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Abstract

The concept emerging from Professor David Barker’s seminal research on the 

developmental origins of later-life disease has progressed in many directions since it was 

first published. One critical question being when during gestation might environment 

alter the developmental programme with such enduring consequences. Here, we 
review the growing consensus from clinical and animal research that the period around 

conception, embracing gamete maturation and early embryogenesis might be the 

most vulnerable period. We focus on four types of environmental exposure shown to 
modify periconceptional reproduction and offspring development and health: maternal 
overnutrition and obesity; maternal undernutrition; paternal diet and health; and 

assisted reproductive technology. These conditions may act through diverse epigenetic, 
cellular and physiological mechanisms to alter gene expression and cellular signalling 
and function in the conceptus affecting offspring growth and metabolism leading to 
increased risk for cardiometabolic and neurological disease in later life.

Introduction

The concept of the early origins of disease associated with 

in utero environmental factors has been advanced in both 

clinical and biological directions since the pioneering 

and groundbreaking epidemiological discoveries by 

Professor David Barker and his colleagues. Developmental 

programming of disease has been tested experimentally 

across global populations providing confirmation of its 

veracity. In addition, numerous animal models have been 

generated for insight on mechanisms across physiological, 

cellular, molecular and epigenetic levels. Much progress 

on the understanding of the hypothesis, now known as 

the developmental origins of health and adult disease 

(DOHaD) concept, has been achieved as evidenced by the 

varied reviews in this special issue of Journal of Endocrinology 

dedicated to Professor Barker’s seminal work. One critical 

issue and the subject of our review is the question of when 

environment may interact with reproduction to initiate 

a change in the developmental programme leading to 

DOHaD-related responses and later disease risk.

A growing consensus has emerged that the period 

around conception is critical in DOHaD. This consensus 

has come from both animal and human studies, ranging 

across different environmental exposures from the 

quality of maternal and paternal nutrition to assisted 

reproductive technology (ART) (Fig.  1). The stages of 

gamete maturation, fertilisation and early embryo 
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development are collectively known as the periconceptional 

period. These are characterised by the parental genomes 

being superseded by the new embryonic genome and 

the establishment and differentiation of early cell 

lineages from a pluripotent cellular stock required for the 

development of new organism (Li et al. 2013, Graham & 

Zernicka-Goetz 2016). Such processes involve significant 

epigenetic, cellular and metabolic activity (Gardner & 

Harvey 2015, Lim et  al. 2016, White et  al. 2016) and, 

from fertilisation, occur within the confines of the 

maternal oviduct and uterine lumens, long recognised to 

facilitate the stepwise progression in gamete and embryo 

maturation culminating in implantation (Coy et al. 2012, 

Ghersevich et al. 2015, Matsumoto 2017).

It has become apparent that these periconceptional 

stages in reproduction are vulnerable to environmental 

factors that may cause changes, either through 

perturbation or via adaptive compensatory responses, 

which may persist beyond the periconceptional period 

affecting phenotype across the lifespan. We have recently 

reviewed the vulnerability of periconception in the 

context of adverse developmental programming with 

a focus on the consequences of maternal and paternal  

over- and undernutrition and of ART in human and animal 

models (Fleming et al. 2018). Maternal or paternal lifestyle 

factors such as nutritional quality will influence parental 

physiology in many ways and there is evidence that 

diet can modify oviduct and uterine transport activities 

and thereby alter the nutrient composition of luminal 

compartments and the direct environment experienced 

by early embryos (Eckert et al. 2012, Jordaens et al. 2017). 

A similar disturbance to the seminal tubule and sperm 

microenvironment by the paternal diet has also been 

reported (Fan et al. 2015). Given the clinical implications 

raised for next-generation health from a time when many 

women may not know they are pregnant, these discoveries 

of environmental susceptibility of periconceptional 

stages have contributed to the call for considering the 

preconception health of both partners before pregnancy 

(Barker et al. 2018, Stephenson et al. 2018).

Here, we summarise the key processes, mechanisms and 

DOHaD-induced outcomes during the periconceptional 

window with respect to maternal and paternal nutrition 

and ART. We focus in particular on new understanding of 

themes previously presented in our earlier review (Fleming 

et al. 2018), reflecting the dynamic nature of this subject.

Figure 1
Summary diagram of the periconceptional period covering gamete maturation and early embryogenesis with key developmental stages and events 

identified, shown both in vivo and during ART, and with long-term risks for offspring health from adverse exposures listed.
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Maternal overnutrition and obesity

High maternal body mass index (BMI) and obesity has long 

been associated with reduced fertility and the occurrence 

of obesity in children, mediated by raised maternal 

metabolites such as glucose and insulin promoting 

increased placental transport of macronutrients and 

subsequent increase in foetal growth in late gestation 

(Nicholas et  al. 2016, Godfrey et  al. 2017, Musial et  al. 

2017, Nam et al. 2017). The risk of metabolic syndrome 

in offspring from obese mothers has been substantiated 

mechanistically in animal models (Samuelsson et al. 2008, 

Nicholas et al. 2016).

