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Abstract

Human identification based on iris biometrics requires

high resolution iris images of a cooperative subject. Such

images cannot be obtained in non-intrusive applications

such as surveillance. However, the full region around the

eye, known as the periocular region, can be acquired non-

intrusively and used as a biometric. In this paper we inves-

tigate the use of periocular region for person identification.

Current techniques have focused on choosing a single best

frame, mostly manually, for matching. In contrast, we for-

mulate, for the first time, person identification based on pe-

riocular regions as an image set classification problem. We

generate periocular region image sets from the Multi Bio-

metric Grand Challenge (MBGC) NIR videos. Periocular

regions of the right eyes are mirrored and combined with

those of the left eyes to form an image set. Each image set

contains periocular regions of a single subject. For image-

set classification, we use six state-of-the-art techniques and

report their comparative recognition and verification per-

formances. Our results show that image sets of periocular

regions achieve significantly higher recognition rates than

currently reported in the literature for the same database.

1. Introduction

Human identification based on iris biometrics has been

well investigated [3, 11, 10]. Such an identification is based

on high resolution iris images often acquired by iris scan-

ners [14, 15]. Iris scanning requires the subjects to open

their eyes fully and look into the scanner which may not

be socially acceptable to users. In many practical scenar-

ios, the subject may not be cooperative, willing, or even

aware that he/she is being imaged. For example, in banks

and shopping malls, customers may need to be identified

without causing inconvenience to them. Other applications

include security and surveillance where cameras are often

located at large distances, and hence, the resolution of the

iris is too low to be used as a stand-alone biometric.

Figure 1. Some example applications in which periocular biomet-

rics may be more effective than the full face biometrics.

Recently, researchers have used the area around the

eye, the periocular region, as a stand-alone biometric with

promising results [14, 15]. Periocular region based human

identification offers advantages over full face biometrics as

it is least affected by expression variations, aging effects [7]

and the changes due to growth of male facial hair. More-

over, full face recognition performance degrades in the pres-

ence of pose variations whereas the periocular region based

identification may perform better in the case of extreme

pose changes when only one eye is completely visible. In

these cases, the visible periocular region may be mirrored

and matched to the opposite side periocular region in the

database. Finally, periocular region based recognition will

remain effective even if most of the lower face region is oc-

cluded and as long as only one eye remains visible. Fig. 1

shows some examples.

Most of the previous work on periocular biometric

recognition is based on single image matching [5, 20, 21, 2,

22]. In many cases, a single best frame per subject is man-

ually selected and placed in the gallery. Each test image in

the query sequence is matched to the gallery images to find

the best match. Such techniques inherently suffer from the

lack of information since only one image cannot contain all

possible variations in the periocular region of an individual



(see Fig. 2). As an example, if the best image is taken from

a frontal view with centered eyeballs and the query images

have some pose variations with eyeballs at the extreme ends,

recognition performance will significantly degrade.

In contrast to the existing single image based ap-

proaches, we formulate periocular region based person

identification as an image set classification problem. Each

set contains multiple periocular region images of the same

person and represent a wide range of variations in the pe-

riocular region. These variations include different eyelid

positions, different illuminations, eyeball movements and

pose variations. Multiple images in the same set may com-

pliment such appearance variations of the periocular region.

We construct a gallery from image sets of many identities.

The query set also contains multiple periocular region im-

ages of the same person and is assigned the label of the

nearest gallery set. Compared to single image matching,

set-to-set matching offers significantly more information.

Although, the left and right periocular regions are different,

we mirror the right periocular regions and combine them

with the left periocular regions to form a single set per iden-

tity. We believe that this strategy better suits linear model-

ing techniques.

For classification, we use six existing state-of-the-art im-

age set classification techniques and compare their perfor-

mances with the exhaustive nearest neighbour approach.

These techniques include the Affine Hull based Image

Set Distance (AHISD) [4], Convex Hull based Image Set

Distance (CHISD) [4], Discriminative Canonical Correla-

tion (DCC) [9], Manifold-Manifold Distance (MMD) [19],

Manifold Discriminant Analysis (MDA) [18], and Sparse

Approximated Nearest Point (SANP) distance [6]. A briefly

overview of these techniques is given in Section 2.

