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Abstract

Angiogenic sprouting, the growth of new blood vessels from pre-existing vessels, is orchestrated by cues from within the 

cellular microenvironment, such as biochemical gradients and perfusion. However, many of these cues are missing in cur-

rent in vitro models of angiogenic sprouting. We here describe an in vitro platform that integrates both perfusion and the 

generation of stable biomolecular gradients and demonstrate its potential to study more physiologically relevant angiogenic 

sprouting and microvascular stabilization. The platform consists of an array of 40 individually addressable microfluidic 

units that enable the culture of perfused microvessels against a three-dimensional collagen-1 matrix. Upon the introduction 

of a gradient of pro-angiogenic factors, the endothelial cells differentiated into tip cells that invaded the matrix. Continuous 

exposure resulted in continuous migration and the formation of lumen by stalk cells. A combination of vascular endothe-

lial growth factor-165 (VEGF-165), phorbol 12-myristate 13-acetate (PMA), and sphingosine-1-phosphate (S1P) was the 

most optimal cocktail to trigger robust, directional angiogenesis with S1P being crucial for guidance and repetitive sprout 

formation. Prolonged exposure forces the angiogenic sprouts to anastomose through the collagen to the other channel. This 

resulted in remodeling of the angiogenic sprouts within the collagen: angiogenic sprouts that anastomosed with the other 

perfusion channel remained stable, while those who did not retracted and degraded. Furthermore, perfusion with 150 kDa 

FITC-Dextran revealed that while the angiogenic sprouts were initially leaky, once they fully crossed the collagen lane 

they became leak tight. This demonstrates that once anastomosis occurred, the sprouts matured and suggests that perfusion 

can act as an important survival and stabilization factor for the angiogenic microvessels. The robustness of this platform in 

combination with the possibility to include a more physiological relevant three-dimensional microenvironment makes our 

platform uniquely suited to study angiogenesis in vitro.
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Introduction

The loss of vascular integrity plays a rate-limiting role in 

the onset and progression of diseases such as arteriosclero-

sis and cancer and conditions such as chronic inflammation 

and ischemia [1, 2]. Therefore, detailed knowledge of the 

mechanisms of microvascular loss or the formation of novel 

vascular structures such as those generated by angiogenesis 

are of major importance.

Endothelial cells (ECs) respond to pro-angiogenic stimuli 

by differentiating into three characteristic phenotypes: tip, 

stalk, and phalanx cells [3–6]. Each of these phenotypes has 

a specific function in the development and maturation of the 

newly formed vasculature, and its differentiation from ECs 

is tightly coordinated and regulated in order to achieve func-

tional, luminized vascular networks. After formation of a 
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pre-mature vascular network, perfusion of the newly formed 

capillary initiates the final phase of angiogenesis: stabili-

zation of the vascular network through an increase in the 

adherence junctions, pruning of the non-functional sprouts, 

and pericyte attraction to the vascular network [7–11].

In vitro models are essential to study angiogenesis in a 

defined and well-controlled environment. Two-dimensional 

in vitro models allow the study of fundamental EC biol-

ogy in high-throughput, such as migration and proliferation 

[12]. However, since these models lack a more physiologic, 

three-dimensional environment, the endothelial cells fail to 

show many of the typical hallmarks of endothelial cells dur-

ing angiogenesis in vivo [13], such as lumen formation and 

differentiation into tip and stalk cells. 3D cell culture mod-

els with EC growing within a matrix such as fibrin display 

a higher level of physiological relevance, as ECs are able 

to degrade the extracellular matrix, form lumen and show 

anastomosis between adjacent sprouts [14, 15]. Nonethe-

less, as such 3D cell culture models have EC mixed with 

an extracellular matrix, the formed lumen is not accessible 

or perfusable. Furthermore, possibilities to apply a stable 

gradient of growth factors to direct the formation of capil-

laries are limited.