The periconceptional period is critical in the 

transmission of disease risk from maternal obesity 

to offspring. Women with high BMI transfer excess 

metabolites and hormones such as insulin, triglycerides, 

leptin and lactate from the circulation into ovarian tissue 

and especially the follicular fluid of maturing follicles 

(Robker et  al. 2009). These metabolites subsequently 

accumulate within oocytes, affecting their metabolic 

function and leading to diminished embryo developmental 

potential after fertilisation (Yang et al. 2012). Interestingly, 

increased lipid accumulation within human follicular 

fluid coincides with increased inflammatory mediators 

that may contribute to the reduced potential of embryos 

from obese mothers (Gonzalez et  al. 2018). Notably, 

the size of human oocytes is reduced by high maternal 

BMI and this led to poorer quality embryos with excess 

triglycerides and diminished glucose consumption (Leary 

et al. 2015).

Animal models have been used to identify the 

metabolic defects in oocytes and early embryos caused by 

maternal overnutrition. Mitochondria become severely 

affected in their structure and organisation of cristae, 

in their cellular distribution and rate of biogenesis 

and critically in their capacity for generating energy 

in response to maternal overnutrition (Igosheva et  al. 

2010, Luzzo et al. 2012). These defective mitochondria 

are more likely to be preserved in embryos since obesity 

further reduced mitophagy (Boudoures et  al. 2017). 

Moreover, accumulating lipids in oocytes induces 

endoplasmic reticulum and oxidative stress, impairing 

developmental potential and increasing aneuploidy 

(Igosheva et al. 2010, Luzzo et al. 2012, Hou et al. 2016). 

Maternal diabetes may similarly modulate embryo 

metabolism, recently investigated in a rabbit model 

of developmental programming. Here, significant 

remodelling of several metabolic pathways occurred with 

a critical role identified for adiponectin in generating 

lipid accumulation leading to oxidative metabolic stress 

(Fischer et al. 2017). Further evidence of periconceptional 

metabolic induction of programming from maternal 

overnutrition has come from supplementing the diet of 

obese mice with coenzyme Q10 injection which restored 

mitochondrial functioning (Boots et  al. 2016). Animal  

in vitro studies have also confirmed that increased levels 

of fatty acids impair follicular maturation and oocyte 

potential leading to blastocysts with altered transcription 

and epigenome profiles (Van Hoeck et al. 2013, Desmet 

et  al. 2016). Such studies also demonstrate fatty acid 

modulation of oviductal barrier function to influence 

embryo exposure to nutrient levels (Jordaens et  al. 

2017). Epigenetic effects have also been demonstrated 

in the oocytes from obese mouse dams with altered 

levels of DNA and histone methylation regulators (Hou 

et  al. 2016). Epigenetic change associated with genes 

regulating metabolic health in offspring has also been 

shown in an ovine model of maternal overnutrition 

(Nicholas et al. 2013).

Recent mouse studies have identified a role for 

PGC7/Stella protein in mediating maternal obesity 

effects on adverse programming of embryos (Han 

et  al. 2018). Stella is known to regulate the asymmetry 

in global DNA demethylation between paternal and 

maternal genomes and protect imprinted genes from 

demethylation (Nakamura et  al. 2007) and becomes 

depleted in oocytes from obese mothers coinciding with 

global hypomethylation of the embryonic genome (Han 

et al. 2018). Notably, restoring Stella expression reverses 

both the epigenetic status of embryos from obese dams 

and their developmental defects (Han et  al. 2018). A 

further study has identified reduced expression of TIGAR 

(TP53-induced glycolysis and apoptosis regulator) in 

oocytes from obese mothers which may contribute to the 

increased oxidative stress and meiotic spindle defects in 

such oocytes (Wang et al. 2018).

These metabolic perturbations induced in oocytes and 

embryos by maternal overnutrition persist during later 

development. Mouse foetuses from obese mothers exhibit 

an altered growth trajectory and give rise to offspring 

with increased adiposity and metabolic dysfunction 

such as glucose intolerance (Jungheim et al. 2010). Such 

physiological responses also coincide with underlying 

transcriptional and epigenetic changes both in the foetus 

and placenta (Mahany et al. 2018). Moreover, metabolic 

dysfunction in offspring from maternal obesity has 

been shown to persist over three mouse generations,  
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likely reflecting the inheritance of defective maternally 

derived mitochondria (Saben et al. 2016).

The importance of the periconceptional origin of 

adverse programming from maternal obesity has been 

demonstrated using embryo transfer to healthy recipients 

in mouse and sheep models with the persistence of 

foetal and postnatal metabolic dysfunction despite a 

normal uterine environment (Luzzo et al. 2012, Nicholas 

et al. 2013). A similar periconceptional origin of adverse 

programming in response to maternal diabetes has been 

shown by mouse transfer of zygotes to healthy recipients 

(Wyman et al. 2008). Lastly, consistent with the above, in 

assisted conception practice, there is some evidence that 

the maternal BMI of oocyte donors negatively influences 

reproductive outcomes despite not carrying the pregnancy 

(Cardozo et al. 2016).

