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By using the higher-order geodesic deviation equations for charged particles, we apply the method described by Kerner et.al. to
calculate the perihelion advance and trajectory of charged test particles in the Reissner-Nordstrom space-time.�e e	ect of charge
on the perihelion advance is studied and we compared the results with those obtained earlier via the perturbation method. �e
advantage of this approximation method is to provide a way to calculate the perihelion advance and orbit of planets in the vicinity
of massive and compact objects without considering Newtonian and post-Newtonian approximations.

1. Introduction

�eproblem of planetsmotion in general relativity is the sub-
ject of many studies in which the planet has been considered
as a test particle moving along its geodesic [1]. Einstein made
the 
rst calculations in this regard for the planet Mercury in
the Schwarzschild space-time which resulted in the equation
for the perihelion advanceΔ� = 6���� (1 − 	2) , (1)

where � is the gravitational constant, � is the mass of
the central body, � is the length of semi-major axis for
planet’s orbit, and 	 is eccentricity. Derivation of perihelion
advance by using this method leads to a quasielliptic integral
whose calculation is very di�cult, which is then evaluated
a�er expanding the integrand in a power series of the small

parameter ��/��2. For the low-eccentricity trajectories of
planets, one can obtain the following approximate formula for
the perihelion advance:Δ� = 6���� (1 − 	2) ≃ 6���� (1 + 	2 + 	4 + 	6 + ⋅ ⋅ ⋅) , (2)

even for the case of Mercury up to second-order of eccentric-
ity, the perihelion advance di	ers only by 0.18% error from
its actual value [2]. It should be noted again that Einstein’s

method is only valid for the small values of ��/��2.
In what follows, we show that one can obtain the same

results (without taking the complex integrals) only by consid-
ering the successive approximations around a circular orbit
in the equatorial plane as the initial geodesic with constant
angular velocity, which leads to an iterative process of the
solving the geodesic deviation equations of 
rst, second, and

higher-orders [3–5]. Here, instead of the G�/��2 parameter
the eccentricity, 	, plays the role of the small parameter which
is controlling the maximal deviation from the initial circular

orbit. In this method, we have no constraint on ��/��2
anymore. So, one can determine the value of perihelion
advance for largemass objects andwrite it in the higher-order

of ��/��2.
�eorbitalmotions of neutral test particles via the higher-

order geodesic deviation equations for Schwarzschild and
Kerr metrics are studied in [2] and [4], respectively. Also,
for massive charged particles in Reissner-Nordstrom metric,
geodesic deviations have been extracted up to 
rst order [6].
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In this paper, by using the higher-order geodesic deviations
for charged particles [7], we are going to obtain the orbital
motion and trajectory of charged particles. We also expect
that our calculations reduce to similar one in Schwarzschild
metric [2] by elimination of charge. In fact, we generalize
the novel method used in [2] for neutral particles in the
Schwarzschildmetric to the charged particles in the Reissner-
Nordstrommetric. Recently, an analytical computation of the
perihelion advance in general relativity via the Homotopy
perturbationmethod has been proposed in [8]. Also, one can
study the perihelion advance of planets in general relativity
and modi
ed theories of gravity by using di	erent methods
in [8–21].

�e structure of the paper is as follows. In Section 2, by
using the approximationmethod introduced in [7], we derive
the higher-order geodesic deviation for charged particles. By
using the 
rst-order geodesic deviation equations, the orbital
motion of charged particles is found in Section 3. In Section 4,
we obtain the second-order geodesic deviations and derive
the semi-major axis, eccentricity, and trajectory using the
Taylor expansion around a central geodesic. �e obtained
results are discussed in Section 5.