Microfluidic devices have micrometer-sized channels 

that enable spatial control over cells and matrices and allow 

the incorporation of important biological parameters such 

as flow [16] and spatial–temporal gradients [17]. Micro-

fluidics is an important emerging technique to facilitate 

3D-cell culture models aimed to more faithfully mimic 

tissue architecture [18]. For instance, a number of micro-

fluidic devices for microvascular modeling have been pre-

sented that allow lumen perfusion [19–30]. For an increas-

ing number of research laboratories that study angiogenesis 

such microfluidic platforms are becoming their method of 

choice (Table 1) [31]. However, most microfluidic assays are 

limited in terms of scalability, standardization, and usability 

[32]. Many microfluidic devices need to be manufactured 

manually before use, which strongly limits routine adoption 

[33]. Furthermore, many prototypes show limited through-

put per assay (n < 8) [18, 20, 34] and require tubings and 

pumps which increases complexity and limits scalability of 

these platforms.

Here, we report a standardized, high-throughput cell cul-

ture platform to study angiogenesis. The platform consists 

of an array of 40 microfluidic devices, integrated underneath 

a 384-well plate. This format is compatible with standard 

(high content) imaging equipment. It enables the culture of 

individually addressable, perfusable microvessels against a 

patterned, three-dimensional matrix or hydrogel. To elimi-

nate the need for pumps while increasing the robustness 

and scalability, passive leveling is used as a source of flow. 

Within this platform, reproducible gradients can be formed 

Table 1  Comparison of in vitro assays to study angiogenesis

Type Assay Strengths Weaknesses References

2D Scratch Easy to perform

Easy to quantify

Lacks soft substrate for the cells

Migration is in 2D

[12]

Tube formation Cells adhere to soft substrate

Self-organization into cords

Reasonable throughput

Tools are available for quantification

No distinct tip/stalk cell phenotype

Basement membrane extracts contain significant 

levels of growth factors and have a high batch-

to-batch variability

Limited tube survival (< 2 days)

High use of reagents compared to microfluidic 

assays

Lumens not accessible nor perfusable

[13]

3D Spheroid Cells grow in 3D in a soft supportive matrix

Endothelial cells differentiate into tip and stalk 

cells

Clear lumen formation

Fusion of sprouts is observed

Laser dissection allows capture of cells

Tools available to quantify the angiogenic sprouts

Lacks spatial control over gradients

Higher use of reagents compared to microfluidic 

assays

Spheroids are randomly distributed throughout 

gel/matrix

Lumens are not accessible nor perfusable

[14, 15, 40]

Microfluidic Biochemical gradients can be created and main-

tained

Lumen formation occurs early (more comparable  

to in vivo)

Angiogenic sprouts can be perfused

Spatial control over multiple cells (e.g., fibro-

blasts, pericytes)

Some devices require for pumps to supply flow 

and maintain gradients

Handling and scalability issues due incompatibil-

ity with other equipment

Some devices need to be manufactured by the 

end-user

Biocompatibility of the used materials

Lack of standardization

Limited possibilities to extract a subset of cells

[18–30, 32, 33]
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and maintained for multiple days. Since gradients and perfu-

sion are two important cues during the initial sprouting and 

the stabilization phase in angiogenesis [3, 35], the integra-

tion of these cues in our novel platform technology makes 

our model uniquely suited to perform physiologically rel-

evant studies on the formation and regression of the micro-

vasculature in vitro.

Methods

Cell culture

HUVEC-VeraVec™ human endothelial cells (Angiocrine 

Biosciences, hVera101) were cultured in T75 flasks (Nunc™ 

EasyFlask, Sigma F7552) with endothelial Cell Growth 

Medium MV2 (Promocell, C-22022) and used at P3 till P9. 

Media was replaced three times a week. Cells tested negative 

for mycoplasma. All cell culture was performed in a humidi-

fied incubator at 37 °C and 5%  CO2.