Maternal undernutrition

The original datasets revealing adverse adult health 

outcomes derived from in utero experience by David 

Barker and colleagues implicated maternal undernutrition 

during pregnancy followed by accelerated catch-up 

growth postnatally as causative (Barker & Thornburg 

2013). Supporting human evidence linking maternal 

undernutrition and subsequent adult health risks linked 

to cardiometabolic and neurological dysfunction have 

come from well-researched historical famines, particularly 

the Dutch Hunger Winter of 1944–45 and the Chinese 

Great Famine over 1959–61 (Roseboom et  al. 2011, van 

den Broek & Fleischmann 2017, Liu et  al. 2018). While 

such human epidemiological studies are complex and 

wide ranging, it has been possible to identify early 

gestation and the periconceptional period as a vulnerable 

window for adverse programming. Thus, those individuals 

conceived during the 5-month Dutch famine exhibit 

poorer cardiometabolic and neurological outcomes 

in adulthood, including accelerated ageing where the 

famine experience occurred later in their gestation 

(Roseboom et  al. 2011, Tobi et  al. 2014, Franke et  al. 

2018). A similar increased risk of first trimester exposure 

has also been shown in the Chinese famine (Wang et al. 

2012, Zimmet et al. 2018). In addition, the Dutch famine 

research has shown that periconceptional exposure leads 

to epigenetic dysregulation of genes involved in growth 

and metabolism such as conserved hypomethylation of 

the imprinted IGF2 gene into adulthood (Tobi et al. 2014).

A further critical human dataset linking maternal 

periconceptional undernutrition with later adult disease 

has come from studies on populations in The Gambia. 

Here, nutritional quality is seasonal and associated 

with later-life mortality and health risk. The quality of 

maternal nutrition at conception has been shown to alter 

the pre-gastrulation epigenome at metastable epialleles, 

domains characterised by inter-individual variation 

in DNA methylation, in a manner that persists into 

childhood and adolescence (Waterland et al. 2010). Such 

alterations in epigenetic signatures further associate with 

genomic regions predictive of immune status, obesity 

risk and tumourigenesis (Silver et al. 2015, Kuhnen et al. 

2016). Indeed, metastable epialleles are present in human 

early embryos and may provide a suitable epigenetic basis 

for environment to induce persistent phenotypic change 

during developmental programming (Kessler et al. 2018).

Animal DOHaD studies involving rodents, sheep and 

cattle have further demonstrated the close association 

between maternal undernutrition and later-life risk 

of poor health and again underscore the criticality of 

the periconceptional period (Sinclair & Watkins 2013, 

Hansen et al. 2016, Fleming et al. 2018). From our own 

work, a maternal low protein diet, effectively 50% of 

normal protein recommendation, targeted exclusively 

to the mouse and rat preimplantation period of embryo 

development (Emb-LPD) has been shown sufficient 

to cause adult offspring cardiovascular, metabolic and 

behavioural dysfunction, especially in female progeny 

(Kwong et  al. 2000, Watkins et  al. 2008, Gould et  al. 

2018). The stepwise mechanistic pathway responsible 

for Emb-LPD adverse programming has been closely 

examined. The diet results in reduced concentrations 

of circulating insulin and amino acids (especially the 

branched-chain amino acids (BCAAs), leucine, isoleucine 

and valine) within dams that, through analysis of uterine 

luminal fluids, also changed the metabolite milieu of the 

immediate environment of embryos (Eckert et al. 2012). 

Insulin and BCAAs are potent activators of the mTOR 

signalling pathway regulating cellular growth (Wang & 

Proud 2009) and, as a consequence of dietary-induced 

reduction in these metabolites, blastocyst mTOR activity 

is reduced by Emb-LPD (Eckert et  al. 2012). This early 

maternal-embryo interaction is critical since it activates 

later adverse programming as shown both by an in 

vitro culture model in medium reduced in insulin and 

BCAAs (Velazquez et al. 2018) and by embryo transfer of  

Emb-LPD blastocysts into control, normal-fed, recipients 

(Watkins et al. 2008).

The subsequent development of the Emb-LPD 

blastocyst after maternal dietary induction is altered 

in distinct ways for extra-embryonic (trophectoderm,  
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TE; primitive endoderm, PrE) and embryonic (epiblast) 

cell lineages. These phenotypic modulations impact 

on the growth trajectory of the foetus which in turn 

positively correlates with later adult disease risk (Watkins 

et  al. 2008). Both TE and PrE cell lineages, in response 

to maternal Emb-LPD, undergo cellular changes that 

collectively are compensatory, likely to augment nutrient 

delivery to the developing embryo and foetus. These 

include increased proliferation of the lineages and their 

capacity for endocytosis of extracellular fluids, thought 

to increase nutrient supply (Eckert et al. 2012, Sun et al. 

2014). The TE also adopts a more invasive migratory 

phenotype likely to enhance endometrial implantation 

(Eckert et al. 2012, Watkins et al. 2015). Extra-embryonic 

adaptations induced by maternal protein restriction 

persist through pregnancy with evidence of improved 

nutrient delivery via the chorioallantoic placenta (Coan 

et al. 2011) and visceral yolk sac (Watkins et al. 2008), the 

latter coinciding with altered epigenetic regulation of the 

Gata6 transcription factor that has a central role in PrE 

differentiation (Sun et al. 2015).

