
option is the highest for throughput assurance and the lowest
for power assurance. The balanced control option shows good
control accuracy for both power and performance assurance.

2) System stability: We now take a closer look at the system
stability of PERFUME under the highly dynamic workload.
We experiment with the power-performance balanced control
option. Figures 6 (a) and (b) illustrate that PERFUME offers
more accurate assurance of power and performance targets
compared to vPnP in [5]. We show the results for only
one of the hosted RUBiS applications. Similar results were
obtained for the other. Note that the spikes in average power
consumption and throughput at various intervals are due to the
limitation of purely reactive approach under abrupt changes
in the workload intensity. However, PERFUME is able to
quickly adapt itself and control both power consumption and
throughput so that they converge to the steady state. On the
other hand, results show there are more significant oscillations
in power and performance assurance due to the lack of control
accuracy and system stability guarantee in vPnP. There is an
improvement of 25% and 32% in relative deviation of power
consumption and throughput respectively.

Figure 6 (c) compares the total CPU usage limits allocated
by vPnP and PERFUME at various sampling intervals. On
average, PERFUME uses similar amount of CPU resources
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Fig. 5. Power and performance assurance with flexible control options under a highly dynamic workload.
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Fig. 6. Comparison between PERFUME and vPnP for power and performance assurance under a highly dynamic workload.

as vPnP. However, there is significantly less fluctuations in
resource allocation. The modeling accuracy, self-adaptiveness
and control theoretic foundation of FUMI control enables
PERFUME to achieve system stability and accurate control
for both power and performance of multi-tier applications in
the face of highly dynamic workloads.

D. Robustness of PERFUME under Bursty Workloads

We evaluate the robustness of PERFUME under a bursty
workload. We use an approach proposed in [18] to inject
burstiness into the arrival process of RUBiS clients according
to the index of dispersion. The dispersion index modulates
the think times of users between submission of consecutive
requests. We set the index of dispersion to 4000 and the
maximum number of concurrent users to 1000. Figure 7 (a)
shows the bursty workload in which the number of active users
in a RUBiS application fluctuates over a period of 200 seconds.

Figures 7(b) and 7(c) illustrate that, compared to vPnP,
PERUME is able to provide better assurance of average power
consumption and throughput targets in the face of the bursty
workload. We choose a sampling interval of 20 seconds for
both approaches. A smaller sampling interval provides better
responsiveness to workload fluctuations, but increases the
sensitivity towards random noise. Note that the variations in
the average power consumption and throughput are mainly due
to burstiness in the workload and the control actions (CPU
allocations) taken at each sampling interval. The robustness
of PERFUME under bursty workloads is attributed to the fact
that its control actions are based on a more accurate model of
the system and a sound control theoretic foundation. Moreover,
PERFUME is more adaptive to variations in workload due to
its fast online learning algorithm. We observe that compared
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with vPnP, there is the improvement of 32% and 44% in terms
of relative deviation of power and throughput by PERFUME.

E. Percentile-Based Response Time Guarantee in PERFUME

We now demonstrate the capability of PERFUME in accu-
rately achieving the 95𝑡ℎ-percentile response time guarantee
in a multi-tier application. Note that PERFUME is able to
provide any percentile based delay guarantee.

Figure 8 shows that compared to vPnP [5], PERFUME
delivers significantly improved control accuracy and perfor-
mance assurance for highly non-linear percentile-based re-
sponse times. For this experiment, we set the 95𝑡ℎ-percentile
response time target of a RUBiS application as two seconds
and apply the highly dynamic workload shown in Figure 5(a).
We observe that compared with vPnP, there is the improvement
of 40% in terms of relative deviation by PERFUME. This
is mainly due to two reasons. First, PERFUME is able to
obtain the performance model with better accuracy, even in
case of highly non-linear percentile-based performance metric.
Second, its FUMI control provides more accurate control and
system stability due to its integration of fuzzy logic, MIMO
control and artificial neural network.
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Fig. 7. Power and Performance assurance under a bursty workload generated by 1000 users.

VIII. CONCLUSION

Modern data centers face significant and multi-facet chal-
lenges in performance and power management for meeting
service level agreements, resource utilization efficiency and
low power consumption. PERFUME provides holistic self-
adaptive performance and power control in a virtualized
server cluster. As demonstrated by experimental results based
on a testbed implementation, its main contributions are the
precise control of power consumption of virtualized blade
servers avoiding system failures caused by power capacity
overload or overheating, effective control of both throughput
and percentile-based response time of multi-tier applications,
and guarantee of power and performance targets with flexible
tradeoffs while assuring control accuracy and system stability.
Our future work will integrate power-aware consolidation
techniques [11], [24] with PERFUME and explore autonomous
performance and power control for building green data centers.
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