We performed extensive experiments on the Multi Bio-

metric Grand Challenge (MBGC) NIR video dataset [16, 1].

The best image set based classification is observed for the

SANP algorithm [6] which has a 97.70% recognition rate.

A rank four recognition rate ≥ 99.00% is observed for

AHISD, CHISD, MDA, and SANP. This is significantly

higher than the single image based recognition rates already

reported in the literature for the same dataset.

2. Related Work on Periocular Biometrics

Periocular biometric refers to the face region surround-

ing the eye. It contains iris [15], eyes, eyelids, eye lashes,

and part of the eyebrows [20]. Compared to face and iris

biometrics, human recognition using periocular biometrics

has not been well investigated. Initial feasibility studies of

periocular biometrics have been done by Park et. al [15] and

extended in [14]. They detected iris in the visible spectrum

images and extracted features at fixed grid positions around

the center of the limbus circle. Their method relies on accu-

rate iris detection and is vulnerable to eyeball movements.

Figure 2. Variations in the appearance of the periocular region of

the same subject.

Some researchers have investigated the use of Local Bi-

nary Pattern (LBP) features [17] to represent the texture of

the periocular region for recognition purpose. Miller et al.

[13] used city block distance to classify LBP features of the

periocular region. Their work was extended by Adams et

al. [2] using genetic algorithms to select the optimal sub-

set of LBP features for the matching of periocular regions.

Woodard et al. [20] used the LBP features and color his-

tograms to represent the local appearance of the periocular

region. They observed better recognition performance of

city block distance for matching LBP features and Bhat-

tacharya coefficient for matching color histograms.

Xu et al. [22] observed improvements in recognition

rates by combining LBP with other features including DCT,

DWT, Gabor filters, LoG filters, Walsh transform [8], SIFT,

and SURF. Woodard et al. [21] simultaneously used the

iris and periocular biometrics by performing score-level fu-

sion. LBP features were extracted from the periocular re-

gion while the iris texture was encoded using the Gabor fil-

ters. Their experiments showed that the periocular recog-

nition performed better than iris recognition for the MBGC

NIR portal videos.

Most of the existing research on the periocular biomet-

rics has mostly investigated the use of texture features cal-

culated from a single best periocular image. Therefore,

these methods cannot efficiently handle the periocular re-

gion variations including the eyeball and eyelid movements

in frontal poses under varying illumination conditions. If

pose variations are also introduced, these techniques may

observe further performance degradation.

In order to mitigate some of these challenges, we pro-

pose image set based approach for periocular biometric

recognition. For each subject, the gallery may contain one

or more image sets and each image set may contain multiple

images of the same subject complementing a wide range of

periocular region variations. Due to the availability of sig-

nificantly more information, in our experiments, we observe

much better recognition results compared to the single im-

age based results already reported in the literature.

3. Image Set Classification

Image set classification algorithms have been well in-

vestigated for the face biometrics. However, to the best of



our knowledge, periocular region based person identifica-

tion has not been formulated as an image set classification

problem. We believe that set based classification is more

suitable for periocular region biometrics. In this paper, we

use six state-of-the-art image set classification algorithms

for periocular region based human recognition. These tech-

niques may be broadly divided into two categories namely,

sample based and the structure based techniques. In the fol-

lowing sections, both categories are explained.

3.1. Sample Based Image Set Classification

Sample based techniques measure the distance between

nearest neighbour samples of two image sets. Let X =
{xi}

n
i=1

∈ Rm×n be an image set, where xi ∈ Rm is a fea-

ture vector and n be the number of feature vectors in a set

which may vary across the image sets. The feature vectors

can simply be the image pixel values or some features calcu-

lated from the pixels such as the PCA (Principal Component

Analysis) coefficients or LBP features [17]. Each image set

may be considered as a point cloud in Rm. All points in

a probe image set Xp are compared with all points in each

gallery set Xg to find the nearest pair of points (xi, xj) such

that xi ∈ Xp and xj ∈ Xg . If xi and xj have zero mean

and unit magnitude, the nearest neighbour pair (xi, xj) is

the one that maximizes the cosine of the angular distance:

max
g

(

max
xi,xj

Xt
gXp

)

. (1)

The probe image set label is predicted as the label of xj .

