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PERIDYNAMIC ANALYSIS OF FIBER-REINFORCED COMPOSITE MATERIALS

ERKAN OTERKUS AND ERDOGAN MADENCI

Damage growth in composites involves complex and progressive failure modes. Current computational

tools are incapable of predicting failure in composite materials mainly due to their mathematical struc-

ture. However, peridynamic theory removes these obstacles by taking into account nonlocal interactions

between material points. This study presents an application of peridynamic theory to predict how damage

propagates in fiber-reinforced composite materials subjected to mechanical and thermal loading condi-

tions.

1. Introduction

Damage initiation and its subsequent propagation in fiber-reinforced composites are not understood as

clearly as they are, for example, for metals because of the presence of stiff fibers embedded into the soft

matrix material, causing inhomogeneity. Under the assumption of homogeneity, a lamina has orthotropic

elastic properties. Even though this assumption is suitable for stress analysis, it becomes questionable

when predicting failure. Most composite structures include notches and cutouts, not only reducing the

strength of the composites but also serving as potential failure sites for damage initiation. They also pro-

mote common failure modes of delamination, matrix cracking, and fiber breakage. These failure modes

are inherent to the inhomogeneous nature of the composite, thus the homogeneous material assumption

taints failure analyses.

In order to better understand failure mechanisms, Hallett and Wisnom [2006] conducted experiments

on double-edge-notched composite specimens made from E-glass. They reported the occurrence of ma-

trix cracking before ultimate failure for all specimens, representing four different layups when loaded in

tension. Furthermore, it was reported that fiber failure initiated at the notch tip. Later, Green et al. [2007]

investigated the effect of scaling on the tensile strength of notched composites made from unidirectional

carbon-fiber/epoxy pre-preg by considering the hole diameter and laminate thickness as independent

variables. These experiments showed that failure mechanisms in composites are very complex due to

matrix cracking, fiber breakage, and delamination.

In order to investigate the behavior of cracks, Wu [1968] considered unidirectional fiberglass-reinforced

Scotch-plies with center cracks oriented in the direction of the fibers. The plies had fibers in the 0◦ and

45◦ directions and were loaded in tension, pure shear, and combined tension and shear. In all three types

of loading, it was observed that the crack propagated in a direction colinear with the initial crack.

It is, therefore, evident that the inhomogeneous nature of the composites must be retained in the

analysis to predict the correct failure modes. Each lamina with a different fiber orientation must be

modeled with distinct matrix and fiber properties.
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Numerical studies on the failure of notched composites have mostly utilized the finite element method

(FEM) to investigate the damage path and the initial failure load; such recent studies include [Bogert et al.

2006; Satyanarayana et al. 2007]. They predicted fiber and matrix damage in center-notched laminates

for different layups under tension. Both the experimental observations and numerical results suggest that

damage initiation and crack propagation are dependent on ply orientation.

Despite the development of many important concepts for predicting material behavior and failure,

the prediction of failure modes and residual strengths of composite materials is a challenge within the

framework of FEM. The use of FEM to predict failure can be quite challenging because remeshing

may be required to make an accurate prediction and damage can only propagate in certain directions.

Remeshing can be avoided by employing special elements, such as cohesive elements. However, these

elements require a priori knowledge of the damage path, which might not be available. Unless these

elements are correctly placed during model generation, the damage predictions may be erroneous. In

addition to the need to remesh, existing methods for fracture modeling also suffer from the requirement of

an external crack-growth criterion. This criterion prescribes how damage evolves a priori based on local

conditions, and guides the analysis as to when and how damage initiates and propagates. Considering the

difficulty in obtaining and generalizing experimental fracture data, providing such a criterion for damage

growth, especially in composite structures, clearly presents a major obstacle to fracture modeling using

conventional methods. This prevents such methods from being applicable to problems in which multiple

damage growth occurs and interacts in complex patterns.

The difficulty in predicting failure using concepts from fracture mechanics in conjunction with FEM

comes from the mathematical form of the classical continuum mechanics equations. The equations of

motion in classical continuum mechanics are in the form of partial differential equations that involve the

spatial displacement derivatives; however, these derivatives are undefined when the displacements are

discontinuous, such as across cracks or interfaces. Hence, failure prediction is posterior and requires

special techniques.

Silling [2000], realizing the aforementioned limitation, reintroduced a nonlocal theory that does not

require spatial derivatives — the bond-based peridynamic (PD) theory. This theory accounts for only

pairwise interaction between material points, thus resulting in the reduction of independent material

constants. In order to remove this reduction, Silling et al. [2007] generalized bond-based PD theory by

including the interaction of many material points. Referred to as state-based PD theory, it accounts for

deviatoric and volumetric deformations, thus enforcing plastic incompressibility. The main difference

between PD theory and classical continuum mechanics is that the former is formulated using integral

equations as opposed to derivatives of the displacement components. This feature allows damage ini-

tiation and propagation at multiple sites with arbitrary paths inside the material without resorting to

special crack-growth criteria. In PD theory, internal forces are expressed through nonlocal interactions

between pairs of material points within a continuous body, and damage is a part of the constitutive model.

Interfaces between dissimilar materials have their own properties, and damage can propagate when and

where it is energetically favorable for it to do so.

PD theory was applied successfully in [Colavito et al. 2007a; 2007b] to predict damage in laminated

composites subjected to low-velocity impact and static indentation. Askari et al. [2006] and Xu et al.

[2007; 2008] also used PD simulations to predict damage in laminates subjected to low-velocity impact

and in notched laminated composites under biaxial loads. Recently, Kilic et al. [2009] predicted the
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basic failure modes of fiber, matrix, and delamination in various laminates with a preexisting central

crack under tension. Also, Oterkus et al. [2010] demonstrated that PD analysis is capable of capturing

bearing and shear-out failure modes in bolted composite lap-joints.

This study presents an application of PD theory in the analysis of fiber-reinforced composite materials

subjected to mechanical and thermal loading conditions. The PD approach to modeling a lamina is first

verified against analytical solutions within the realm of classical continuum mechanics by considering

uniaxial tension and uniform temperature change. Then, damage growth patterns from a preexisting crack

in a lamina for different fiber orientations are computed and compared with experimental observations.

This approach is further extended to analyze composite laminates and to predict damage growth patterns

from a preexisting crack in two distinct laminate constructions under tension. In the absence of a crack,

the PD displacement predictions are compared with those of the classical laminate theory. In the presence

of a crack, damage patterns are qualitative compared with experimental observations.

2. Peridynamic theory

The deformation response of solid structures subjected to external forces can be obtained by assuming

the structure as a continuous body or a continuum, without paying attention to its atomistic structure.

Hence, it is possible to perform both static and dynamic analyses of large structures within a reasonable

amount of time. The conventional approach that is used to analyze solid structures is known as “classical

continuum mechanics” and has been successfully applied to numerous problems in the past. Within the

classical continuum mechanics framework, it is assumed that the continuous body is composed of an

infinite number of infinitesimal volumes, which are called material points. These material points interact

with each other only if they are within the nearest neighborhood of each other; in other words, through

a direct interaction (contact). These interactions are expressed in terms of contact forces or tractions, T ,

as shown in Figure 1.