2. The Higher-Order Geodesic
Deviation Method

As is mentioned above, the higher-order geodesic deviation
equations for charged particles have been derived in [7] for
the 
rst time. In this section, we are going to derive the
geometrical set-up used in our work. �e geodesic deviation
equation for charged particles is [6]

�2����2 = ���]����]�� + ����
]

��]�� + ��∇���]�]��, (3)

where�/�� is the covariant derivative along the curve and ��
is the separation vector between two particular neighboring
geodesics (see Figure 1). Here, �� is the tangent vector to the
geodesic, ���]� is the curvature tensor of space-time, � and� are charge and mass of particles (particles have the same
charge-to-mass ratio, �/�), and ��

]
is the electromagnetic

force acting on the charged particles. For neutral particles, the
above equation reduces to the following geodesic deviation
[22, 23]:

�2����2 = ���]����]��, (4)

which is the well-known equation (Jacobi equation) in
general relativity. We introduce the four-velocity ��(�, �) =���/�� as the time-like tangent vector to the world-line and��(�, �) = ���/�� as the deviation four-vector as well.
Practically it is o�en convenient to work with the nontrivial
covariant form. It can be obtained by replacement of the
trivial expressions for the covariant derivatives, the Riemann

curvature tensor, and use of the equation of motion in the
le�-hand side of (3) [6]

�2����2 + (2Γ��]�� − ����
]
) ��]��+ (�����

]
Γ��� − �����

]
���) �] = 0. (5)

�e geodesic deviation can be used to compose geodesics��(�) near a given reference geodesic ��0 (�), by an iterative
method as follows. Considering this, one can write Taylor
expansion of ��(�, �) around the central geodesic and obtain
the 
rst-order and higher-order geodesic deviations for
charged particles

�� (�, �) = �� (�, �0) + (� − �0) ����� !!!!!!!!(�,�0)+ 12! (� − �0)2 �2����2 !!!!!!!!!(�,�0) + ⋅ ⋅ ⋅ ,
(6)

and our aim is to obtain an expression in terms of the
deviation vector. As shown in the above equation, the second
term, ���/��, is the de
nition of deviation vector and shows
the 
rst-order geodesic deviation. But in the third term,�2��/��2 is not vector anymore. �erefore, we de
ne the
vector #� as follows:

#� = ����� = ����� + Γ��]���], (7)

to change �2��/��2 into the expression showing the second-
order geodesic deviation. By substituting (7) into (6), one can
obtain the expression in terms of the order of vector deviation

�� (�, �) = �� (�, �0) + (� − �0) ��+ 12! (� − �0)2 (#� − Γ��]���]) + ⋅ ⋅ ⋅ (8)

In the above expression, one can make some changes for
simpli
cation. We consider $	��(�) as �-th order of geodesic
deviation and by assuming (� − �0) as a small quantity, %; we
rewrite (8) as follows:

�� (�, �) = ��0 (�) + $�� (�) + 12$2�� (�) + ⋅ ⋅ ⋅ , (9)

where $��(�) = %��(�) is the 
rst-order geodesic deviation
and $2��(�) = %2(#� − Γ�

]��]��) is the second-order geodesic
deviation. In order to obtain the second-order geodesic
deviation equation, one can apply the de
nition of the
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covariant derivative on (7)(for more details see [7] and
appendix therein)�2#���2 + ��
���
����= (��
��;] − ���]
;�) �����
�]+ 4��
������
�� �� + �����
]�
������]

+ ����
;�����
�� + ����
�2�
��2 .
(10)

Similar to the 
rst-order geodesic deviation (5), we can write
(10) in the nonmanifest covariant form�2#���2 + (2Γ��]�� − ����

]
) �#]��+ (�����

]
Γ��� − �����

]
���) #] =+ (Γ��]��Γ��
 + 2Γ����
Γ��] − �]��Γ��
)⋅ (���
���] − ���]���
)

+ 4 (��Γ��
 + Γ]�
Γ��]) ����� (���
 − �
��) + ��⋅ �]���� (������] − ��
�]Γ
�� − ����]Γ���) + 2 ��⋅ �� ��]�� (����] − ���Γ��]) .

(11)

As it clears, the le�-hand side of the second-order geodesic
deviation equation (11) is same to the le�-hand side of (5). As
in the case of the second-order geodesic deviation, the higher-
order geodesic deviation equations have the same le�-hand
side and di	erent right-hand side. A nonmanifest covariant
form of the third-order geodesic deviation equation is given
in Appendix A.