Cevikalp and Triggs [4] considered each image set as

a convex geometric region in Rm. Set dissimilarity was

measured by the distance of closest approach between the

regions represented by the affine (AHISD) or convex hulls

(CHISD). The region contains all the affine combinations

xp =
∑n

i=1
Xpiαpi and xg =

∑n

j=1
Xgjαgj , where

αp, αg ∈ Rm. For the case of affine hull
∑n

i=1
αpi =

∑n

j=1
αgj = 1 and for the convex hull 0 ≤ (αpi, αgj) ≤ 1.

The minimum distance was computed as

min
g

(

min
αp,αg

||Xgαg −Xpαp||
2
)

. (2)

For the case of affine hull, the minimum distance was com-

puted using least squares while for the case of convex hull,

an SVM was trained to separate probe and gallery sets be-

longing to different classes.

Instead of searching the nearest points with dense com-

binations of samples in the corresponding image set, Hu et

al. [6] proposed that each of the two points should be able to

be approximated by a sparse combination from the samples

of the respective set. They argued that the sparse approxi-

mated nearest points (SANP) will lie close to some facet of

the affine hull and hence, implicitly incorporate structural

information of the sets as well. By restricting the SANPs to

be close the facets, this approach can reject outliers result-

ing in more accurate classification.

Figure 3. Sample images from one image set.

3.2. Structure Based Image Set Classification

Structure based techniques represent the underlying

structure of a image set with one or more linear subspaces.

Structural similarity of the sets is usually measured using

subspace to subspace distance. Kim et al. [9] proposed Dis-

criminative Canonical Correlation (DCC) which performs

discriminative learning using canonical correlations. More

specifically, a discriminant function was learned that max-

imizes the within-class and minimizes the between-class

canonical correlations. Image sets were transformed op-

timally by this discriminant function and compared using

their canonical correlations.

Wang et al. [19] proposed Manifold-Manifold Distance

(MMD) which clusters each image set into multiple linear

subspaces called local models. The similarity between two

sets is calculated by computing the subspace to subspace

distance between the nearest local models. Subspace to sub-

space distance is based on canonical correlations. However,

the nearest point distance is also combined with the struc-

tural similarity to calculate the final similarity between two

sets. Wang and Chen [18] proposed Manifold Discriminant

Analysis (MDA) that uses a hierarchical divisive clustering

approach to construct local linear models of each set. The

local models are transformed by a linear discriminant func-

tion where different classes are better separable. The sim-

ilarity between two sets is calculated as the pair-wise local

model distances in the learned embedding space.

4. Image Sets and Feature Extraction

We have performed extensive experimentation on peri-

ocular images extracted from the NIR face videos of the

MBGC portal challenge dataset version 2 [1]. MBGC is a

challenging dataset with significant illumination variations,

motion blur, and specular reflections. Our experiment con-

sists of 85 subjects from the MBGC dataset. Fig. 3 shows

sample periocular images from a set. Each subject has 2 to 7

image sets and each image set contains 9 to 27 images. The

gallery is constructed by randomly selecting one image-set

for each of the 85 subjects. The remaining 132 image-sets

are used as probes. The experiments are repeated three folds
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Figure 4. Periocular region normalization

by randomly selecting different gallery sets each time.

4.1. Preprocessing

The MBGC portal challenge consists of NIR videos of

the faces captured while people walk through a portal to-

wards the camera. Due to varying distance from the camera,

significant scale changes occur across consecutive frames

in the same video. Moreover, due to head pose variations,

some rotational effects are also observed across different

videos. These scale and rotation variations do not provide

any discriminative information. To avoid the image set clas-

sification algorithms to model these undesirable variations,

we have performed rotation and scale normalization.