Figure 1. Interaction of material points in classical continuum mechanics.
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Using the conservation of linear momentum and relating the traction vectors, T , to the well-known

stress tensor, σ , results in the equation of motion of the material point, x, in classical continuum me-

chanics:

ρ(x)ü(x, t) = ∇ · σ + b(x, t), (1)

where ρ(x), b(x, t), and ü(x, t) represent the mass density, body force density, and acceleration, respec-

tively, of the material point located at x. The spatial derivatives in the divergence operation associated

with the stress tensor, σ , do not exist on the discontinuity in the structure. Therefore, (1) is not valid for

problems including discontinuities, such as cracks. Silling [2000] replaced the divergence term in (1)

with an integral term, which makes the new form of the equation of motion applicable whether or not a

discontinuity exists in the structure:

ρ(x)ü(x, t) =
∫

H

f (x′ − x, u′ − u)d H + b(x, t). (2)

In (2), the domain of integration (neighborhood), H , includes all the material points that the material

point x can interact with inside the body. The radius of the spherical neighborhood is referred to as the

horizon, and it is denoted by δ. The interaction force or PD force between material points x and x′ can

be expressed as f (x′ − x, u′ − u), and it is a function of the relative position vector, x′ − x, and relative

displacement vector, u′ − u. The PD force is along the same direction of the relative position of these

material points in the deformed configuration, that is, y′ − y = (x′ +u′)− (x +u). For an elastic isotropic

material, the PD force takes the form

f = c(s − s∗)
y′ − y

| y′ − y|
= cs̄

y′ − y

| y′ − y|
, (3)

where c, s, s̄ and s∗ represent the PD material parameter, total stretch, mechanical stretch, and thermal

stretch between material points x and x′, respectively. The total stretch, s, and the thermal stretch due

to thermal loading, s∗, are defined as

s =
| y′ − y| − |x′ − x|

|x′ − x|
(4a)

and

s∗ = α1T, (4b)

where α and 1T represent the coefficient of thermal expansion of the material and the temperature

change, respectively. By using (4a) and (4b), the mechanical stretch, s̄, can be computed as

s̄ = s − s∗ =
| y′ − y| − |x′ − x|

|x′ − x|
− α1T . (5)

This form of the PD force representation, given in (3), accounts for pairwise interaction only between

the material points. Therefore, it is limited to one independent material constant, c, with a Poisson’s

ratio of 1
4

and 1
3

in three- and two-dimensional analysis, respectively. This material parameter, c, can

be related to the engineering material constants by equating the strain energy densities of the PD and
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classical continuum theories at a material point inside a body due to simple loading, such as uniform

expansion. Silling and Askari [2005] derived an explicit expression for parameter c in the form

c =
18κ

πδ4
, (6)

where κ is the bulk modulus of the material and δ represents the radius of a spherical horizon.

Based on PD theory, the strain energy density of a material point at x, UPD, can be expressed as

UPD = 1

2

∫

H

wd H, (7)

where the micropotential, w, is defined as

w = 1
2

c(s − s∗)2ξ = 1
2

cs̄2ξ, (8a)

with

ξ = |x′ − x|. (8b)

It can also be assumed that two material points, x and x′, cease to interact with each other if the

mechanical stretch between these material points exceeds a critical stretch value, s0, as shown in Figure 2.

This material model represents an elastic material behavior without allowing any permanent deformation.

Termination of the interaction between material points can be associated with the failure of the material

by modifying the PD force relation given in (3) by introducing the failure parameter µ(x′ − x, t)

f = µ(x′ − x, t)c(s − s∗)
y′ − y

| y′ − y|
, (9)

where the failure parameter can be defined as

µ(x′ − x, t) =
{

1 if s(x′ − x, t ′) − s∗ < s0 for all 0 < t ′ < t,

0 otherwise.
(10)

Figure 2. Constitutive relation between material points in an elastic material.
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The inexplicit nature of local damage at a material point, x, arising from the introduction of failure in

the constitutive model, is removed by defining the local damage as

ϕ(x, t) = 1 −
∫

H
µ(x′ − x, t)d H
∫

H
d H

. (11)

Thus, local damage is the weighted ratio of the number of the broken interactions to the total number of

interactions within the horizon, H . The extent of damage is defined by a value between 0 and 1, where

0 indicates that a material point has no damage and 1 indicates complete damage at the material point.

Also, a damage value of 0.5 and above indicates possible cracking.

In the case of isotropic materials, value s0 of the critical stretch can be related to the equivalent energy

release rate as derived in [Silling and Askari 2005]:

s0 =
√

5G0

9κδ
, (12)

where G0 is the critical energy release rate of the material and can be related to the fracture toughness

of the material.

In order to solve (2), a collocation method is adopted and the numerical treatment involves the

discretization of the domain of interest into subdomains. The domain can be discretized into cubic

subdomains. With this discretization, the volume integration in (2) is approximated, leading to

ρ(x(i))ü(x(i), t) =
M
∑

j=1

f
(

u(x( j), t) − u(x(i), t), x( j) − x(i)

)

V( j) + b(x(i), t), (13)

where x(i) is the position vector located at the i-th collocation (material) point and M is the number of

subdomains within the horizon of the i-th material point. The position vector x( j) represents the location

of the j-th collocation point. The volume of the j-th subdomain is V( j).

Since peridynamics is a nonlocal theory and its equations of motion utilize integrodifferential equa-

tions as opposed to partial differential equations in the case of the classical continuum theory, the appli-

cation of boundary conditions is different from that of the classical continuum theory. The tractions or

point forces cannot be applied as boundary conditions since their volume integrations result in a zero

value [Oterkus and Madenci 2012]. Therefore, the boundary conditions are applied over the volumes

as body forces, displacements, and velocities. As explained in [Macek and Silling 2007], the thickness

of the region over which the boundary conditions are applied should be comparable to the size of the

horizon.

3. Peridynamic analysis of a lamina

If a fiber-reinforced composite lamina is considered, the directional dependency must be included in the

PD analysis. Therefore, two different PD material parameters are introduced as shown in Figure 3 to

model a fiber-reinforced composite lamina with a fiber orientation of θ . The material point q represents

material points that interact with material point i only along the fiber direction. However, the material

point p represents material points that interact with material point i in any direction, including the fiber
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Figure 3. PD horizon for a lamina with a fiber orientation of θ and PD bonds between

material point i and other material points within its horizon.

direction. The orientation of a PD bond between the material point i and the material point p is defined

by the angle φ with respect to the x-axis.

Associated with a lamina, the material parameter concerning the interaction of material points only

in the fiber direction is denoted by c f . The interaction of material points in all other directions within a

lamina is governed by the material parameter, cm . Extending the procedure introduced in [Gerstle et al.

2005] for isotropic materials, the PD material parameters, c f and cm , can be expressed analytically in

terms of the engineering material constants, E1, E2, G12, and ν12, by equating strain energy densities of a

material point based on the classical continuum mechanics and PD theory for simple loading conditions.

The constitutive or force-stretch relations for the in-plane interactions of two material points, referred

to as fiber and matrix bonds, are shown in Figure 4. The critical parameters that define the failure of these

Figure 4. Force-stretch relation for fiber and matrix bonds.
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bonds under tension and compressions are (sft, smt) and (sfc, smc), respectively, and can be determined

based on the experimental measurements. Determination of these critical stretch parameters are explained

in Oterkus et al. [2012].

Based on the classical continuum mechanics, the strain energy density of a material point, UCCM, for

a two-dimensional composite lamina is expressed as

UCCM = 1
2
σ T (ǫ − ǫ∗), (14)

in which the stress, σ , total strain, ǫ, and thermal strain vectors, ǫ∗, are defined as

σ T =
{

σxx σyy τxy

}

, ǫT =
{

ǫxx ǫyy γxy

}

, ǫ∗T =
{

ǫ∗
xx ǫ∗

yy γxy

}

. (15)

For a composite lamina with a fiber orientation of θ , the stress and strain components are related through

the constitutive relation as

σ = Q(ǫ − ǫ∗), (16)

where the transformed reduced stiffness matrix Q is defined as

Q =







Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66






. (17)

The transformed reduced stiffness matrix, Q is a function of four independent material constants of

elastic modulus in the fiber direction, E1, elastic modulus in the transverse direction, E2, in-plane shear

modulus, G12, and in-plane Poisson’s ratio, ν12. The explicit expressions for the components of Q can

be found in any textbook on mechanics of composite materials — for example, [Kaw 2006]. The thermal

expansion coefficients in the fiber and transverse directions are specified as α1 and α2, respectively.