Microfluidic cell culture

3-Lane microfluidic titer plates (MIMETAS OrganoPlates 

4003-400B) were used for all microfluidic cell culture. 

Before gel seeding, every center well was filled with 50 µL 

hanks balanced salt solution (HBSS) to provide optical clar-

ity and prevention of gel dehydration. Collagen type I (R&D 

systems, 3447-020-01) was used as 3D scaffold. A stock 

solution of 5 mg/mL rat tail collagen type I was neutralized 

with 10% 37 g/L  NaHCO3 (Sigma, S5761) and 10% 1 M 

HEPES buffer (Gibco, 15630-056) to obtain a concentra-

tion of 4 mg/mL. The neutralized collagen was kept on ice 

until use and used within 30 min. Using a repeater pipette, 

2 µL of the neutralized collagen was added into the inlet of 

each gel channel. To polymerize the collagen, the device was 

incubated for 10 min at 37 °C, 5%  CO2. After incubation, the 

device was removed from the incubator and kept sterile at 

room temperature right before cell loading. Endothelial cells 

were dissociated, pelleted, and suspended in MV2 medium 

in a concentration of 2 × 107 cells/mL. 2 µL of the cell sus-

pension was dispensed into the perfusion inlet and incubated 

for 45 min at 37 °C, 5%  CO2. After the cells attached to 

the bottom of the perfusion channel, 50 µL of medium was 

added in the perfusion inlet and outlet wells and the plates 

were placed on an interval rocker platform for continuous 

perfusion. (Perfusion rocker, MIMETAS). The rocker was 

set at a 7-degree inclination and 8-min cycle time. Medium 

was refreshed three times a week.

Stimulation with angiogenic factors

Microvessels were first cultured for 3 days before any gra-

dients of growth factors were applied. Growth factors were 

replaced every 2–3 days. Stock solutions were prepared as 

following: 50 µg/mL murine VEGF in MilliQ water (Pre-

protech, 450-32), 20 ng/mL bFGF in MilliQ water (Pepro-

tech, 100-18B), 1 mM Sphingosine-1-Phosphate (Sigma, 

S9666) in 5% 1 M HCl, 95% DMSO, and 2 µg/mL PMA 

(Sigma, P1585) in 1% DMSO. Angiogenic factors were 

diluted in MV2 culture medium and used in the following 

concentrations: 50 ng/mL for VEGF, 50 ng/mL for bFGF, 

2 ng/mL for PMA, and 500 nM for S1P.

Sprout permeability visualization

A n g i o ge n i c  s p r o u t s  we r e  s t i m u l a t e d  w i t h 

VEGF + bFGF + PMA + S1P for 9 days. At day 4 and day 

9 after stimulation, 50 µL of a 150 kDa TRITC-Dextran 

(Sigma 48946) solution (0.5  mg/mL in MV2 culture 

media) was added to the perfusion inlet well and time-

lapse images were acquired at 1 min intervals using the 

× 10 objective.

Immunocytofluorescent staining

During all steps of the immunofluorescent staining, the 

device is placed under an angle to create flow, except dur-

ing staining with primary antibody. All solutions were 

used in quantities of 50 µL per every inlet and outlet well, 

unless specified otherwise. Cells were fixed using freshly 

prepared 3.7% formaldehyde (Sigma 252549) in PBS. 

50 µL of the fixative was added to both the perfusion inlet 

and outlet for 15 min at room temperature (RT), followed 

by a wash step with 4% FBS in PBS for 5 min. After fixa-

tion, the cells were permeabilized using 0.3% Triton-X 

(Sigma T8787) in PBS. After washing, the microvessels 

were blocked for 45 min using blocking solution (2% FBS, 

0.1% Tween20 (Sigma P9169), 2% BSA (Sigma A2153) 