�e successive approximations to the exact geodesic (b)
have been shown in Figure 1. Lines (c) and (d) represent
the 
rst-order approximation, i.e., ��(�, �) = ��(�, �0) +(� − �0)(���/��)|�0 , and the second-order approximation,

i.e., ��(�, �) = ��(�, �0) + (� − �0)(���/��)|�0 + (1/2!)(� −�0)2(�2��/��2)|�0 , respectively.
In the next section,we are going to obtain the components

of �� from the 
rst-order geodesic deviation, (5), for a circular
orbit of charged particles.�en by substituting them into (11),
we can solve the second-order geodesic deviation equations,#�. Finally, by substituting �� and #� into (8), we will 
nd
the relativistic trajectory of charged particles in Reissner-
Nordstrom space-time.

3. The First-Order Geodesic Deviation

3.1. Circular Orbits in Reissner-Nordstrom Metric. �e
Reissner-Nordstrom metric is a static exact solution of the

u(s1)

n(s1)

x(s1, 0) x(s1, p0)

u(s0)

n(s0)

x(s0, 0)

x(s0, p0)

(a) (b) (c)(d)

N

N

Figure 1: Deviation of two nearby geodesics in a gravitational 
eld.
Lines (a) and (b) represent the central geodesic � = 0 and the
nearby geodesic � = �0, respectively; lines (c) and (d) show the
corresponding 
rst and second-order approximations to the nearby
geodesic (b). Also, �� is the unit tangent vector to the central world-
line, �� is the separation vector to the curve � = �*��-, and 3� =#� − Γ��
���
 is the second-order geodesic deviation [24].

Einstein-Maxwell equations which describes the space-time
around a spherically nonrotating charged source with mass� and charge 5 (in the natural coordinate with � = 1 and� = 1) ��2 = −7 (�) �-2 + 17 (�)��2+ �2 (�92 + sin2 (9) ��2) , (12)

where

7 (�) = 1 − 2�� + 52�2 . (13)

Also, the vector potential and the electromagnetic 
eld of
Maxwell’s equations are [6]

: = :���� = − 54���-,� = �: = 54��2 �� ∧ �-. (14)

By assuming that �2 > 52, we are going to obtain the
equation of motion for test particles which have mass � and
charge �. Now, we consider a circular orbit with a constant
radius �. On the other hand, we know that the angular
momentum of particles which are bounded to the spherically
symmetric condition is limited to the equatorial plane. For
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this purpose and for simplicity, we limit the space to the plane
of 9 = �/2 in which the angular momentum is in the <
direction. By using of the Euler-Lagrange equation, one can
lead to the following constants of motion:���� = ?�2 , (15)�-�� = @ − �5/4���1 − 2�/� + 52/�2 , (16)

where ? = A/� is the angularmomentumper unitmass, �̇ = C
is the angular velocity, and @ is the energy per unit mass.

Finally, from (12), (15), and (16) one obtains two con-
straints, namely, the conservation of the absolute four-
velocity and the radial acceleration. Now, due to the fact that
the radius of the circular orbit is constant (� = �), two
mentioned constraints vanish at all times and this creates two
relations between �, ?, and @ as follows:

(@ − �54���)2 = (1 − 2�� + 52�2 )(1 + ?2�2) , (17)

[?2� −�(1 + 3?2�2 ) + 52� (1 + 2?2�2 )]2= ( �54��)2 (1 + ?2�2)(1 − 2�� + 52�2 ) . (18)

As we expect by eliminating charge, all obtained equations
reduce to the similar equations in the Schwarzschild metric.

In summary, we obtain the following four-velocity vector for
a circular orbit with radius � in an equatorial plane:

� = �-�� = @ − �5/4���1 − 2�/� + 52/�2 ,�� = ���� = 0,
�� = �9�� = 0,
�� = ���� = C0 = ?�2 .

(19)

In the next subsection, we obtain the orbital motion by using
the higher-order geodesic deviationmethod and compare the
results with the perturbation method.