Alternatively, the strain energy density of the same material point in PD theory, UPD, can be calculated

using (7). However, the material parameter, c has a directional dependency of the form

c =
{

c f + cm for φ = θ,

cm for φ 6= θ.
(18)

Therefore, (8a) for the micropotential should be modified as

w = 1
2

c(φ)s̄2(φ)ξ(φ), (19)

in which φ represents the bond angle. With this representation, the integration in (7) for the strain energy

density of material point i shown in Figure 3 cannot be fully performed analytically. However, it can be

approximated as

UPD = 1

2

Q
∑

q=1

c f s2
qiξqi

2
Vq + 1

2

∫

H

cms2ξ

2
d H, (20)

in which Q is the number of fiber bonds within its horizon, δ. As apparent in this equation, the fiber bond

constant, c f depends on the discretization, whereas the matrix bond constant, cm , does not because it

does not have a directional property unlike the fibers. The initial length of the bond in the fiber direction

and its stretch after deformation between material points q and i are denoted by ξqi and sqi , respectively.
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Figure 5. Components of the initial bond length between material points i and p.

The volume of the material point q that interacts with material point i is denoted by Vq , which can be

approximated as

Vq = π tδ2

N
, (21)

in which N is the number of material points within its horizon, δ, and t is the thickness of the lamina.

The initial length and stretch of the bond between the material points i and p are referenced to a polar

coordinate system (ξ, φ). As shown in Figure 5, the components of the initial bond length, ξ , in the x-

and y-directions are denoted by ξx and ξy , respectively, and are given by

ξx = ξ cos φ, ξy = ξ sin φ. (22)

The PD strain energy density of a material point i , given in (20), can be expressed in terms of bond

constants c f and cm , representing the fiber and matrix, by identifying the direction of the bond

UPD = β f c f + βmcm . (23)

The coefficients β f and βm in (23) can be determined by computing the stretch, spi , and the initial length,

ξpi , of the bond between the material points i and p, and the volume of material point p, Vp.

In order to determine the bond constants c f and cm in terms of the engineering constants E1, E2, G12,

and ν12, a uniaxial loading condition can be considered as explained in Appendix A. Equating the strain

energy densities from PD theory and classical continuum mechanics for this loading condition results in

explicit expressions for c f and cm ,

c f =
2E1(E1 − E2)

(E1 − 1
9

E2)
∑Q

q=1 ξqi Vq

, cm =
8E1 E2

(E1 − 1
9

E2)π tδ3
, (24)

along with constraints on material constants G12 and ν12,

G12 =
ν12 E2

1 − ν21ν12

=
E1 E2

3(E1 − 1
9

E2)
, ν12 = 1

3
. (25)

As discussed in [Oterkus and Madenci 2012], because of the pairwise interaction of material points,

four independent material constants of a lamina reduce to two independent constants. In the case of an

isotropic material, the bond constant for fiber, c f , given in (24)1 becomes zero. This indicates that for
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Figure 6. Surface effects in the domain of interest.

an isotropic material, the material should be described by using only one bond constant, cm . In this case

the expression for cm in (24)2 recovers the expression for an isotropic material, that is, cm = 9E/π tδ3,

given in [Oterkus and Madenci 2012].

In the case of thermal loading, the stretch is obtained by (4b), and the coefficient of thermal expansion,

α(φ), for a lamina is also dependent on the bond orientation between material points i and p. As derived

in Appendix A, it can be expressed in terms of coefficients of thermal expansion for an angle lamina, αx ,

αy , and αxy , in the form

α(φ) = αx cos2 φ + αy sin2 φ + αxy sin φ cos φ. (26)

3.1. Surface correction factors for a lamina. Surface correction is an important concept in PD theory.

The response function given in (3) is derived under the assumption that the material point located at x is

in a single material with its complete neighborhood entirely embedded within its horizon, δ. However,

this assumption becomes invalid when the material point is close to free surfaces (Figure 6). It results in a

reduction in material stiffness near the free surfaces, and this stiffness reduction must be corrected. After

determining the surface correction factor for each bond, the PD force in that bond is modified based

on the associated surface correction factor. Determination of surface correction factors for isotropic

materials is explained in detail by [Oterkus and Madenci 2012]. However, the determination of surface

correction factors for a lamina is more complicated than that for an isotropic material because of two

different PD bonds. Detailed derivations of the surface correction factors for fiber and matrix bonds are

given in Appendix B.

4. Peridynamic analysis of a laminate

The PD formulation for a composite lamina can be extended to consider a composite laminate. In order

to capture the deformation behavior of a laminate in the thickness direction and define the interaction

between neighboring plies, two additional bond constants between neighboring plies are introduced, as

shown in Figure 7.
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Figure 7. Four different bond constants for a fiber-reinforced composite material.

Similar to the approach implemented in the peridynamic code (Emu) developed in [Silling 2000], trans-

verse normal and shear deformations between material points located on adjacent (neighboring) layers

are related through the bond constants cin and cis, respectively. As shown in Figure 7, interlayer bonds

only exist in the normal direction, whereas shear bonds exist in all directions between the neighboring

plies. Hence, a material point can interact with two other material points via interlayer bonds that have

the same in-plane coordinates.

As in the case of in-plane deformation of a lamina, the interlayer and shear bond constants, cin and

cis, can be derived in the form

cin =
Em

tV
, cis =

2Gm

π t

1

δ2 + t2 ln
t2

δ2+t2

, (27)

where Em and Gm are the elastic modulus and shear modulus of the matrix material, respectively, and

V is the volume of a material point. Detailed derivations of these expressions are given in Appendix C.

Note that the shear bonds have a different characteristic than the fiber, matrix and interlayer bonds

because the shear bond constant relates the body force density, f , to the change in angle of the bond

from its original orientation (shear angle), ϕ. Therefore, the force density and micropotential expressions

for a shear bond can be written as

f = csϕ(1x)2 y′ − y

| y′ − y|
, w = 1

2
csϕ

2, (28)

where 1x is the spacing between material points on the in-plane of the lamina.

Failure of the interlayer and shear bonds corresponds to mode I and mode II, respectively. Interlayer

damage represents the breakage of (interlayer) bonds between a layer and its adjacent layers above

and below. Hence, it provides the extent of delamination between the adjacent layers. Therefore, the

interlayer bonds are assumed to fail only in tension. The critical stretch value for the interlayer bonds,

sin, can be obtained analytically by equating the energy consumed by an advancing mode-I crack to the

work required to break all interlayer bonds as

sin =

√

2GIC

t Em

, (29)
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where GIC is the mode-I critical energy release rate of the matrix material.

The shear bonds can fail if the shear angle of the bonds exceeds the critical shear angle value, ϕc. It

can also be obtained analytically by equating the energy consumed by an advancing mode-II crack to

the work required to break all shear bonds as

ϕc =

√

GIIC

tGm

, (30)

where GIIC is the mode-II critical energy release rate of the matrix material.

Derivations of the relationships between the critical stretch value for the interlayer bonds, sin, and the

mode-I critical energy release rate and between the critical shear angle value, ϕc, and the mode-II critical

energy release rate are given in Appendix D.

5. Numerical results

5.1. A lamina under uniaxial tension and uniform temperature change. A unidirectional thin lamina

with a fiber orientation of θ = 0◦ is considered, as shown in Figure 8. The length and width of the lamina

are specified as L = 15.24 mm and W = 7.62 mm, respectively. It has a thickness of t = 0.1651 mm. Its

elastic moduli in the fiber and transverse directions are E1 = 159.96 GPa and E2 = 8.96 GPa, respectively.

The thermal expansion coefficients in the fiber and transverse directions are α1 = −1.52 ppm/◦C and

α2 = 34.3 ppm/◦C, respectively. The PD model is generated by using a single layer of material points

with a grid size of 1x = 6.35 × 10−4 m. The horizon radius is specified as δ = 3.0151x . Using (24),

the fiber and matrix bond constants are computed as c f = 5.72 × 1023 N/m6 and cm = 1.86 × 1022 N/m6.