In contrast to extra-embryonic lineages, the somatic 

tissues of the foetus derived from the epiblast, such as 

liver and kidney, alter their growth trajectory to match 

prevailing maternal nutrient availability. This is achieved 

via the rate of ribosome biogenesis, the fundamental unit 

of biosynthesis, and specifically ribosomal RNA (rRNA) 

transcription, which is reduced if the maternal dietary 

restriction is maintained, but increased beyond control 

levels, if the dietary challenge is lifted as in Emb-LPD. 

The manipulation of ribosome biogenesis is regulated 

epigenetically through the level of DNA methylation 

at the rDNA gene promoter and coincides with altered 

expression of the ribosome factor Rrn3, known to link 

ribosome biogenesis with mTOR nutrient signalling 

(Denisenko et al. 2016). Thus, the combination of extra-

embryonic and embryonic lineage adaptations to maternal 

Emb-LPD from implantation, comprising increased extra-

embryonic nutrient delivery and increased capacity for 

foetal biosynthesis, in addition to improved maternal 

protein diet, all act to promote late foetal overgrowth as a 

basis for postnatal disease derived from periconceptional 

environment (Watkins et al. 2008, Fleming et al. 2018).

Recent work has shown that Emb-LPD and sustained 

LPD treatment throughout pregnancy have a negative 

influence on neurogenesis. Both treatments lead to 

a decline in neural stem cells (NSCs) during foetal 

development through reduced proliferation and increased 

apoptosis. The loss of NSCs coincides with an altered 

rate of neural differentiation and a postnatal phenotype 

of altered cortex thickness and short-term memory loss 

in both males and females (Gould et  al. 2018). These 

findings extend earlier behavioural outcomes from the 

mouse Emb-LPD model (Watkins et al. 2008) and confirm 

periconceptional maternal undernutrition as critical in 

DOHaD for postnatal health across diverse systems.

Assisted reproductive technologies

ART refers to any technique that interferes with the 

normal biological pathways of reproductive-related events  

and/or structures in order to contribute to the 

establishment of pregnancy with the final goal of 

producing healthy offspring. In general, ART manipulates 

events and/or structures related to ovulation, fertilisation 

and embryo development (Velazquez 2008). Current 

estimates from the International Committee Monitoring 

for Assisted Reproductive Technologies indicate that since 

the first ART-derived baby in 1978 over 8 million babies 

have been born through ART worldwide (De Geyter 2018). 

It should be emphasised that most ART-derived babies 

appear healthy. But giving the adverse effects associated 

with ART reported in some human and animal studies 

(see below), there is an active effort to ensure an efficient 

and safe application of human ART, including monitoring 

of the health status of the resultant offspring.

Data from Finland indicated that children up 

to 4  years of age whose mothers were subjected to 

ovulation induction with or without intrauterine 

insemination (IUI) showed an increased risk of cerebral 

palsy, allergy and asthma, along with longer periods of 

hospitalisation (Klemetti et  al. 2010). A Danish study 

found that the risk of developing type 1 diabetes during 

childhood was increased in children conceived through 

the use of FSH in ovulation induction protocols or in 

combination with IUI (Kettner et al. 2016). Analysis of 

the UK data revealed that babies derived from ARTs such 

as in vitro fertilisation (IVF), intracytoplasmic sperm 

injection (ICSI), IUI, gamete intra-fallopian transfer and 

ovulation induction had an increased risk of developing 

respiratory distress and infection during the first week of 

life when compared to naturally conceived counterparts 

(Waynforth 2018). Similarly, a meta-analysis of 45 

studies suggested that the risk of developing birth 

defects can be increased by IVF and ICSI (Hansen et al. 

2013), something that has been confirmed in a more 

recent meta-analysis (Zhao et al. 2018).

Another recent meta-analysis indicated that children 

conceived by IVF and ICSI showed a lower weight during 
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the first 4 years of age, with the difference disappearing 

afterwards (Bay et  al. 2019), indicating an enhanced 

growth velocity during early development. Rapid growth 

during early childhood can increase the risk of developing 

obesity and hypertension later in life (Mihrshahi et  al. 

2011, Lei et  al. 2015). Indeed, IVF children with rapid 

growth during early childhood (1–3 years of age) showed 

higher blood pressure levels compared to spontaneously 

conceived counterparts at 8–18 years of age (Ceelen et al. 

2009). Increase in blood pressure in IVF/ICSI-derived 

children has been detected in several studies (Sakka 

et al. 2010, Scherrer et al. 2012, Valenzuela-Alcaraz et al. 

2013, Meister et al. 2018, Valenzuela-Alcaraz et al. 2018). 

Reproductive potential seems to be affected as well, 

especially in males. Young adults conceived through ICSI 

showed low sperm concentration and motile sperm count 

compared to men born after spontaneous conception 

(Belva et  al. 2016). Interestingly, the impaired sperm 

production was not associated with significant changes in 

reproductive hormones (Belva et al. 2017).