In each video frame, we manually marked two eye cor-

ners P1 and P2 on each eye and cropped a periocular re-

gion of size 600×600 pixels. The cropped image is rotated

such that the line through P1 and P2 becomes horizontal.

Then the image is scaled keeping a fixed distance of 290

pixels between P1 and P2. An image of size 400×350 pix-

els is then cropped. Fig. 4 illustrates the normalization pro-

cess. The right side periocular regions are mirrored to ob-

tain images similar to the left side region (Fig. 5). This

mirroring process may also be considered as normalization

because the resulting images contain only the appearance

variations of the left periocular region and allows for better

modeling. We consider the resulting images in canonical

form, only containing the required discriminative informa-

tion. The gallery and probe image sets used in our experi-

ments consist of these normalized periocular images.

Frames containing very low information (e.g. dark and

blurred) or very few frames are discarded. Performance

of periocular biometric degrades in the presence of strong

mascara eyelash extension. To keep our experiments sim-

ple, we do not use the videos where a strong mascara eye-

lash extension is used by the subject. Our final experimental

data consists of 217 image sets and 3163 periocular images

of 85 subjects. To assist other researchers, the normaliza-

LeftRight Right  flipped Left

Figure 5. Mirroring the periocular images to normalized form.

tion code along with eye corner points and the exact video

sequences used in our experiments will be made publicly

available once the paper is published.

4.2. Feature Extraction

In our experiments, we have used four different types of

feature vectors with varying amount of information. Note

that for PCA, only the gallery sets are used as training data.

1. Raw Pixel Values: The normalized periocular images

are scaled down to 20×18 pixels and the pixel values

are used as features.

2. LBP Features: For the 20×18 pixels images, LBP

features are extracted using circular (8,1) neighbor-

hoods [17]. The resulting LBP coded images are used

as feature vectors.

3. PCA Dimensionality Reduction: The dimensional-

ity of the normalized images is reduced by projecting

them on 400 most significant PCA basis. The resulting

400 coefficients are used as feature vectors.

4. LBP Features Followed by PCA: The LBP features

are computed over the normalized images and the di-

mensionality of the LBP codes is reduced to 400 di-

mensions by applying PCA.

5. Experimental Setup

The performance of the periocular biometrics is tested

using six state-of-the-art image-set classification algorithms

namely, Affine and Convex Hull based Image Set Distance

(AHISD and CHISD) [4], Sparse Approximated Nearest

Points (SANP) distance [6], Discriminative Canonical Cor-

relation [9], Manifold-Manifold Distance [19] and Mani-

fold Discriminant Analysis [18]. Additionally, results are

also reported for the simple nearest neighbour (NN) tech-

nique based on Eq. (1). For every algorithm, we performed

three fold experiments for each of the four feature vector

types.

For the sample based algorithms, the default input pa-

rameter values are used. For the structure based algorithms,

the required parameters are carefully tuned so that the best

performance can be obtained. For DCC, the subspace di-

mensions are set to 10 which preserves 90% energy and the

corresponding 10 maximum canonical correlations are used
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Figure 6. Recognition Rates averaged over three folds for the sam-

ple based image set classification algorithms.
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Figure 7. Recognition Rates averaged over three folds for the

structure based image set classification algorithms.

to define set similarity. In DCC, the embedding space is

also set to 100.

For MMD and MDA, the ratio between Euclidean dis-

tance and Geodesic distance is varied from 2.0 to 0.01 in

steps of 0.01. Maximum recognition rates were observed

at 0.10. The number of connected nearest neighbours for

computing geodesic distance is also tested at 14, 12 and 10.

The best results were observed at the value of 10. The max-

imum canonical correlation is used in defining MMD. For

MDA, the number of between-class NN local models is set

to 5 and the dimension of MDA embedding space is set to

10 as recommended by the authors [19, 18].