The quasistatic solution is obtained by using the adaptive dynamic relaxation technique by using a time

increment of 1 and stable mass density value of 7.005 × 1018 kg/m3 [Kilic 2008]. Failure is not allowed

in order to verify the solution against analytical predictions based on classical continuum mechanics.

First, a uniaxial tension loading of P = 159.96 MPa is applied as a body load of bx = 5.95×1010 N/m3

along the edges of the lamina through a volumetric region with a depth of b = 2.54×10−3 m. The variation

Figure 8. Loading and geometry of the unidirectional lamina under uniaxial tension and

uniform temperature change.
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of the horizontal and vertical displacement components along the central axes in the x- and y-directions,

respectively, are computed at the end of 8000 time steps and compared with analytical results, as shown

in Figures 9 and 10. Analytical results based on the classical continuum mechanics are computed by

using the relations

ux = P

E1
x, u y = −ν12

P

E1
y. (31)

For both displacement components, there is remarkable agreement between the analytical and PD results.

Figure 9. Horizontal displacement along the central axis at the end of 8000 time steps.

Figure 10. Vertical displacement along the central axis at the end of 8000 time steps.
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Figure 11. Variation of horizontal (left) and vertical (right) displacement along the cen-

tral axis at the end of 8000 time steps when no failure is allowed.

Second, the lamina is only subjected to a uniform temperature change of 1T = 50 ◦C. For this loading

condition, the analytical horizontal and vertical displacements along the central axes are computed by

ux = α11T x, u y = α21T y. (32)

Comparisons of horizontal and vertical displacements obtained analytically and from PD analysis, shown

in Figure 11, indicate remarkably close agreement.

5.2. Laminates under uniaxial tension. The validation is continued by considering two different 3-ply

laminates with stacking sequences of [0◦/90◦/0◦] and [0◦/45◦/0◦] subjected to uniform tension loading, as

Figure 12. Loading and geometry of a composite laminate under uniaxial tension.
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shown in Figure 12. The geometrical and material properties are the same as those of the lamina. Using

(27), the interlayer and shear bond constants are computed as cin = 3.45 × 1023 N/m6 and cis = 1.55 ×
1018 N/m5, respectively. The uniaxial tension loading is applied as a body load of bx = 5.95 × 1010 N/m3

through a volumetric region with a depth of b = 2.54 × 10−3 m. It corresponds to a stress resultant value

of N = 79228.2 N/m along the edges of the laminate. During the solution, failure is not allowed in order

to compare with the analytical solution based on the classical laminate theory.

Figure 13. Horizontal (left) and vertical (right) displacement along the central axis in

the 90◦ ply of the [0◦/90◦/0◦] layup at the end of 8000 time steps.

Figure 14. Horizontal (left) and vertical (right) displacement along the central axis in

the 45◦ ply of the [0◦/45◦/0◦] layup at the end of 8000 time steps.
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Figure 15. Loading and geometry of the unidirectional lamina with a crack under ten-

sion loading.

(a) (b)

(c)

Figure 16. Damage plots for a lamina having a central crack with a fiber orientation of

(a) θ = 0◦, (b) θ = 90◦, and (c) θ = 45◦.
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The variation of the horizontal and vertical displacement components along the central axes in the x-

and y-directions, respectively, for the 90◦ ply of the [0◦/90◦/0◦] layup are computed at the end of 8000

time steps and compared with analytical results, as shown in Figure 13. The comparison of the displace-

ment components in the 45◦ ply of the [0◦/45◦/0◦] layup is shown in Figure 14. For both laminates, the

agreement between the analytical and PD displacements is remarkably close.

5.3. A lamina with a preexisting central crack under tension. In order to demonstrate the failure pre-

diction capability of the PD approach, the same lamina used previously, with a preexisting central crack,

is considered for three different fiber orientations, θ = 0◦, 90◦, and 45◦. As shown in Figure 15, the crack

is aligned with the y-axis and has a length of 2a = 0.01778 m. The lamina is subjected to a velocity

boundary condition of v0 = 2.02 × 10−7 m/s along the edges of the lamina through a volumetric region

with a depth of b = 2.54 × 10−3 m. Failure is only allowed in tension for the fiber and matrix bonds.

The critical stretch for the matrix bond is specified as smt = 0.0135, which can be obtained by using the

critical stretch expression given by (12) for an epoxy material. The procedure for computing this critical

stretch value is demonstrated in Appendix D. For the fiber bond, it is assumed that its critical stretch

value is twice the critical stretch for the matrix bond, that is, sft = 0.027.

As shown in Figure 16, in all cases the crack propagates in the fiber direction referred to as the splitting

mode. Similar experimental observations confirm that current PD model accurately captures the failure

modes.

5.4. Laminates with a preexisting central crack under tension. The failure prediction capability of

the PD theory is further demonstrated by introducing a central crack in the two laminate layups of

[0◦/90◦/0◦] and [0◦/45◦/0◦]. As shown in Figure 17, the crack is aligned with the y-axis and has a length

of 2a = 0.01778 m. The laminates are subjected to a velocity boundary condition of v0 = 2.02×10−7 m/s.

The critical stretch parameters specified for the fiber and matrix bonds are sft = 0.027 and smt = 0.0135,

respectively. The critical stretch and angle parameters for the interlayer and shear bonds are computed

Figure 17. Loading and geometry of a composite laminate with a crack under tension loading.
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analytically using (29) and (30) and are specified as sin = ϕc = 0.087. The procedure for computing

these critical stretch and angle values is explained in Appendix D.

For the [0◦/90◦/0◦] laminate, an “H”-type splitting failure mode is observed for all plies, as shown in

the left column of Figure 18. In this case, 0◦ plies are dominant in the loading direction; therefore, 0◦

plies determine the failure behavior of the laminate. However, in the [0◦/45◦/0◦] laminate, a “Z”-type

failure mode is obtained in all plies due to the presence of a 45◦ ply, as shown in Figure 18, right column.

In both laminates, a delamination failure mode does not occur due to the high critical stretch values of

interlayer and shear bonds with respect to fiber and matrix bonds.

If the bonding plies are weaker, smaller critical stretch and angle values can be specified for interlayer

and shear bonds, respectively. If these parameters are specified as equal to the critical stretch of the

matrix bond, that is, sin = ϕc = 0.0135, the same intralayer failure modes are observed as in the previous

case Figure 19. Also observed is the delamination failure mode between the plies due to the breakage

of shear bonds around crack tip regions, shown in Figure 20. These damage patterns are consistent with

those observed in [Bogert et al. 2006]. Consistent with their experimental observations, the effect of 45◦

ply has essentially a limited effect in the extent of the delamination except to influence the splitting mode

of failure in the 0◦ layers.

6. Conclusions

Based on the numerical results, the peridynamic (PD) approach successfully predicts the damage growth

patterns in fiber-reinforced laminates with preexisting cracks while considering the distinct properties

of the fiber and matrix, as well as of the interlayer material between the plies. The predictions capture

the correct failure mechanisms of matrix cracking, fiber breakage, and delamination without resorting

to any special treatments, and agree with the experimental observations published in the literature. The

simulations also capture failure modes among each ply, which are usually distinct; they heavily depend

on fiber direction, which is realistically exhibited in the current results. It can be concluded that PD

theory is a powerful method that can be employed for failure analysis of composite materials.

Appendix A: PD material constants of a lamina

As shown in Figures A.1 and A.2, a lamina is discretized with a single layer of material points in the

thickness direction. The domain of integral H in (2) becomes a disk with radius δ and thickness t . The

displacements of material points i and p are represented by u(i) and u(p), respectively. The initial relative

position vector between these material points is denoted by

ξ = x(p) − x(i)

and the relative displacement vector is

η = u(p) − u(i).