in PBS). The adherence junctions were visualized using 

a VE-Cadherin stain (Abcam, 33168, diluted 1:1000 in 

blocking solution, 30 µL pipetted in the perfusion inlet, 

20 µL in the perfusion outlet), which was incubated for 

1 h at RT followed by 30-min incubation with Alexa Fluor 

488 (ThermoFisher Scientific, A11008, 1:250 in block-

ing solution). To perfuse the chips with primary antibody, 

the device was placed on a rocker platform. After incuba-

tion with the secondary antibody, the device is washed 

once with washing solution, followed by nuclei staining 

(NucBlue Fixed cell staining, Life technologies, R37606), 

and the cytoskeletal marker F-actin, stained by ActinRed™ 
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555 ReadyProbes® (ThermoFisher Scientific, R37112) in 

PBS and imaged using a high content confocal microscope 

(Molecular Devices, ImageXpress™ Micro Confocal) at 

10x magnification.

Sprouting quantification

The average sprouting length was quantified using FIJI v. 

1.52 by manual determination of the distance between the 

microvessel and the tip cell sprouting furthest into the gel. 

The sprouting length of PMA was obtained after 3 days, 

all other combinations after 4  days. VEGF + PMA and 

VEGF + S1P microvessels after 6 days of stimulation were 

used to quantify the median sprout number, average diam-

eter in the minor direction, and circularity. Images were 

obtained from two replicates for every condition. Using 

a 10x objective, we acquired 180 z-steps with 1 µm spac-

ing and obtained two adjacent sites. The orthogonal views 

were extracted and analyzed in the middle of the gel region. 

Thresholding of the vessels was automated using Weka Seg-

mentation tool [36] (v 3.2.27). Particle analysis was per-

formed to include particles between 10 and 10,000 µm2 with 

a circularity between 0.10 and 1.00.

Results

Robust gradient formation in a 3D 
microenvironment

The microfluidic culture platform is based on a 384-well 

microtiter plate format. The glass bottom contains 40 micro-

fluidic units (Fig. 1a), and each microfluidic unit is posi-

tioned underneath nine wells (3 × 3). Every unit consists of 

three channels: the center channel that is used to pattern 

an extracellular matrix (‘gel channel’) and two adjacent 

channels (‘perfusion channels’) (Fig. 1b). The channels are 

separated by PhaseGuides: small ridges that function as cap-

illary pressure barriers, which enable patterning of cells and 

gel without the use of artificial membranes [37]. Every chan-

nel has one inlet and one outlet, which connect the channels 

with the wells in the microtiter plate. Compartmentalization 

is achieved by patterning a hydrogel in the middle channel 

(Fig. 1c, step 1), and enables the formation of gradients by 

adding a source and sink in the opposite perfusion channels 

(Fig. 1c, step 2). Without continuous replenishment of the 

gradients source and sink in the microfluidic channels, gra-

dients typically last only a few minutes (data not shown). To 

stabilize the gradient over time, the device was placed on a 

rocker platform to perfuse both perfusion channels continu-

ously and simultaneously (Fig. 1c, step 3). As the volume 

inside the wells is typically orders of a magnitude higher 

Fig. 1  Gradient generation in a 3D microenvironment. a Bottom of 

the OrganoPlate®, a microfluidic culture platform based on a 384-

well plate. The glass bottom includes 40 microfluidic devices. b The 

geometry of a single microfluidic device that is positioned underneath 

nine wells (3 × 3). Every device consists of three channels: one ‘gel’ 

channel for gel patterning, and two adjacent channels. Phaseguides 

prevent the patterned gel from flowing into the adjacent channels. c 

Three-step method to generate gradients in patterned hydrogels. Step 

1: 2 µL of collagen-1 gel is added in the center channel and polymer-

ized. Step 2: source and sink are added in opposite perfusion chan-

nels. Step 3: the device is placed on a rocker platform to perfuse both 

perfusion channels continuously to generate a gradient. d Gradient 

visualization after 1, 3, and 6  days after addition of 20  kDa FITC-

Dextran as a gradient source
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than in the microfluidic channels (the wells typically contain 

volumes of 50 µL, compared to < 1 µL in the microfluidic 

channels), the source and sink within the microfluidic chan-

nels are constant over prolonged periods of time. Thus, a sta-

ble gradient could be maintained for multiple days (Fig. 1d) 

without the need to replenish. Although a gradient is still 

present after 6 days, the steepness is affected due to satura-

tion of the sink. Therefore, growth factors and medium were 

replaced at 2–3-day time intervals.