Current evidence seems to indicate that the incidence 

of certain diseases and some developmental features 

might not be strongly affected by ART. For instance, the 

available data indicate that the overall cancer risk does not 

seem to be increased in ART-derived children, although 

some studies found a small increased risk for specific types 

of cancer (Chen & Heilbronn 2017, Wainstock et al. 2017, 

Williams et al. 2018). Studies in The Netherlands reported 

that behavioural and cognitive performance was not 

affected in ICSI-derived children at 5 years of age when 

compared to the general Dutch population (Meijerink 

et  al. 2016) and that subfertility rather than ART per se 

seems to be the underlying cause of impaired cognitive 

and behavioural development during childhood observed 

in some ART-derived children (Schendelaar et al. 2016). A 

recent study from the UK also found that IVF and ICSI do 

not seem to impair children’s early cognitive outcomes up 

to age 11 years (Barbuscia & Mills 2017). Similarly, a recent 

systematic review revealed that ART treatments such as 

preimplantation genetic diagnosis/screening do not seem 

to affect cognitive and behavioural development, but 

they can mildly affect psychomotor development (e.g. 

dysregulation in posture, muscle tone) of children in their 

first two years of life. However this subtle psychomotor 

dysfunction was not detected in follow-up studies in 

children up to 9 years of age (Natsuaki & Dimler 2018).

Although these results have been taken as reassuring 

for ART outcomes affecting offspring mental health 

(Meijerink et  al. 2016), these studies were carried 

out during early childhood and the truly long-term 

consequences (i.e. in adulthood) for mental health 

remain to be determined. Furthermore, there is more 

uncertainty with some neurodevelopmental disorders. 

For instance, the occurrence of autism and cerebral palsy 

in IVF/ICSI-derived children was found to be increased 

in some (Stromberg et al. 2002, Lehti et al. 2013, Sandin 

et al. 2013, Kamowski-Shakibai et al. 2015, Schieve et al. 

2017, Goldsmith et  al. 2018) but not all studies (Kallen 

et al. 2010, Reid et al. 2010, Fountain et al. 2015, Kissin 

et  al. 2015). Both autism (Fountain et  al. 2015) and 

cerebral palsy (Goldsmith et al. 2018) have been strongly 

associated with multiple births in ART pregnancies 

highlighting the need to reduce multiple pregnancies in 

women undergoing ART (Pinborg 2019).

Most of the above-discussed studies used as comparison 

group children naturally conceived by fertile couples, 

which has been suggested not to be the best control group. 

Instead, naturally conceived children from sub-fertile 

parents who managed to achieve pregnancy while waiting 

for ART treatment will be a more appropriate comparison 

group (Zhao et  al. 2018). Although studies using this 

control group are available, a substantial proportion of 

human ART studies still have methodological limitations 

that hamper the ability to provide reliable conclusions 

(Guo et al. 2017, Liu et al. 2017, Rumbold et al. 2017), to 

the point that some authors believe their findings (e.g. 

increased risk of type diabetes due to ovulation induction 

protocols) are a statistical artefact (Kettner et al. 2016).

Nevertheless, animal models have provided 

experimental evidence supporting the notion that 

cardiovascular (Watkins et  al. 2007, Rexhaj et  al. 2013), 

metabolic (Chen et al. 2014, Feuer et al. 2014, Cerny et al. 

2017), immunological (Karimi et  al. 2017), reproductive 

(Calle et  al. 2012) and behavioural (Lopez-Cardona 

et  al. 2015) activity during postnatal development can 

be affected by ART. These postnatal alterations can be 

induced by the microenvironment to which embryos 

are exposed to during in vitro procedures. For example, 

mice and bovine models have demonstrated that in vitro 

exposure during the preimplantation period to specific 

constituents of culture media such as metabolic hormones 

(e.g. insulin), amino acids, pyruvate, lactate and growth 

factors can induce alterations in birth weight, body 

growth rate and cardiovascular function (Banrezes et  al. 

2011, Kannampuzha-Francis et al. 2015, Velazquez et al. 

2018). A similar situation has been found in humans, 

where the culture medium composition induced changes 

in birth weight (Kleijkers et  al. 2016) and body weight 

and BMI examined at 9 years of age (Zandstra et al. 2018). 

Importantly, animal models have revealed that culture 
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media modification (e.g. melatonin supplementation) 

can reverse some of these altered phenotypes (e.g. 

cardiovascular dysfunction) (Rexhaj et al. 2015).

The current consensus is that the effects of ART on 

offspring health may have an epigenetic origin (Huntriss 

et  al. 2018). Indeed, a meta-analysis revealed that the 

incidence of rare imprinting disorders in IVF/ICSI-derived 

children is higher than in spontaneously conceived 

children, although the exact underlying epigenetic 

mechanism is unknown (Lazaraviciute et  al. 2014). 