Similar to the determination of a PD material constant for an isotropic material [Oterkus et al. 2010],

equating the strain energy density of a material point in a lamina computed using the PD theory and

classical continuum mechanics results in the relationships between PD material constants, c f and cm ,

and engineering constants, E1, E2, G12, and ν12, as well as the coefficient of thermal expansion of a
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(a) (a)

(b) (b)

(c) (c)

Figure 18. Matrix bond damage plots for a [0◦/90◦/0◦] laminate (left column) and a

[0◦/45◦/0◦] laminate (right column) with a preexisting crack for smt 6= sin = ϕc: (a)

bottom ply, 0◦; (b) center ply, 90◦ or 45◦, and (c) top ply, 0◦.
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(a) (a)

(b) (b)

(c) (c)

Figure 19. Matrix bond damage plots for a [0◦/90◦/0◦] laminate (left column) and a

[0◦/45◦/0◦] laminate (right column) with a preexisting crack for smt = sin = ϕc: (a)

bottom ply, 0◦; (b) center ply, 90◦ or 45◦, and (c) top ply, 0◦.
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(a) (a)

(b) (b)

(c) (c)

Figure 20. Shear bond damage plots for a [0◦/90◦/0◦] laminate (left column) and a

[0◦/45◦/0◦] laminate (right column) with a preexisting crack for smt = sin = ϕc: (a)

bottom ply, 0◦; (b) center ply, 90◦ or 45◦, and (c) top ply, 0◦.
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Figure A.1. PD horizon for a lamina with a fiber orientation of θ and PD bonds between

material point i and other material points within its horizon.

Figure A.2. PD bond between material points i and p with an orientation of φ.

PD bond, α(φ), in terms of thermal expansion coefficients, αx , αy , and αxy , for a lamina with a fiber

orientation angle of θ .

The strain energy densities are calculated by considering a combined mechanical and thermal loading

condition that results in a deformation, as shown in Figure A.3.

The strain field arising from such deformation can be expressed as

ǫxx = ζ, ǫyy = −νxyζ, γxy = −µxyζ, (A.1a)

where µxy is a parameter defined as

µxy =
mx Ex

E1

, (A.1b)



PERIDYNAMIC ANALYSIS OF FIBER-REINFORCED COMPOSITE MATERIALS 67

Figure A.3. Deformed configuration of an angle lamina subjected to a combined me-

chanical and thermal loading.

in which mx is a nondimensional shear coupling term that relates the normal stress in the x-direction to

the shear strain in the (x-y) plane. This strain field represents the uniaxial tension loading in the absence

of uniform temperature change, that is, 1T = 0. The contribution to the strain field from the uniform

temperature change can be expressed as

ǫ∗
xx = αx1T, ǫ∗

yy = αy1T, γ ∗
xy = αxy1T . (A.2)

Therefore, the contribution to the strain field from the mechanical loading becomes

ǭxx = ζ − αx1T, ǭyy = −νxyζ − αy1T, γ̄xy = −µxyζ − αxy1T . (A.3)

Similarly, the stretch of a PD bond due to mechanical loading between material points i and p, s̄, is

the difference between the total stretch s and thermal stretch s∗ as

s̄ = s − s∗. (A.4)

The mechanical stretch, s̄, can be expressed in terms of the relative displacement of the material points

i and p, arising from the mechanical loading, along the X -direction (the direction of their initial relative

position vector, ξ ) as

s̄ =
ū

(p)

X − ū
(i)
X

ξ
. (A.5)

Figure A.4. Relative displacement between material points i and p.
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As shown in Figure A.4, the relative displacement, (ū
(p)

X − ū
(i)
X ), can be obtained in terms of the

components of the displacement vectors ū(i)T = {ū(i)
x , ū

(i)
y }T and ū(p)T = {ū(p)

x , ū
(p)
y }T of the material

points i and p, respectively. Coordinate transformation from an (x, y) coordinate system to an (X, Y )

coordinate system leads to their explicit expressions as

{

ū
(p)

X − ū
(i)
X

ū
(p)

Y − ū
(i)
Y

}

=
[

cos(φ) sin(φ)

− sin(φ) cos(φ)

]

{

ū
(p)
x − ū

(i)
x

ū
(p)
y − ū

(i)
y

}

. (A.6)

Based on Figure A.5, the relative displacements of the material points i and p in the horizontal and

vertical directions, (ū
(p)
x − ū

(i)
x ) and (ū

(p)
y − ū

(i)
y ), respectively, can also be obtained from

ū(p)
x − ū(i)

x = ǭxxξx +
γ̄xy

2
ξy (A.7a)

ū(p)
y − ū(i)

y =
γ̄xy

2
ξx + ǭyyξy, (A.7b)

where ξx = ξ cos(φ) and ξy = ξ sin(φ) are the components of the initial relative position vector, ξ .

After invoking the mechanical strain components from (A.3) into (A.7a) and (A.7b) results in

ū(p)
x − ū(i)

x = ζ ξ
(

cos φ − µxy

2
sin φ

)

− ξ1T
(

αx cos φ + αxy

2
sin φ

)

, (A.8a)

ū(p)
y − ū(i)

y = −ζ ξ
(

νxy sin φ + µxy

2
cos φ

)

− ξ1T
(

αy sin φ + αxy

2
cos φ

)

. (A.8b)

Using the coordinate transformation given in (A.6) along with (A.8), the mechanical stretch, s̄, can be

obtained in the form

s̄ = ζ
(

cos2 φ − µxy sin φ cos φ − νxy sin2 φ
)

−
(

αx cos2 φ + αy sin2 φ + αxy sin φ cos φ
)

1T . (A.9)

Comparing this expression with (A.4) reveals that the expression in parentheses corresponds to the ther-

mal expansion coefficient of the PD bond, αφ, defined as

αφ = αx cos2 φ + αy sin2 φ + αxy sin φ cos φ. (A.10)

In the absence of thermal loading, that is, 1T = 0◦ in (A.9), the mechanical stretch reduces to

s̄ = s = ζ
(

cos2 φ − µxy sin φ cos φ − νxy sin2 φ
)

, (A.11)

which represents the total stretch due to uniaxial tension. By using (7) in conjunction with (19), the strain

energy density based on PD theory at a material point in a composite lamina can be evaluated as

UPD = 1

2

(

1

2

∫

H

c(φ) cos4(φ)ξ(φ)d H − 2νxy

∫

H

c(φ) sin2(φ) cos2(φ)ξ(φ)d H

)

ζ 2

+ 1

2

(

−2µxy

∫

H

c(φ) sin(φ) cos3(φ)ξ(φ)d H + 2νxyµxy

∫

H

c(φ) sin3(φ) cos(φ)ξ(φ)d H

)

ζ 2

+ 1

2

(

ν2
xy

∫

H

c(φ) sin4(φ)ξ(φ)d H + µ2
xy

∫

H

c(φ) sin2(φ) cos2(φ)ξ(φ)d H

)

ζ 2. (A.12)
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(a) (b)

(c) (d)

Figure A.5. Relative positions of points i and p: (a) undeformed state, (b) extension

and simple shear in the x-direction, (c) extension and simple shear in the y-direction,

and (d) extensions in x- and y-directions and pure shear.