Importantly, the high hydraulic resistance of the hydrogel 

limits the influence of differences in hydrostatic pressures. 

This results in a reproducible and robust platform to gener-

ate gradients, despite the presence of small difference in 

volumes, for example, due to pipetting errors. Nonetheless, 

hydrostatic pressures still can influence the shape of the 

gradient, when the difference between the volumes is suf-

ficiently large. This allows different types of gradient to be 

generated (e.g., linear or parabolic, Supplementary Fig. 1).

Microvessels cultured against patterned collagen-1 
gel

After gel loading and polymerization (Fig. 2a, step 1), 

endothelial cell suspensions were added to the perfusion 

channels adjacent to the gel. After the cells adhered to the 

glass substrate (step 2) of the channel, perfusion was applied 

by placing the device on a rocker platform (step 3). Conflu-

ent microvessels were formed after 3 days of culture, and the 

apical side of the vessel (the lumen) can be accessed through 

the perfusion channel, while the gel forms the basal side of 

the tube [38].

Combination of angiogenic factors is required 
to induce sprouting

After reaching confluency in 3  days, the microvessels 

showed a stable morphology of a single monolayer against 

the gel (Fig. 2b, step 1), despite the numerous (angiogenic) 

growth factors that are present in the media (such as vas-

cular endothelial growth factor (VEGF) and basic fibro-

blast growth factor (bFGF)). We included VEGF and S1P 

as they have been shown to induce angiogenic sprouting 

within a collagen-1 matrix [39–41] and included phorbol 

12-myristate 13-acetate (PMA) as it has been found to pro-

mote lumen formation in the absence of fibroblasts [15, 42], 

and used in concentrations of 50 ng/mL for VEGF, 500 nM 

for S1P, and 2 ng/mL for PMA. The angiogenic growth fac-

tor cocktail was added on the basal side of the vessels, and 

formed a gradient within the collagen-1 gel (Fig. 2b, step 

1). This induced the formation of tip and stalk cells after 

respectively 1 and 2 days (Fig. 2b, step 2–3).

Interestingly, adding either VEGF, S1P, or PMA alone 

on the basal side did not result in angiogenic sprouting 

(Supplementary Fig. 2). We quantified the angiogenesis 

after addition of various combinations of VEGF, PMA and 

S1P (Fig. 3a, b). VEGF + PMA + S1P together resulted in 

angiogenesis including tip/stalk cell formation, the presence 

of filopodia and lumen formation and directional growth 

towards the gradient. The sprouts fully traversed the gel after 

Fig. 2  Microvessel culture against a   patterned collagen-1 gel. a 

Method the culture a microvessel within a microfluidic device. First, 

collagen-1 gel is patterned in the middle channel. After polymeriza-

tion, an endothelial cell suspension was added in the adjacent perfu-

sion channel. By placing the device on a rocker platform, the chan-

nels are continuously perfused. After 72  h, a confluent microvessel 

was formed. b Angiogenesis assay using a gradient of angiogenic fac-

tors. Angiogenic factors are added once a stable monolayer of ECs is 

formed against the gel (step 1). Addition of a gradient of angiogenic 

growth factors resulted in tip cells formation including filopodia at 

day 1 (step 2). Lumens formed by the stalk cells are visible at day 2 

(step 3)
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about 6 days and started to form a continuous monolayer 

against in the channel on the other side of the gel and in the 

basal perfusion channel  (Fig. 3c). The angiogenic sprouts 

have a clear lumen formation (Fig. 3d, panel i), appear cir-

cular in a cross-sectional view (Fig. 3d, panel ii), and have 

clear VE-cadherin expression (Fig. 3d, panel iii).