3.2. First-Order Geodesic Deviation around the Circular
Orbits. Now let us calculate the 
rst-order geodesic deviation

for the components �, ��, ��, and ��, by using of (5) in a
matrix form

(�11 �12 �13 �14�21 �22 �23 �24�31 �32 �33 �34�41 �42 �43 �44)(�������) =(0000) , (20)

where the matrix elements are given by

�11 = �2��2 ,�12 = 2�@ (�/� − 52/�2) − (�5/4��) (1 − 52/�2)�2 (1 − 2�/� + 52/�2)2 ��� ,�13 = �14 = 0,
�22 = �2��2 − ?2�4 (1 − 52�2 ) + (−2�/� + 6�2/�2 + 352/�2 − 12�52/�3 + 554/�4) (@ − �5/4���)2�2 (1 − 2�/� + 52/�2)2 − ����,��,
�21 = 2� (�� − 52�2 )(@ − �54���) ��� − ���� ��� ,�23 = 0,
�24 = −2?� (1 − 2�� + 52�2 ) ��� ,�31 = �32 = �34 = 0,
�33 = �2��2 + ?2�4 ,�41 = �43 = 0,�42 = 2?�3 ��� ,�44 = �2��2 .

(21)
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As can be seen, the geodesic deviation equation of 9 com-
ponent represents a harmonic oscillator equation with the

angular frequency of C� = C0 = ?/�2. So we consider �� as
follows: �� (�) = ��0 cos (C0�) , (22)

which is similar to the Schwarzschild case. So in this case we
can neglect this solution (�� = 0), because the new plane
of orbit is a new one inclined, or just a change of coordinate

system [4]. Now, by eliminating the derivatives of � and ��
in the di	erential equation of ��, we obtain the following
oscillating equation: �2����2 + L2�� = 0, (23)

with the characteristic frequency

C2 = C20 (1 − 6�� + 52�� + 352�2 + ⋅ ⋅ ⋅) . (24)

By considering ��0 > 0, we choose the following solution for��: �� = −��0 cos (C�) . (25)

Also, from the � and �� geodesic deviation equations, the
solutions for � and �� are given by� = �0 sin (C�) , (26)�� = ��0 sin (C�) , (27)

where the amplitudes depend on ��0�0= 2√�� − 52� (1 − 2�/� + 52/�2)√1 − 6�/� + 52/����0, (28)

��0 = 2�√1 − 6�/� + 52/����0. (29)

In this way, the trajectory and the law of motion are obtained
by � = � − ��0 cos (C�) , (30)� = C0� + ��0 sin (C�) , (31)

- = @ − �5/4���1 − 2�/� + 52/�2 � + �0 sin (C�) , (32)

where the argument phase of the cosine function is taken by� = 0 for perihelion and � = �/C for aphelion. Now, (30) can
be written as

� = � [1 − ��0� cos (C�)] . (33)

By direct solution of the Euler-Lagrange equations, the
trajectory of motion for particles is obtained in terms of
centrifugal inertia [25]

� (-) = � (1 − 	2)1 + 	 cos (C0-) ≃ � [1 − 	 cos (C0-)] . (34)

Obviously, (33) and (34) show that we have the same results.
It means that if we bring up the eccentricity 	 to ��0/� and
the semimajor axis � to �, the same results are extracted,
but there is also a di	erence that the circular frequency, C, is
lower than the circular frequency of the unperturbed circular
motion,C0. So, if the circular frequency decreases, the period
increases. �en we obtain an expression for the periastron
shi� per one revolution as

△� = 2�(C0C − 1) = 2�(3�� + 272 �2�2 + 1352 �3�3
− 522�� − 652�2 + ⋅ ⋅ ⋅) . (35)

It can be seen from the above equation that the charge param-
eter,5, decreases the perihelion advance. In the perturbation
method (Einstein’s method), the orbital motion for charged
particles moving in the equatorial plane of the Reissner-
Nordstrom source is given by [20]

△� = 6��� − �52�� , (36)

and comparing (35) with (36) shows that the presented
method can be used in the vicinity of very massive and
compact objects which is having a nonnegligible ratio of�/�.