Using (14) in conjunction with (16), the strain energy density of a material point based on classical

continuum mechanics can be written as

UE = 1
2
(Q11 − 2νxy Q12 − 2µxy Q16 + 2νxyµxy Q26 + ν2

xy Q22 + µ2
xy Q66)ζ

2, (A.13)
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in which

Q11 = Q11 cos4(θ) + Q22 sin4(θ) + 2(Q12 + 2Q66) sin2(θ) cos2(θ), (A.14a)

Q12 = (Q11 + Q22 − 4Q66) sin2(θ) cos2(θ) + Q12

(

cos4(θ) + sin4(θ)
)

, (A.14b)

Q16 = (Q11 − Q12 − 2Q66) cos3(θ) sin(θ) − (Q22 − Q12 − 2Q66) sin3(θ) cos(θ), (A.14c)

Q22 = Q11 sin4(θ) + Q22 cos4(θ) + 2(Q12 + 2Q66) sin2(θ) cos2(θ), (A.14d)

Q26 = (Q11 − Q12 − 2Q66) cos(θ) sin3(θ) − (Q22 − Q12 − 2Q66) cos3(θ) sin(θ), (A.14e)

Q66 = (Q11 + Q22 − 2Q12 − 2Q66) sin2(θ) cos2(θ) + Q66

(

sin4(θ) + cos4(θ)
)

, (A.14f)

with

Q11 =
E1

1 − ν21ν12

, Q12 =
ν12 E2

1 − ν21ν12

, Q22 =
E2

1 − ν21ν12

, Q66 = G12, (A.15a)

provided that

1 − ν12ν21 > 0 (A.15b)

and subject to

ν12

E1

=
ν21

E2

. (A.15c)

Equating the coefficients of like terms in the strain energy density expressions from classical contin-

uum theory, (A.13) and PD theory, (A.12), leads to

Q11 = 1

2

∫

H

c(φ) cos4(φ)ξ(φ)d H, (A.16a)

Q12 = 1

2

∫

H

c(φ) sin2(φ) cos2(φ)ξ(φ)d H, (A.16b)

Q16 = 1

2

∫

H

c(φ) sin(φ) cos3(φ)ξ(φ)d H, (A.16c)

Q22 = 1

2

∫

H

c(φ) sin4(φ)ξ(φ)d H, (A.16d)

Q26 = 1

2

∫

H

c(φ) sin3(φ) cos(φ)ξ(φ)d H, (A.16e)

Q66 = 1

2

∫

H

c(φ) sin2(φ) cos2(φ)ξ(φ)d H. (A.16f)
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Using the approximation given in (20), (A.16) can be rewritten in the form

Q11 = 1

2

Q
∑

q=1

c f cos4(θ)ξqi Vq + t

2

∫ 2π

0

∫ δ

0

cm

(

cos4(φ)ξ
)

ξ dξdφ, (A.17a)

Q12 = 1

2

Q
∑

q=1

c f sin2(θ) cos2(θ)ξqi Vq + t

2

∫ 2π

0

∫ δ

0

cm

(

sin2(φ) cos2(φ)ξ
)

ξ dξdφ, (A.17b)

Q16 = 1

2

Q
∑

q=1

c f sin(θ) cos3(θ)ξqi Vq + t

2

∫ 2π

0

∫ δ

0

cm

(

sin(φ) cos3(φ)ξ
)

ξ dξdφ, (A.17c)

Q22 = 1

2

Q
∑

q=1

c f sin4(θ)ξqi Vq + t

2

∫ 2π

0

∫ δ

0

cm

(

sin4(φ)ξ
)

ξ dξdφ, (A.17d)

Q26 = 1

2

Q
∑

q=1

c f sin3(θ) cos(θ)ξqi Vq + t

2

∫ 2π

0

∫ δ

0

cm

(

sin3(φ) cos(φ)ξ
)

ξ dξdφ, (A.17e)

Q66 = 1

2

Q
∑

q=1

c f sin2(θ) cos2(θ)ξqi Vq + t

2

∫ 2π

0

∫ δ

0

cm

(

sin2(φ) cos2(φ)ξ
)

ξ dξdφ. (A.17f)

Performing the integrations in (A.17) results in the relations between the engineering constants and

the PD material constants, c f and cm , as

Q11 =
(

β cos4(θ)
)

c f + π tδ3

8
cm, (A.18a)

Q12 =
(

β sin2(θ) cos2(θ)
)

c f + π tδ3

24
cm, (A.18b)

Q16 =
(

β sin(θ) cos3(θ)
)

c f , (A.18c)

Q22 =
(

β sin4(θ)
)

c f + π tδ3

8
cm, (A.18d)

Q26 =
(

β sin3(θ) cos(θ)
)

c f , (A.18e)

Q66 =
(

β sin2(θ) cos2(θ)
)

c f + π tδ3

24
cm, (A.18f)

where

β = 1

2

Q
∑

q=1

ξqi Vq . (A.19)

Examination of these equations show that the right-hand sides of (A.18b) and (A.18f) are the same,

requiring that

Q12 = Q66. (A.20)
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Substituting from (A.14b) and (A.14f) into (A.20) leads to

Q12 = Q66. (A.21)

Examination of (A.18c) and (A.18e) reveals that

βc f =
Q16

sin(θ) cos3(θ)
=

Q26

sin3(θ) cos(θ)
. (A.22)

Invoking the requirement given by (A.21) into (A.14c) and (A.14e) renders this equation as

(Q11 − 3Q12) − (Q22 − 3Q12)
sin2(θ)

cos2(θ)
= (Q11 − 3Q12) − (Q22 − 3Q12)

cos2(θ)

sin2(θ)
. (A.23)

For this equation to be valid for all fiber orientation, it is required that

Q22 = 3Q12. (A.24)

After invoking the requirements given by (A.21) and (A.24) into (A.14a) and (A.14d), subtracting (A.18d)

from (A.18a) results in

c f =
Q11 − Q22

β
. (A.25)

Similarly, invoking the requirements given by (A.21) and (A.24) into (A.14a) and substituting from

(A.25) into (A.18a) leads to

cm =
24Q12

π tδ3
. (A.26)

The expressions for the bond constants, c f and cm , given by (A.25) and (A.26), as well as the relations

given (A.21) and (A.24), can be rewritten in terms of the engineering constants as

c f =
2E1(E1 − E2)

(E1 − 1
9

E2)
(
∑Q

q=1 ξqi Vq

)
, cm =

8E1 E2

(E1 − 1
9

E2)π tδ3
, G12 =

ν12 E2

1 − ν21ν12

, ν12 = 1

3
. (A.27)

Appendix B: Surface correction factors for a composite lamina

The surface correction factors for fiber and matrix bonds are determined by computing the strain energy

density at two distinct material points under uniaxial strain conditions in the x-, and y-directions, that

is, ǫxx 6= 0, ǫyy = γxy = 0 and ǫyy 6= 0, ǫxx = γxy = 0. The first material point located near an external

surface has a truncated horizon, as shown in Figure B.1. The second material point is located far away

from an external boundary and is completely embedded in a single lamina, as shown in Figure B.2.

The strain energy density of a material point at x is decomposed as

W = W( f ) + W(m), (B.1)

where W( f )(x) and W(m)(x) represent the contribution of fiber bonds and matrix bonds, respectively.

First, uniaxial strain loading is applied in the x-direction, and the resulting displacement field can be

expressed at material point x as

uT (x) =
{

∂u∗
x

∂x
x 0

}

, (B.2)
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Figure B.1. Material point x with a truncated horizon in a lamina.

Figure B.2. Material point x far away from external surfaces of a lamina.

in which ∂u∗
x/∂x is the applied constant displacement gradient. The strain energy density, Wx(x), due

to this applied displacement gradient is expressed as

Wx(x) =
∫

H

w(u′ − u, x′ − x)d H, (B.3)

where H represents the horizon of the material point at x and w represents the strain energy density

of the PD bond between material points at x and x′. The strain energy density, Wy(x), of the material

point at x can also be computed due to uniaxial strain in the y-direction. The subscripts xand y denote

uniaxial strain loading condition in x- and y-directions, respectively.

In accordance with (B.1), the strain energy density at material point x due to the applied uniaxial

strain loading in x- and y-directions can be decomposed as

Wx = W( f )x + W(m)x , Wy = W( f )y + W(m)y . (B.4)
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With this decomposition, the strain energy density vectors, W( f )(x) and W(m)(x), can be formed as

W T
( f )(x) =

{

W( f )x W( f )y

}

, W T
(m)(x) =

{

W(m)x W(m)y

}

, (B.5)

where W( f )(x) and W(m)(x) represent the contribution of fiber bonds and matrix bonds to the strain

energy density of the material point at x, respectively.