6. Results and Discussion

In our experiments, image set based periocular region

biometrics has exhibited very good recognition rates for

both categories of algorithm. The best results are ob-

tained for the feature vectors of type 4 (LBP followed by

PCA). For the sample based algorithms, recognition rates

are 94.95%, 96.72%, 96.44%, 97.70% for NN, AHISD,

CHISD, and SANP, respectively (Fig. 6). For the structure

based algorithms, the best recognition rates are 90.40%,

93.18%, 97.47% for DCC, MMD, and MDA, respectively

(Fig. 7). The best identification performance of 97.70%

was achieved by SANP. To the best of our knowledge, this

is the best identification rate obtained on the MBGC NIR

dataset. These results demonstrate the validity of periocu-

lar region based human identification using our image set

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Rank

R
ec

o
g
n
it

io
n
 R

at
e

AHISD

CHISD

NN

SANP
DCC

MDA

MMD

Figure 8. CMC curves for seven image set classification algorithms

for feature type 4 (LBP followed by PCA).

approach.

We observe significantly better recognition rates for LBP

features as compared to the raw pixel values. One of the

reasons may be that LBP filtering reduces the impact of illu-

mination variations and generates an illumination invariant

representation [12]. LBP also takes into account the local

pixel neighborhoods, therefore, resulting in more discrim-

inative texture patterns. The LBP features also performed

better in the case of feature vectors of type 2. This shows

that the LBP features may also be employed if high resolu-

tion periocular images are not available.

The Cumulative Match Characteristic (CMC) curves for

feature type 4 (LBP features followed by PCA) are also

plotted for each algorithm in Fig. 8. SANP [6] algorithm

performed the best by achieving 100% recognition rate at

rank 9. At rank 4 cumulative recognition rates are ≥99.00%

for the AHISD, CHISD, MDA, and SANP while ≥97.00%

for MMD and NN.

We also performed verification experiments on the same

dataset using the same 3 fold approach. Table 1 shows the

average verification rates at False Accept Rate (FAR) of

0.001 for feature type 4. It can be observed that although

the nearest neighbour algorithm performed well in the iden-

tification scenario, it is not robust in the case of verification.

Note that it is not our aim to provide an unbiased compari-

son of these image set classification algorithms. Our main

objective is to show the feasibility of image set based clas-

Table 1. Average Identification rates and verification Rates at

0.001 FAR for feature type 4 (LBP followed by PCA)

Method Identification

Rate

Verification

Rate

NN 94.95% 55.40 %

AHISD[4] 96.72% 87.65 %

CHISD[4] 96.44% 87.65 %

SANP[6] 97.70% 87.65 %

DCC[9] 90.40% 69.13 %

MMD[19] 93.18% 71.72 %

MDA[18] 97.47 % 86.87 %



Table 2. Execution time in seconds for 11220 image set to image

set comparisons using feature type 4 (LBP followed by PCA).

Method Training

Time

Testing

Time

NN N/A 4.11s

AHISD[4] N/A 10.06s

CHISD[4] N/A 161.96s

SANP[6] N/A > 300s

DCC[9] 4.75s 4.31s

MMD[19] 3.0s 6.12s

MDA[18] 9.31s 5.07s

sification for periocular biometrics.

Table 2 shows the total execution time for matching 132

probe sets with 85 gallery sets using Matlab implementa-

tions on a 3.4GHz CPU with 8GB RAM. We observe that

SANP, AHISD, and CHISD are computationally more ex-

pensive than the structure based techniques. The simple NN

technique is the fastest.

7. Conclusion and Future Work

In this paper, we investigated the performance of perioc-

ular region biometrics in the framework of image set clas-

sification. For this purpose, we performed extensive exper-

imentation with six state-of-the-art image set classification

algorithms using four different feature types. Our results

demonstrate that the set based approach performs signif-

icantly better than the previous single image based tech-

niques. We also observed that the use of LBP features can

give better performance than using raw pixel values. This

work may be extended by testing the performance of pe-

riocular region biometrics on other datasets, especially the

MBGC visible spectrum dataset.
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