When the source is neutral and for the small values of�/�, (35) reduces to the standard formula for Perihelion
advance of planets [23]. If we also compare (35) to (2), it
is clear that, in the 
rst-order deviation, we hold only the

terms up to 	2. In order to obtain△� for the higher values of
the eccentricity, we must go beyond the 
rst-order deviation
equations.�erefore in the next section, we solve the second-
order geodesic deviation equations in Reissner-Nordstrom
space-time.

4. The Second-Order Geodesic Deviation

In this section, by using the 
rst-order geodesic deviation
equation and inserting (25), (26), and (27) into (10) and also
doing a set of hard calculations, a linear equations system for
the second-order geodesic deviation vector #� is obtained
(�11 �12 �14�21 �22 �24�41 �42 �44 )(##�#�) = (��0)2(X + X�X� + X��X� + X��), (37)
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where the constants X, X�, X�, X�q, X�, and X�� contain

quantities depending on�, �, C, C0, �, and 5
X = −6�√�� − 52 (2 − 7�/� + 3152/3�2 − 552/3�� − 454/3��3 − 54/�2�2)�5 (1 − 2�/� + 52/�2) (1 − 3�/� + 252/�2)√1 − 6�/� + 52/�� sin (2L�) , (38)

X� = −3�[6 − 27�/� + 6�2/�2 + 15852/3�2 − 2252/3�� − 14�52/�3 − 1654/3�4 − 454/�2�2]2�4 (1 − 3�/� + 252/�2) (1 − 6�/� + 52/��) cos (2C�)
+ 3�[2 − 5�/� + 18�2/�2 + 652/�2 − 1052/3�� − 34�52/�3 + 454/�2�2]2�4 (1 − 3�/� + 252/�2) (1 − 6�/� + 52/��) , (39)

X� = −6�C0 [1 − 3�/� + 2�2/�2 + 552/�2 − 452/3�� − 8�52/3�3 − 54/�4 − 54/��3]C�5 (1 − 3�/� + 252/�2) (1 − 2�/� + 52/�2) sin (2C�) , (40)

X� = �5√�/� − 52/�2√1 − 6�/� + 52/�2 [3�/� − 31�2/2�2 + 15�3/�3 + 52/�2 + 3�52/�3 − 7�252/�4]4����3√1 − 3�/� + 252/�2 (1 − 2�/� + 52/�2)2 (1 − 6�/� + 52/��) sin (2C�) , (41)

X��
= �5√1 − 3�/� + 252/�2 [7�/� − 61�2/�2 + 169�3/�3 − 150�4/�4 + 352/�2 + 11�52/�3 − 130�252/�4 + 198�352/�5]4����3 (1 − 3�/� + 252/�2) (1 − 6�/� + 52/��) (1 − 2�/� + 52/�2)⋅ cos (2C�)
− �5√1 − 3�/� + 252/�2 [�/� + 5�2/�2 − 45�3/�3 + 54�4/�4 − 352/�2 + 21�52/�3 − 2�252/�4 − 54�352/�5]4����3 (1 − 3�/� + 252/�2) (1 − 6�/� + 52/��) (1 − 2�/� + 52/�2) ,

(42)

X�� = 0. (43)

Here we have not used any approximation in X�, (\ =�, 9, ]) but in what follows we neglect terms of higher order

of the small parameters �/�, 5/�, and �/�. Solving the

matrix equation (10) for #� is similar to the approach used

in the previous section (for the 
rst-order geodesic deviation

vector ��) which contains the terms with characteristic

frequency C. Here we are only interested in a particular

solution because of the oscillating general solution with the

angular frequencyC already taken into account for ��(�).�e

particular solution of the above equation which is containing

the oscillating termswith the angular frequency 2C, the linear
terms in the proper time �, and constants. To obtain the
trajectory�� according to (9), we need to calculate (1/2)$2��.
Also for ��, the perihelion is extracted by C� = 2^� and the
aphelion is derived by C� = (1 + 2^)�, where ^ ∈ `.