Nevertheless, compared to methylation levels in somatic 

and embryonic stem cells, a perturbed methylation of 

imprinted genes such as SNRPN, KCNQ1OT1 and H19 

was found in ART-derived human preimplantation 

embryos (White et  al. 2015). Similarly, changes in DNA 

methylation were observed in the placenta (Katari et al. 

2009, Melamed et al. 2015, Choufani et al. 2018) and cord 

blood (Katari et al. 2009, Melamed et al. 2015) from ART-

derived babies when compared to naturally conceived 

counterparts. A study comparing natural conception 

with oocyte donation (i.e. young fertile oocyte donors/

no male infertility) also found differences in placental 

DNA methylation levels between the groups, suggesting a 

strong effect of ART and not infertility (Song et al. 2015). 

Several regulatory regions, metastable epialleles and 

imprinted genes, including IGF2, were hypomethylated 

in blood spots from ART-conceived newborns relative 

to those conceived naturally (Estill et  al. 2016). The 

methylation levels of SNRPN, a paternal imprinted gene, 

were increased in the buccal cells of 2 year-old children 

conceived by ICSI, but not by IVF. This hypermethylation 

is believed to be associated with the greater degree of in 

vitro manipulation taking place during ICSI (Whitelaw 

et al. 2014).

These epigenetic changes are partially attributed to 

the microenvironment in which embryos are cultured, 

as animal models have revealed that media culture 

composition can alter DNA methylation profiles in 

preimplantation embryos (Market-Velker et  al. 2010, 

Canovas et  al. 2017). Furthermore, oxygen tension (5% 

vs 20%) during culture and type of embryo transferred 

(fresh vs frozen) have the capacity to alter placental 

methylation levels from ART-conceived babies when 

compared to natural conception. Importantly, data 

from pigs indicate that modification of culture media 

to resemble in vivo composition can induce methylation 

levels in preimplantation embryos more similar to those 

produced in vivo (Canovas et al. 2017).

In contrast, DNA methylation was not affected in 

blood from prepubertal children conceived through IVF  

(Oliver et  al. 2012). This suggests that ART-induced 

changes in DNA methylation could be gene- and/or 

tissue-specific or that postnatal environment masked any 

subtle changes in DNA methylation induced by ART. The 

latter emphasises the complexity of epigenetic studies in 

humans and the need to consider several methodological 

issues to produce useful epigenetic data (Lazaraviciute et al. 

2014). Also, a critical step in elucidating the long-term 

effects of ART in human populations is the development 

of databases for ART surveillance (i.e. health monitoring 

of ART-derived offspring), something that has been 

implemented in just a few countries (Pinborg 2019). The 

first ART-derived baby turned 40 years just recently, hence 

the long-term repercussions (or lack of) of ART for healthy 

ageing are far from being elucidated. This highlights the 

current need for more research throughout the lifespan of 

ART-derived offspring.

Paternal origin of 
periconceptional programming

In contrast to the substantial epidemiological and animal 

model research linking maternal well-being with offspring 

programming, our understanding of how a father 

influences the development and cardiometabolic health 

of his offspring has been largely overlooked. However, 

there is now a significant body of data indicating paternal 

physiological status, lifestyle and environmental exposure 

to a range of factors not only impact on sperm quality, but 

also affect the long-term health of his offspring (Fleming 

et al. 2018). In line with maternal programming studies, 

animal models have become critical tools for not only 

defining the underlying paternal mechanisms involved 

but also identifying central biomarkers of paternal 

programming ahead of studies using human samples. 

Studies from humans and animal models have revealed 

the complexity of both sperm and the seminal plasma, 

identifying novel processes by which perturbed paternal 

health at the time of conception affect a dynamic range of 

reproductive and developmental processes and ultimately, 

long-term offspring health.

Paternal reproductive health and sperm quality 

are impaired in response to paternal physiological and 

lifestyle factors. Mirroring changes in oocyte quality in 

response to maternal obesity, elevated paternal BMI has 

been associated with reduced semen volume, sperm 

number and sperm motility (Chavarro et  al. 2010, Ma 

et  al. 2019). Furthermore, sperm from overweight or 

obese men show higher levels of DNA damage when 
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compared to sperm from normal weight males (Kort 

et al. 2006, Campbell et al. 2015). As obesity is associated 

with multiple disturbances in metabolic profile including 

elevated levels of inflammatory markers and metabolic 

intermediates, the detrimental effects of increasing male 

BMI on sperm quality is believed to be mediated through 

increased oxidative damage. Indeed, in both men and 

rodents, obesity has been shown to result in increased 

reactive oxygen species generation (Palmer et  al. 2011, 

Tunc et  al. 2011) and sperm DNA damage (Duale et  al. 

2014, Zhao et  al. 2014). Furthermore, consumption of 

high-energy diets has also been associated with reduced 

sperm morphology, motility and DNA integrity (Agbaje 

et  al. 2007), perturbed testicular metabolism (Rato 

et  al. 2013) and reduced fertility (Bener et  al. 2009) in 

both mice and men. Similar to the effects of paternal 

overnutrition, deficiency of specific nutrients, or even 

nutritional imbalance also affect sperm quality. Many 

macronutrients such as zinc, vitamins and glutathione act 

as antioxidants to prevent excessive damage from reactive 

oxygen species. Sperm from infertile men show higher 

rates of DNA damage which can be reduced following 

treatment with supplement of selenium and vitamin E 

(Moslemi & Tavanbakhsh 2011). In mice, the negative 

effects of paternal undernutrition on sperm DNA damage 

can be prevented through dietary supplementation with 

vitamins and minerals (McPherson et al. 2016).