To identify the contribution of PMA and S1P to angio-

genic sprouting, we directly compared VEGF + PMA with 

VEGF + S1P. The combination of VEGF + PMA triggered 

the formation of angiogenic sprouts into the gel, but the tip 

cells fail to develop their characteristic tip cell morphology 

including filopodia and the sprouts lack directionality after 

6 days of sprouting (Fig. 3e and Supplementary Fig. 3a, b). 

Furthermore, the sprouts appear to be non-homogenously 

distributed within the collagen gel. In contrast, VEGF + S1P 

shows sprouts that are also connected the sprouts to the main 

vessel, but sprouts are equally distributed within the gel with 

a clear directionality towards the gradient (Fig. 3f). Although 

there were not significantly more sprouts after VEGF + S1P 

stimulation (Fig. 3g), the diameter of the sprouts was sig-

nificantly lower (Fig. 3h). We quantified the circularity of 

the sprouts to estimate the directionality: a perpendicular 

sprout appears circular in a cross-sectional view with a value 

closer to 1, while a deviating sprout appears flattened (closer 

to 0). This shows that VEGF + S1P sprouts have a signifi-

cantly higher circularity and thus improved directionality 

towards the gradient compared to VEGF + PMA (Fig. 3i). 

Taken together, these results clearly demonstrate that in a 

gradient-driven, 3D cell culture environment, a combination 

of different cues is required to trigger angiogenesis, and S1P 

is a crucial factor in the distribution and guidance during 

angiogenic sprouting.

Anastomosis triggers remodeling and stabilization

Prolonged exposure to growth factors caused the angiogenic 

sprouts to anastomose, and connection is formed between the 

two perfusion channels. After anastomosis, we observed a 

significant reduction of sprouts (Fig. 4a, b). Some angiogenic 

sprouts display the characteristic steps involved in pruning: 

first, the lumen collapses, followed by regression of the angio-

genic sprouts towards the parental vessel (Fig. 4a, b, arrows), 

while other angiogenic sprouts remained and increased their 

lumen diameter (Fig. 4a, b arrowheads).

The formation of perfusable lumen within the sprouts is 

visualized by perfusion of the main vessel with 0.5 mg/mL 

150 kDa TRITC-Dextran (Fig. 4c, d). A surplus of 50 µL is 

added to the inlet well, which fills the parental vessels and 

flows into the angiogenic sprouts. When angiogenic sprouts 

did not connect to the basal perfusion channel (Fig. 4c), spots 

were visible within the collagen where dextran leaks out of the 

tip of the sprouts (panel ii, left, 0 min). These spots increased 

Fig. 3  Angiogenic sprouts after addition of angiogenic factors. a 

Images of sprouting after 4 days of stimulation of a gradient of dif-

ferent combinations of angiogenic factors. b Quantification of maxi-

mum absolute sprouting length in µm after stimulation for 3 (PMA) 

or 4  days (all other combinations) (n = 6). c Angiogenic sprouts 

after 6 days of stimulation with VEGF + PMA + S1P, stained against 

F-actin (red) and nucleus (blue). d Close-up of middle (i), top (ii), 

and cross-section (iii) of VEGF + PMA + S1P stimulated sprouting. 

Stained against F-actin (red) and nucleus (blue) and VE-cadherin 

(green). e Same as c, but stimulation with VEGF + PMA. f Same 

as c, but stimulation with VEGF + S1P. g–i Comparison between 

VEGF + PMA and VEGF + S1P in number of sprouts, diameter, 

and circularity (n = 2). Significance was calculated using one-way 

anova (b) or Student’s t test (g–i) and shown as n.s (non-significant), 

*(P < 0.05), **(P < 0.01), or ***(P < 0.001). Scale bars: 100  µm. 