In Appendix B, we have put the particular solution of
the above equation, #�, the second-order geodesic deviation$2��, and the semimajor axis � and eccentricity 	, respec-
tively.

Finally, successive approximation brings us to trajectory
by substituting �(�) to �(�)

�� = 1 − (��0� ) cos( CC0�) + (��0� )2 [ (3 − 5�/� − 30�2/�2 + 72�3/�3 + 752/�2 − 752/��)2 (1 − 2�/� + 52/�2) (1 − 52/��) (1 − 6�/� + 52/��)2
+ (1 − 7�/� + 10�2/�2 + 6152/2�2 − 852/3��)2 (1 − 2�/� + 52/�2) (1 − 6�/� + 52/��) cos(2CC0 �)+ (3/2)5�32���(1 − 52/��) (1 − 2�/�) (1 − 3�/�)3/2 (1 − 6�/� + 52/��)2
+ (19/2)5�32���(1 − 52/��) (1 − 2�/�) (1 − 3�/�)3/2 (1 − 6�/� + 52/��)2 cos(2CC0 �)] + ⋅ ⋅ ⋅

(44)
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In the Schwarzschild limit, we have an elliptical orbit with [2]

� = � + (��0)2� [(2 − 9�/� + 11�2/�2 + 6�3/�3)(1 − 2�/�) (1 − 6�/�)2 ] , (45)

	 = ��0 (1 − 2�/�) (1 − 6�/�)2� (1 − 2�/�) (1 − 6�/�)2 + ((��0)2 /�) (2 − 9�/� + 11�2/�2 + 6�3/�3) = ��0� + O((��0)3�3 ) . (46)

Also, for the Schwarzschild case the shape of the orbit is
described up to second-order of (��0/�) as� (�)� = 1 − (��0� ) cos( CC0�) + (��0� )2

⋅ [3 − 5�/� − 30�2/�2 + 72�3/�32 (1 − 2�/�) (1 − 6�/�)2
+ (1 − 5�/�)2 (1 − 6�/�)cos(2CC0 �)] + ⋅ ⋅ ⋅ .

(47)

which is in agreement with equation (62) of reference [2].

5. Third-Order Geodesic Deviation and
Poincaré-Lindstedt’s Method

In the previous section, we have calculated the trajectory
of charged particles up to second-order. To 
nd a more
accurate trajectory, we need to obtain the higher-order terms
of expansion (9). Using the 
rst and second-order solutions

and third-order equation (A.2) for $3��, we have
(�11 �12 �14�21 �22 �24�41 �42 �44)($3-$3�$3�) = %3(�����), (48)

where��� are de
ned in (20) and the coe�cients��0,��0�,��1,��1�,��3, and��3�, (\ = -, �, �) are functions of�, �, �, and 5� = (�1 + �1�) cos (C�) + (�3 + �3�) cos (3C�)+ �0 + �0�,�� = (��1 + ��1�) cos (C�) + (��3 + ��3�) cos (3C�)+ ��0 + ��0�,�� = (��1 + ��1�) cos (C�) + (��3 + ��3�) cos (3C�)+ ��0 + ��0�.
(49)

As one can see the right-hand side of (48) has a frequency that
is the same as the eigenvalues of the di	erential matrix in the
le�-hand side (resonant terms). �is makes a new problem,

i.e., in
nite solution for $3� which is called the secular term
(growing without bound). For avoiding these unbounded
deviations we use the Poincaré’s method. In this method by
replacing C by in
nite series in power of the in
nitesimal
parameter % = ��0/� asC g→ C� = C + %C1 + %2C2 + %3C3 + ⋅ ⋅ ⋅ , (50)

the correction frequencies C1, C2, C3, ⋅ ⋅ ⋅ can be chosen such
that Poincaré’s resonances vanish, by considering a di	eren-
tial equation for �� as�2��2 ($� + 12$2� + 16$3�) + C2 ($� + 12$2� + 16$3�)= X�0 + X�0� + (X� + X��) cos (2C��)+ (��1 + ��1�) cos (C��)+ (��3 + ��3�) cos (3C��) + ��0 + ��0�.