Poor paternal health not only impacts on sperm 

quality, but can also affect post-fertilisation development 

and offspring well-being. In men, some studies have 

identified associations between obesity and reduced rates 

of blastocyst development and live birth following IVF 

(Bakos et  al. 2011). Such observations are supported by 

a recent, large meta-analysis in which the link between 

paternal obesity and live birth rates after ART cycles was 

examined in 115,158 patients (Campbell et  al. 2015). 

Here, the authors reported a significant negative impact of 

increased male BMI on non-viable pregnancy outcomes. 

In mice, paternal obesity has been reported to increase 

rates of one-cell block, decrease blastocyst cell number 

and perturb embryo carbohydrate metabolism (Mitchell 

et  al. 2011, Binder et  al. 2012). Our own studies have 

revealed that a paternal low protein diet (LPD) decreased 

blastocyst expression of multiple genes involved in the 5′ 

AMP-activated protein kinase (AMPK) pathway including 

genes for metabolism, regulation of transcription and 

protein synthesis (Watkins et  al. 2017). Interestingly, 

similar decreases in several of these AMPK pathway genes 

were still evident in late gestation foetal liver tissues and 

associated with increased rates of foetal growth (Watkins 

et  al. 2017). As in studies of poor maternal diet during 

pregnancy, we observed that the enhanced foetal growth 

programmed by paternal LPD was associated subsequently 

with increased adiposity, impaired glucose metabolism, 

hypotension and vascular dysfunction in adult offspring 

(Watkins & Sinclair 2014). Separately, other studies have 

shown significant changes in foetal (Carone et al. 2010, 

Lambrot et al. 2013) and postnatal offspring development 

and metabolic health (Anderson et al. 2006, McPherson 

et al. 2016, Ryan et al. 2018) in response to paternal diet 

or food intake in mice. Interestingly, recent studies have 

demonstrated robust transgenerational effects of chronic 

paternal stress on offspring well-being and hypothalamic 

pituitary adrenal axis function (Gapp et al. 2014, Rodgers 

et al. 2015).

The fact that many paternal programming studies 

identify consistent transgenerational programming 

effects (Fullston et  al. 2013, Gapp et  al. 2014) indicates 

changes in sperm epigenetic status as one potential 

mechanism linking paternal well-being with offspring 

development. Over recent years the epigenetic complexity 

of mammalian sperm has been revealed. In contrast to 

the oocyte, sperm contain almost no cytoplasm and the 

DNA is packaged using protamines rather than histones. 

Inappropriate protamine packaging of the sperm DNA, 

or perturbed histone to protamine transition can be 

indicative of impairments in the fundamental process 

of spermatogenesis (Sakkas et al. 2002) or damage due to 

excessive exposure to reactive oxygen species (Sakka et al. 

2010). Furthermore, atypical chromosome packaging and 

localisation within the sperm or perturbed telomere–

centromere interactions have been associated with 

infertility in some men (Zalensky & Zalenskaya 2007), 

while sperm chromatin maturation level has been linked 

with pregnancy establishment rates (de Lamirande et al. 

2012). While the majority of the sperm DNA is re-packaged 

with protamines, specific genomic sequences retain their 

histone marks. What is interesting is that the location 

of these retained histones is not random, but specific to 

important developmental genes (Hammoud et  al. 2009) 

and retrotransposable long and short interspersed nuclear 

elements in both men and mice (Samans et  al. 2014). 

Furthermore, some of these sperm-specific histones 

have been shown to be retained within the oocyte and 

contribute to the zygotic genome (van der Heijden et al. 

2008).

In addition to sperm chromatin structure, differential 

profiles of DNA methylation have also been linked to 

sperm quality in infertile men (Hammoud et al. 2010). In 

studies looking at success rates of women undergoing IVF, 
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the genome-wide methylation profile of their partner’s 

sperm correlated with embryo quality (Aston et  al. 

2015) and was indicative of pregnancy failure (Benchaib 

et al. 2005). In mice, significant changes in sperm DNA 

methylation profiles have also been identified in response 

to paternal obesity (Fullston et  al. 2013), low protein 

(Carone et  al. 2010) or low folate (Lambrot et  al. 2013) 

diets. Our own studies have showed that feeding male 

mice a LPD results in global sperm hypomethylation 

associated with reduced testicular expression of central 

regulators of DNA methylation and 1-carbon metabolism 

(Watkins et al. 2018). Interestingly, analysis of the sperm 

DNA hypomethylation revealed significant reductions 

at multiple genes involved in calcium signalling which 

correlated with our earlier reported impairments in 

cardiovascular function and cardiac calcium signalling 

gene expression in adult offspring of LPD-fed males 

(Watkins & Sinclair 2014). In addition to histone and 

DNA modifications, sperm has been shown to contain 

a range of RNA species including mRNA, microRNA, 

short and long noncoding RNA and small interfering 

RNAs (Colaco & Sakkas 2018). The significance of sperm-

derived RNAs for post-fertilisation development has been 

demonstrated in animal models where the depletion of 

specific sperm microRNAs results in developmental delay 

of the zygote (Liu et  al. 2012). In addition, injection of 

tRNA-derived small RNAs from sperm of high-fat diet-

fed male mice into control zygotes resulted in impaired 

glucose metabolism and insulin secretion in the resultant 

offspring (Chen et al. 2016).