For both fiber and matrix bonds, the correction factors corresponding to the two loading directions

can be defined as the ratio of the strain energy density of the material point embedded far away from an

external surface in a lamina, W
(∞)

(β)α, to that of a material point near an external surface with a truncated

horizon, W(β)α , with α = x, y and β = f, m. For a material point whose horizon is completely embedded

in a single lamina, the strain energy densities for the uniaxial strain loading condition in the x- and

y-directions can be computed using classical continuum mechanics as

W (∞)
x = 1

2
Q11ζ

2, W (∞)
y = 1

2
Q22ζ

2, (B.6)

where Q11 and Q22 are the coefficients of the transformed reduced stiffness matrix Q [Kaw 2006]. The

strain energy densities given by (B.6) can be decomposed into two parts which are associated with the

deformations of fiber and matrix materials, that is, W
(∞)

(β)α, with α = x, y and β = f, m, as

W (∞)
x = W

(∞)

( f )x + W
(∞)

(m)x , W (∞)
y = W

(∞)

( f )y + W
(∞)

(m)y . (B.7)

However, the explicit form of this decomposition is not known because each lamina is treated as homo-

geneous and orthotropic within the realm of classical continuum mechanics. Therefore, this decomposi-

tion is assumed similar in form to that of between c f and cm as given by (A.18a) and (A.18d), respectively.

This assumption leads to the following decomposition of strain energies given by (B.6) in the form

W (∞)
x = W

(∞)

( f ) cos4(θ) + W
(∞)

(m) W (∞)
y = W

(∞)

( f ) sin4(θ) + W
(∞)

(m) , (B.8)

where W
(∞)

( f ) and W
(∞)

(m) , representing the contribution of fiber and matrix materials, respectively, are to

be determined. Substituting for the strain energy density expressions given by (B.8) in (B.6) permits the

determination of W
(∞)

( f ) and W
(∞)

(m) in terms of the material constants Q11 and Q22 as

W
(∞)

( f ) = 1

2

{

(Q11 − Q22)

cos4(θ) − sin4(θ)

}

ζ 2, W
(∞)

(m) = 1

2

{

(

Q22 cos4(θ) − Q11 sin4(θ)
)

cos4(θ) − sin4(θ)

}

ζ 2. (B.9)

The final form of the terms, W
(∞)

(β)α, with α = x, y and β = f, m, in (B.7) can be written as

W
(∞)

( f )x = 1

2

{

(Q11 − Q22) cos4(θ)

cos4(θ) − sin4(θ)

}

ζ 2, (B.10a)

W
(∞)

(m)x = 1

2

{

(

Q22 cos4(θ) − Q11 sin4(θ)
)

cos4(θ) − sin4(θ)

}

ζ 2, (B.10b)

W
(∞)

( f )y = 1

2

{

(Q11 − Q22) sin4(θ)

cos4(θ) − sin4(θ)

}

ζ 2, (B.10c)

W
(∞)

(m)y = 1

2

{

(

Q22 cos4(θ) − Q11 sin4(θ)
)

cos4(θ) − sin4(θ)

}

ζ 2. (B.10d)
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Figure B.3. Construction of an ellipse for surface correction factors.

With these values, a vector of correction factors for fiber and matrix bonds at material point x can be

formed as

g(β)(x) = {g(β)x , g(β)y}T = {W (∞)

(β)x/W(β)x , W ∞
(β)y/W(β)y}T , with β = f, m. (B.11)

These correction factors are only based on loading in the x- and y-directions. However, they can be used

as the principal values of an ellipse in order to approximate the surface correction factor in an arbitrary

direction of unit vector, n (Figure B.3).

In the case of a surface correction factor for a PD bond between material points x(i) and x( j) under

general loading conditions, shown in Figure B.4a, the correction factors in the direction of the relative

position vector, n = ξ/|ξ | = {nx , ny}T , in the undeformed configuration between these two material

points, can be obtained in a similar manner.

A vector of correction factors at material points, x(i) and x( j) can be formed as

g(β)(i)(x(i)) = {g(β)x(i), g(β)y(i)}T = {W (∞)

(β)x/W(β)x(i), W
(∞)

(β)y/W(β)y(i)}T , (B.12)

g(β)( j)(x( j)) = {g(β)x( j), g(β)y( j)}T = {W (∞)

(β)x/W(β)x( j), W
(∞)

(β)y/W(β)y( j)}T . (B.13)

(a) (b)

Figure B.4. (a) PD bond between material points at x(i) and x( j) (left) and (b) the ellipse

for the surface correction factor.
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These correction factors are, in general, different at material points x(i) and x( j). Therefore, the correction

factor for a PD bond between material points x(i) and x( j) can be obtained by their mean values as

ḡ(β)(i)( j) = {ḡ(β)(i)( j)x , ḡ(β)(i)( j)y}T = (g(β)(i) + g(β)( j))/2, (B.14)

which can be used as the principal values of an ellipse, as shown in Figure B.4. The intersection of the

ellipse and a relative position vector of material points x(i) and x( j), n, provides the correction factors as

G(β)(i)( j) =
(

[nx/ḡ(β)(i)( j)x ]2 + [ny/ḡ(β)(i)( j)y]2
)− 1

2 . (B.15)

After considering the surface effects, the discrete form of the equations of motion given in (13) is

corrected as

ρ(x(i))ü(x(i), t)=
M
∑

j=1

(

a(i)( j)G( f )(i)( j) f
(

u(x( j), t) − u(x(i), t), x( j) − x(i)

)

+
b(i)( j)G(m)(i)( j) f

(

u(x( j), t) − u(x(i), t), x( j) − x(i)

)

)

V( j)+b(x(i), t). (B.16)

where the coefficients a(i)( j) and b(i)( j) take a value of either 1 or 0 if the interaction between material

points x(i) and x( j) is a fiber bond or a matrix bond, respectively.

Based on numerical experimentation with varying values of displacement gradients, there is no sig-

nificant effect on the surface corrections. Thus, the displacement gradient ∂u∗
x/∂x is assigned a value of

0.001.

Appendix C: PD interlayer and shear bond constants of a laminate

The interlayer bond constant, cin, and the shear bond constant, cis, shown in Figure C.1, can be expressed

in terms of engineering constants based on the transverse normal and shear deformation response of

the isotropic matrix material by equating the total strain energy density of interlayer and shear bonds

Figure C.1. Interlayer and shear bonds between neighboring plies (only some of the

interactions are depicted explicitly for clarity).
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Figure C.2. Shear bonds between material points b and a, and between material points

d and c, in both undeformed and deformed configurations.

calculated from PD theory and classical continuum mechanics. The strain energy density of the interlayer

bonds associated with the material point a can be computed by summing the strain energy density of the

two interlayer bonds between material points d and e and the material point a (Figure C.1). It can be

readily obtained by multiplying the micropotential given in (8a) with the material volume.

Furthermore, the strain energy density of shear bonds can be obtained by using (28)2 in conjunction

with (7). Thus, the total strain energy density due to the interlayer and shear bonds can be computed as

UPD = 1

2

∑

j=d,e

cins2
jaξ ja

2
V j + 1

2

∫

H

cisϕ
2

2
d H. (C.1)

The expression for the shear angle in (C.1) is obtained by determining the average shear angle inside

the quadrilateral formed by material points a, b, c, and d , as shown in Figure C.2. Averaging is achieved

by computing the shear angles along the lines between material points a and d, and b and c, which are

defined as ϕda and ϕbc, respectively.