(51)

Now, by developing both of the sides in terms of a series of
the parameter %, for avoiding the secular terms, we 
nd some
algebraic relations on C1, C2, C3, ⋅ ⋅ ⋅ . In the Schwarzschild
limit, we have [4]

C� = �1/2√1 − 6�/��3/2√1 − 3�/�
− %2 3�3/2 (6 − 37�/�)4�5/2√1 − 3�/� (1 − 6�/�)3/2 ,

(52)

where %2 = (��0)2/�2. �e resonant terms will also
appear at the 
�h-order approximation; by terms

cos5(L�), sin3(L�) cos2(L�), etc., this problem can be
solved in a similar way.

Finally, we note that the electric charge of any celestial
body is practically close to zero anyway. �erefore, it is
worth investigating the geodesic deviation and higher-order
geodesic deviations in a more realistic background such as
the Schwarzschild metric in a strong magnetic dipole 
eld or
magnetized black holes [26–28].�e study of themwill be the
subject of the future investigations.

6. Conclusion and Discussion

Many of signi
cant successes in general relativity are
obtained by approximation methods. One of the most
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important approximation scheme in general relativity is the
post-Newtonian approximation, an expansion with a small
parameter which is the ratio of the velocity of matter to
the speed of light. A novel approximation method was also
proposed by Kerner et al. which is based on the world-line
deviations [2].

�e calculation of the perihelion advance bymeans of the
higher-order geodesic deviation method for neutral particles
in di	erent gravitational 
elds such as Schwarzschild and
Kerr metric was 
rst studied in several papers [2, 4]. In
the present paper by using of the higher-order geodesic
deviation method for charged particles [7], we applied this
approximation method to charged particles in the Reissner-
Nordstrom space-time.

We 
rst started with an orbital motion which is close
to a circular orbit with constant angular velocity which is
considered as zeroth-approximation (unperturbed circular
orbitalmotion)with the orbital frequencyC0. In the next step,
we solved the 
rst- and second-order deviation equations
which reduced to a system of the second-order linear dif-
ferential equations with constant coe�cients. �e solutions
are harmonic oscillators with characteristic frequency. From
(37), the 
rst- and second-order corrections are oscillating
terms with angular frequency C and 2C, respectively.

Finally, we have obtained the new trajectory by adding the
higher-order geodesic deviations (nonlinear e	ects) to the
circular one (44).�e advantage of this approach is to get the
relativistic trajectories of planets without using Newtonian
and post-Newtonian approximations for arbitrary values of
quantity�/�.
Appendix

A.

For solving the third-order geodesic deviation equation, we
should invoke to Poincare’s method. For this purpose, it is
better to write the third-order geodesic deviation as $3��.�e

third-order geodesic deviation equation $3�� is related to the
third-order geodesic deviation vector ℎ�$3��= %3 [ℎ� − 3Γ��
��#] + (��Γ��] − 2Γ���Γ��]) �����]] , (A.1)

where ℎ� = �#�/��. We derive the third-order geodesic
deviation equation as

�2$3����2 + (2Γ��]�� − ����
]
) �$3�]�� + (��Γ��
���
− ���]����]) $3�� =

− 6Γ��
 �$���� �$2�
�� − 3$�� (����Γ��
) �� ($2���

+ 2$�� �$�
�� ) − 6 (��Γ��
)($���� �$2�
��
+ $�� �$���� �$�
�� + $2���� �$�
�� )
− $��$��$�] (�����]Γ��
) ���
 + ��⋅ ��]�� [(����]) $2�� + (������]) ����] + ��⋅ �� [�$2�]�� (����]) + (������]) $2���]] ,

(A.2)

and by substituting $3�� in term of ℎ� into above equation,
we obtain (72) for case � = 0 [2].
B.