Separate to the epigenetic status of the sperm, fathers 

may also influence the development of their offspring 

via seminal plasma-specific modulations of the maternal 

reproductive tract environment (Robertson & Sharkey 

2016). In both mice and women, deposition of seminal 

plasma within the reproductive tract initiates a significant 

inflammatory and immunological response culminating 

in uterine vascular remodelling, the recruitment of 

leukocytes and the priming of regulatory T cells (T-regs) 

and the production of a myriad of cell-signalling molecules 

such as colony-stimulating factor-2 (CSF2), leukaemia 

inhibitory factor and interleukin 6 (IL-6) (Schjenken & 

Robertson 2014). Interestingly, studies have demonstrated 

positive associations between a woman’s unprotected 

exposure to her partner’s seminal plasma and a reduced 

risk for her developing preeclampsia during pregnancy 

(Robillard et  al. 1994). In mice, lack of seminal plasma 

at the time of conception has been shown to impair 

embryo development, foetal growth and adult offspring 

cardiometabolic health (Bromfield et al. 2014). Our own 

studies have shown that offspring growth and metabolic 

health appear equally compromised in response to either 

sperm or seminal plasma from male mice fed a LPD 

(Watkins et al. 2018).

Conclusions

It is clear from the above four types of exposure 

during periconceptional reproduction that altered 

developmental programming may emerge from diverse 

environments (summarised in Table  1). While here 

we focus on parental nutrition in vivo and embryo 

manipulations in vitro, the spectrum of exposures with 

enduring consequences is undoubtedly broader. For 

example, periconceptional maternal alcohol consumption 

prior to embryo implantation in a rat model resulted 

in abnormal trophoblast placental function, altered 

expression of epigenetic regulators for DNA methylation 

in the foetal liver, culminating in postnatal glucose and 

insulin intolerance and increased risk of offspring obesity 

(Gardebjer et al. 2015, Kalisch-Smith et al. 2016, Gardebjer 

et  al. 2018). In another example, maternal sickness 

and systemic inflammation at the time of conception 

has been shown in a mouse model to alter blastocyst 

morphogenesis with long-term consequences for adult 

offspring immune function (Williams et al. 2011). Here, 

reproductive function and embryo implantation are in 

part regulated by the activity of maternal immune cells 

and the balance of pro- and anti-inflammatory cytokines 

can have significant influence not only on embryo survival 

but long-term health of offspring (Robertson et al. 2015).

The extent to which periconceptional exposure 

can associate with adult DOHaD consequences is also 

influenced by intrinsic processes such as maternal ageing. 

While it is well established that fertility declines with age, 

the developmental potential of oocytes with advancing age 

is also affected. In a recent mouse study, preimplantation 

embryos from aged vs young mothers, both sired by young 

males and transferred to young recipients to carry the 

pregnancy, gave rise to offspring with altered growth and 

increased cardiometabolic dysfunction (Velazquez et  al. 

2016). Oocytes from older mothers exhibit mitochondrial 

dysfunction and perturbed energy homeostasis (Dumesic 

et  al. 2015) which may indicate adverse programming 

derives from similar processes as occurs following maternal 

overnutrition, although mechanisms are underexplored.

A consistent feature across the research field of 

periconceptional programming has been the involvement 

of epigenetic dysregulation as a means by which effects 
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on gene expression and cellular phenotype may persist 

through gestation and later life (Steegers-Theunissen et al. 

2013). Manipulation of periconception maternal diet 

composition to reduce the availability of methyl donors for 

DNA and histone methylation via one-carbon metabolism 

has been shown to alter the offspring epigenome with 

accompanying cardiometabolic disease outcomes (Sinclair 

et al. 2007). Provision of methyl donors can also reverse 

adverse programming mediated through the rat maternal 

LPD model (Lillycrop et  al. 2005). Animal oocytes and 

early embryos are known to express key enzymes in 

the methionine/folate cycles (Kwong et  al. 2010) and a 

role for mTOR signalling has been identified for sensing 

the levels of folate available for placental development 

and foetal growth (Rosario et al. 2017, Gupta & Jansson 

2018). Variability across individuals and ethnic groups 

in regulatory genes involved in one-carbon metabolism 

may contribute to the relative susceptibility to adverse 

programming (Clare et  al. 2018). What is clear is that 

health of both parents in terms of diet and physiological 

condition is an important factor to establish before 

conception rather than later in pregnancy to protect the 

health of the next generation.
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