Graphs are presented as mean ± SD
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over time (right, 9 min). However, after anastomosis (Fig. 4d), 

sprouts retained the dextran in their lumen, and shows subse-

quent filling of the bottom basal perfusion channel. This shows 

that sprouts stabilize and form a functional barrier after a con-

nection has been formed.

Discussion

We report a robust, standardized microfluidic cell cul-

ture platform to study gradient-driven angiogenesis of 

a perfused microvessel in high-throughput. Each device 

contains 40 individually addressable microfluidic units 

and enables the culture of 40 identical microvessels. An 

important advantage of this assay is the defined geometry 

of the microfluidic channels, as this results in reproducible 

experimental cell culture conditions (position and density 

of the cells, amount of flow, position of the extracellular 

matrix and the shape of the gradient) and increases the 

robustness and scalability of our assay.

Perfusion in our device is induced by passive leveling 

using a rocker platform, and has two crucial advantages. 

First, the flow is simultaneously applied throughout all 

microfluidic units, which results in reproducible gradient 

formation. Second, as tubing and pumps are not required 

the throughput is greatly increased: the assay is scalable 

since multiple experiments can be performed by stacking 

of culture platforms on top of each other. Nonetheless, 

using a rocker platform to induce flow is also a trade-

off that has its downsides: first, the requirement of a 

rocker platform limits us to perform time-lapse imaging 

only at discrete time points, as the vessels and gradient 

require continuous perfusion. Second, vasculature in vivo 

is exposed to continuous, unidirectional flow that is an 

important mechano-biological signal in during angiogen-

esis [43], while flow in this assay occurs at discrete time 

points and is bi-directional. Thus, despite the evidence that 

flow affects the remodeling and maturation of the capil-

laries in our model, the exact contribution of flow in this 

assay is difficult to determine.

We showed that gradient-driven angiogenic sprouting 

through an extracellular matrix requires not just the pres-

ence of VEGF, but a combination of multiple angiogenic 

factors [44]. The combination of VEGF + PMA + S1P was 

the most optimal cocktail to trigger quick, robust, directional 

angiogenesis with angiogenic sprouts with clear lumen for-

mation. VEGF + PMA showed a random distribution of the 

sprouts and an absence of filopodia on the tips cells, and 

the sprouts lacked directionality. In contrast, a VEGF + S1P 

gradient showed formation of angiogenic sprouts, includ-

ing tip cells with filopodia. Filopodia allow the tip cells to 

sense a biochemical gradient [4], and explains the observed 

directionality of the angiogenic sprouts. This suggests that 

S1P plays an important role in the differentiation into func-

tional tip cells and the observed repetitive formation of angi-

ogenic sprouts. Such a repetitive formation of angiogenic 

sprouts can be explained by a reaction–diffusion mecha-

nism between VEGF and Flt-1, the soluble form of VEGF 

receptor. Stalk cells are known to secrete Flt-1, which binds 

VEGF and prevents neighboring cells to become tip cells 

[45]. This is required for efficient angiogenic sprouting into 

the matrix [3], with evenly distributed sprouts roughly every 

100 µm, as predicted in silico [8, 9]. It has been shown that 

S1P has a pro-angiogenic effect in vitro [39, 40, 46–48] and 

in vivo [39, 49, 50]. Our data suggest a pro-angiogenic syn-

ergy between S1P and VEGF, which is in agreement with 

the fact that inhibition of S1P also prevents VEGF-induced 

angiogenesis in vivo [51]. Interestingly, S1P is also known 

Fig. 4  Anastomosis with basal channel triggers pruning and matura-

tion of angiogenic sprouts. a Angiogenic sprouts 5  days after addi-

tion of VEGF + PMA + S1P. Compared to the angiogenic sprouts at 

day 8. b Some sprouts regressed (arrows) while other sprouts remain 

and showed increased lumen diameter (arrowheads). c Angiogenic 

sprouts after 4 days of stimulation invaded into the gel but are not yet 

connected to the bottom perfusion channel. Fluorescent images were 

obtained every minute and directly after addition of a 0.5  mg/mL 

150 kDa TRITC-Dextran solution in culture media. Panel ii shows the 

pseudo-colored fluorescent images after 0 and 9 min after addition of 

the dextran solutions. Time is indicated in min. d Same as in c, but 

after 9  days of stimulation. Sprouts are connected to the other side 

and formed a confluent microvessel in the basal perfusion channel. 