�e second-order geodesic deviation vector #� is
# = (��0)2�(@ − �5/4���)�3 (1 − 6�/� + 52/��) (1 − 2�/�)2 [−3 (2 − 5�/� + 18�2/�2 − (10/3) (52/��))(1 − 6�/� + 52/��) �

+ (2 − 13�/� + (79/6) (52/��)) sin (2C�)C − 6�5L� + 19�5 sin (2C�)32���C (1 − 6�/� + 52/��) (1 − 2�/�) (1 − 3�/�)3/2] ,
(B.1)

#� = (��0)2�2�2 (�/� − 52/�2) (1 − 6�/� + 52/��) [3 (2 − 5�/� + 18�2/�2 − (10/3) (52/��))(1 − 6�/� + 52/��)
+ (2 + 5�� − 283 52��) cos (2C�) + 3�5 + 19�5 cos (2C�)16���(1 − 6�/� + 52/��) (1 − 2�/�) (1 − 3�/�)3/2] ,

(B.2)

#� = (��0)2 C0��3 (�/� − 52/�2) (1 − 6�/� + 52/��) [−3 (2 − 5�/� + 18�2/�2 − (10/3) (52/��))(1 − 6�/� + 52/��) �
+ (1 − 8�/�) sin (2C�)2C − 6�5� + �5 (31 − 196�/�) sin (2C�)32���(1 − 6�/� + 52/��) (1 − 2�/�) (1 − 3�/�)3/2] .

(B.3)
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As explained in Section 2 the second-order geodesic

deviation, ($2� = #� − Γ�
]��]��), is given by

$2- = (��0)2�(@ − �5/4���)�3 [−3 (2 − 5�/� + 18�2/�2 − 1052/3��)(1 − 2�/�)2 (1 − 6�/� + 52/��) �
+ (2 − 15�/� + 14�2/�2 − 7952/6��) sin (2C�)C (1 − 2�/�)3 (1 − 6�/� + 52/��)
− 6�5C + 19�5 sin (2C�)32���C (1 − 2�/�)3 (1 − 3�/�)3/2 (1 − 6�/� + 52/�R)2] ,

(B.4)

$2� = (��0)2��2 (�/� − 52) (1 − 6�/� + 52/��) [(5 − 33�/� + 90�2/�2 − 72�3/�3 + 552/�2 − 552/��)(1 − 2�/� + 52/�2) (1 − 6�/� + 52/��)
+ (−1 + 9�/� + 3352/2�2 − 19�2/�2 − (23/2) (�52/�3) − 852/3��) cos (2C�)(1 − 2�/� + 52/�2)
+ 3�5 + 195� cos (2C�)32���(1 − 2�/�) (1 − 3�/�)3/2 (1 − 6�/� + 52/��)] ,

(B.5)

$2� = (��0)2�C0�3 (�/� − 52/�2) (1 − 6�/� + 52/��) [−3 (2 − 5�/� + 18�2/�2 − 1052/3��)(1 − 6�/� + 52/��) �
+ (5 − 32�/�) sin (2C�)2C − 6�5� + �5 (31 − 196�/�) sin (2C�)32���(1 − 2�/�) (1 − 3�/�)3/2 (1 − 6�/� +Q2/��)] ,

(B.6)

and, also, the semimajor axis � and eccentricity 	 are
� = � + (��0)2� [(2 − 9�/� + 11�2/�2 + 6�3/�3 + 1552/�2 − 1352/3�� − 235�52/4�3)(1 − 2�/� + 52/�2) (1 − 52/��) (1 − 6�/� + 52/��)2 ] , (B.7)

	
= ��0 (1 − 2�/� + 52/�2) (1 − 52/��) (1 − 6�/� + 52/�R)2� (1 − 2�/� + 52/�2) (1 − 52/��) (1 − 6�/� + 52/��)2 + ((��0)2 /�) (2 − 9�/� + 11�2/�2 + 6�3/�3 + 1552/�2 − 1352/3�� − 235�52/4�3) , (B.8)

in which for massive central objects we have neglected all
terms of order �5/4���.
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�e data 
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