These shear angles are obtained from the ratio of the displacements uda and ubc of material points d

and b with respect to a and c, respectively, to the ply thickness, t , as

ϕda =
uda

t
, ϕbc =

ubc

t
. (C.2)

The relative displacements uda and ubc are approximated as the change in length of the bonds between

material points d and c, and b and a, respectively,

uda = −
(

|ξdc + ηdc| − |ξdc|
)

, (C.3a)

ubc = |ξba + ηba| − |ξba|. (C.3b)

Note that the minus sign in (C.3a) arises due to the contraction of the shear bond between material points

d and c, whereas the bond between material points b and a extends. The average value of the shear

strains ϕda and ϕbc results in

ϕ =
ϕda + ϕbc

2
=

(|ξba + ηba| − |ξba|) − (|ξdc + ηdc| − |ξdc|)
2t

, (C.4)
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Figure C.3. A composite laminate subjected to isotropic expansion loading.

where ξba and ξdc correspond to the bond vectors between material points b and a, and between material

points d and c, respectively. Similarly, the vectors ηba and ηdc are the relative displacement vectors

between material points b and a, and between material points d and c, respectively.

In order to obtain the interlayer bond constant, the laminate is subjected to an isotropic expansion

loading of s = ζ , as shown in Figure C.3.

For a material point, a, located in the k-th ply of the laminate (Figure C.4), the contributions of the

interlayer and shear bonds to the strain energy density of the material point due to isotropic expansion

loading can be calculated using (C.1)

UPD = 1

2

∑

j=d,e

cins2
jaξ ja

2
V j . (C.5)

Figure C.4. Deformation of interlayer and shear bonds between neighboring plies (only

some of the interactions are depicted explicitly for clarity).
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Figure C.5. A composite laminate subjected to simple shear loading.

Note that the shear strain, ϕ, defined in (C.2) has a zero value for this loading condition because the

relative displacements uda and ubc given in (C.3a) and (C.3b) are equal in magnitude with opposite

signs. Therefore, shear bonds do not have any contribution to the strain energy density for this loading

condition. Both of the bond lengths ξda and ξea are equivalent to the ply thickness, t . Therefore, for this

loading condition, (C.5) can be evaluated as

UPD =
cinζ

2tV

2
, (C.6)

where V is equal to the volume of material points d and e, that is, V = Vd = Ve.

The corresponding strain energy density of the material point for the same loading condition can be

calculated using classical continuum mechanics as

UE = 1
2

Emζ 2, (C.7)

with Em representing the elastic modulus of the matrix material. Equating strain energy densities from

(C.6) and (C.7) results in the relation between the interlayer bond constant, cin, as

cin =
Em

tV
. (C.8)

The shear bond constant, cis, can be evaluated similarly. In this case, the laminate is subjected to a

simple shear loading of γ = ζ , as shown in Figure C.5. For this loading condition, the interlayer bonds

do not extend (Figure C.6). Therefore, their stretch values are zero. Hence, the interlayer bonds do not

contribute to the strain energy density of the laminate.

As shown in Figure C.7, the original and deformed lengths of the shear bond between material points

b and a can be expressed as

|ξba| =
√

ℓ2 + t2, (C.9a)

|ξba + ηba| =
√

ℓ̄2 + t2, (C.9b)

where t is the ply thickness.
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Figure C.6. Deformation of interlayer and shear bonds between neighboring plies (only

some of the interactions are depicted explicitly for clarity).

Figure C.7. Shear bonds between material points b and a, and between material points

d and c, in both undeformed and deformed configurations.

For the triangle depicted in Figure C.7, by utilizing the law of cosines, the length of the radial com-

ponent of the deformed bond vector, ℓ̄, can be written in terms of the length of the radial component of

the original bond vector, ℓ, and magnitude of displacement vector, ζ t , as

ℓ̄2 = ℓ2 + (ζ t)2 − 2ℓζ t cos(π − θ). (C.10)

After substituting (C.10) in (C.9b), the deformed bond length can be rewritten as

|ξba + ηba| =
√

ℓ2 + t2 + 2ℓζ t cos(θ). (C.11)
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In deriving (C.11), the (ζ t)2 term is neglected with respect to t2 because ζ is much less than unity. The

square root term on the right-hand side of (C.11) can be further simplified by using the square root

approximation
√

N 2 + d = N + d

2N
, (C.12)

where d ≪ N . Therefore, the deformed bond length expression given in (C.11) can be rewritten as

|ξba + ηba| =
√

ℓ2 + t2 +
ℓζ t cos(θ)
√

ℓ2 + t2
. (C.13)

The original and deformed bond lengths between material points d and c can be computed similarly as

|ξdc| =
√

ℓ2 + t2, (C.14a)

|ξdc + ηdc| =
√

ℓ2 + t2 −
ℓζ t cos(θ)
√

ℓ2 + t2
. (C.14b)

Therefore, the shear angle for this loading condition can be computed using (C.4) as

ϕ =
ℓζ cos(θ)
√

ℓ2 + t2
. (C.15)

After substituting the shear angle expression given in (C.15) to the strain energy density expression given

in (C.1), performing the integration results in

UPD =
{

πcs t

4

(

δ2 + t2 ln
t2

t2+δ2

)

}

ζ 2. (C.16)

The corresponding strain energy density based on classical continuum mechanics can be computed as

UCCM = 1
2

Gmζ 2. (C.17)

After equating the strain energy densities calculated from PD theory and classical continuum mechanics,

that is, (C.16) and (C.17), leads to the explicit form of the shear bond constant in terms of the shear

modulus of the matrix material, Gm ,

cis =
2Gm

π t

1
(

δ2 + t2 ln
(

t2

δ2+t2

))

. (C.18)

Appendix D: Critical stretch values for bond constants

The critical stretch value for fiber and matrix bonds can be obtained by performing various experiments

as explained in [Oterkus et al. 2012]. In this study, for simplicity, the matrix bond constant is evaluated

by using the critical stretch expression given by (12) for an isotropic matrix material, that is, epoxy.

The derivation of this critical stretch expression is given by [Silling and Askari 2005]. The elastic,

bulk, and shear moduli of the epoxy material are specified as Em = 3.792 GPa, κm = 3.792 GPa, and

Gm = 1.422 GPa, respectively. It has a critical energy release rate of GIC = 2.37×10−3 MPa-m. Therefore,
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Figure D.8. Interlayer and shear bonds between material point x and other material

points located at the (k+1)-th ply.

the critical stretch expression of the matrix bond for a horizon value of δ = 1.92 × 10−3 m can be

computed as

smt =

√

5GIC

9κmδ
= 0.0135. (D.1)

The critical stretch for the interlayer bond, sin, can be computed by equating the energy required to

break an interlayer bond between material point x located at the k-th ply and material point x′ located at

the (k+1)-th ply, shown in Figure D.8, to the mode-I critical energy release rate of the material GIC as

t

(

cins2
int

2

)

V = GIC, (D.2)

where t and V represent the thickness of the ply and the volume of the material point, x′, respectively.

Using the relation given by (D.2) in conjunction with the bond constant expression given by (27)1

results in the critical stretch expression for the interlayer bond as

sin =

√

2GIC

t Em

. (D.3)

This critical stretch value for epoxy material with a ply thickness of t = 1.651 × 10−4 m is computed as

sin = 0.087.

As opposed to interlayer bonds, multiple shear bonds exist between the material point x and other

material points in the (k+1)-th ply, as shown in Figure D.8. The failure of these shear bonds corresponds

to a mode-II type of failure. Therefore, the energy required to break all of these shear bonds can be

equated to the mode-II critical energy release rate of the material, GIIC, as

t

∫

H

cisϕ
2
c

2
d H = GIIC, (D.4)

where ϕc is the critical shear angle. This equation is rewritten, after splitting the domain of integration, as

t

(

t
cisϕ

2
c

2

∫ δ

0

ℓdℓ

∫ 2π

0

dφ

)

= GII. (D.5)
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Performing the integrations results in the critical shear angle expression:

ϕc =

√

GIIC

tGm

. (D.6)

As explained in [Araki et al. 2005], the value of the mode-II critical energy release rate of the material,

GIIC, is dependent on the postcuring temperature of epoxy. Therefore, it is assumed that GIIC is equal

to 3
4
GIC, which results in the critical shear angle, ϕc, being equal to the critical stretch, sin, that is,

ϕc = sin = 0.087.
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