Scale bars: 100 µm
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for its barrier stabilizing, anti-angiogenic properties, and 

vascular maturation [52, 53]. Therefore, we hypothesize 

that the effect of S1P is dependent on whether it is present 

on the apical side of ECs (lumen) or basal side, either medi-

ated by differences in apical and basal expression of S1P 

receptors [54] or by dimerization with other receptors, like 

basally expressed VEGFR2 [46]. A better understanding of 

the precise mechanisms of S1P signaling in angiogenesis 

will provide therapeutic strategies that specifically target the 

pro-angiogenic effects of S1P [49].

Prolonged exposure (> 6 days) to a gradient of angio-

genic stimuli resulted in sprouts that connect the two perfu-

sion channels (anastomosis). This connection resolves the 

gradient, as there is a direct connection between the source 

and sink, and also results in the onset of flow through the 

sprouts. There remains controversy about the exact mecha-

nism that leads to pruning. In vivo, this is either shear-medi-

ated or due to changing receptor expression after a resolved 

(oxygen) gradient [10, 55]. Once anastomosis occurred, we 

observed remodeling of the capillary bed, including pruning 

and regression of angiogenic sprouts within the collagen. 

Furthermore, some sprouts increased in lumen diameter, 

likely caused by the onset of perfusion [56]. By controlling 

shear levels and oxygen tension in this assay, we will be able 

to determine which of those effects is the crucial mechanism 

in pruning.

Perfusion of the sprouts with fluorescently labeled dex-

tran showed that angiogenic sprouts that did anastomose are 

permeable near the tip/stalk cell region. In contrast, anasto-

mosed sprouts retained the 150 kDa dextran solution within 

their lumen, suggesting that the connection between the two 

channels triggers maturation of the ECs in the sprouts, as 

they adopt their characteristic phalanx phenotype including 

mature cell–cell junctions [55, 57]. Furthermore, once the 

angiogenic sprouts connected, the medium can be switched 

back to the original culture medium with low levels or 

growth factors, while the integrity of the sprouts remained 

(Supplementary movies 2, 3), which suggests that perfusion 

is an important survival factor for angiogenic sprouts in the 

absence of a high concentration of angiogenic factors like 

VEGF.

We expect that our platform will be widely adopted for a 

range of applications, including both fundamental studies of 

the mechanisms of angiogenesis as well as for the identifica-

tion of factors involved in microvascular destabilization or 

regression such as observed in for example diabetic retin-

opathy, nephropathy, macular degeneration, heart failure, 

and tumor angiogenesis. The platform can be used to assess 

disease parameters on a high-throughput scale and can be 

expanded to comprise other cell types such as stromal cells 

of the tissue or organ of interest.

Conclusion

We demonstrate a gradient-driven, three-dimensional angio-

genesis assay in a standardized microfluidic platform. Angi-

ogenic sprouting is induced from a perfused microvessel 

through a patterned collagen-1 gel. The combination of angi-

ogenic factors was optimized to trigger angiogenic sprout-

ing that faithfully reproduces all the angiogenic events that 

occur in vivo, such as the differentiation of the endothelial 

cells into tip, stalk, and phalanx cells and the formation of 

perfusable lumen. It was found that a combination of VEGF, 

S1P, and PMA provided the optimal cocktail for 3D angio-

genic sprouting. After the angiogenic sprouts anastomosed 

through the collagen to the other channel, remodeling and 

stabilization of the capillary bed was observed.
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