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Abstract— Periocular biometric refers to the facial region in the 
immediate vicinity of the eye. Acquisition of the periocular 
biometric does not require high user cooperation and close 
capture distance unlike other ocular biometrics (e.g., iris, retina, 
and sclera). We study the feasibility of using periocular images 
of an individual as a biometric trait. Global and local 
information are extracted from the periocular region using 
texture and point operators resulting in a feature set that can be 
used for matching. The effect of fusing these feature sets is also 
studied. The experimental results show a 77% rank-1 
recognition accuracy using 958 images captured from 30 
different subjects.      

I. INTRODUCTION 
CULAR biometrics has made rapid strides over the past 
few years primarily due to the significant progress made 

in iris recognition.  The iris is the annular colored structure in 
the eye surrounding the pupil and its function is to regulate the 
size of the pupil thereby controlling the amount of light 
incident on the retina. The surface of the iris exhibits a very 
rich texture due to the numerous structures evident on its 
anterior portion. The random morphogenesis of the textural 
relief of the iris and its apparent stability over the lifetime of 
an individual, have made it a very popular biometric. Both 
technological and operational tests conducted under 
predominantly constrained conditions have suggested the 
uniqueness of the iris texture across individuals and its 
potential as a biometric in large-scale systems enrolling 
millions of individuals [1, 2]. Indeed, even the two irises of an 
individual are observed to be different in their intricate 
textural content. 
 Besides the iris, other ocular traits have been investigated 
for human recognition, viz., the retinal and the conjunctival 
vasculature. 
 
1. Retinal vasculature: The blood vessel pattern on the retina is 

believed to be unique across individuals [3]. Typically, a 
coherent light source is used to illuminate the vasculature 
pattern on the back of the eye and a CCD is used to image 
this pattern. However, a cooperative subject is assumed for 
procuring a good quality image that can be used during the 
matching phase.   

2. Conjunctival vasculature: The vasculature pattern observed 
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on the sclera of the eye has also been suggested as a 
potential biometric [4]. These blood vessels typically reside 
in the conjunctiva and the episclera layers of the sclera 
(although the term “conjunctival vasculature” is used to 
denote both sets of vessels), and are revealed when the iris is 
“off-axis” with respect to the imaging device. Thus, there is 
significant potential in utilizing these vasculature patterns 
along with the iris texture in a bimodal biometric system by 
employing a multispectral sensor for image acquisition. 
 

In spite of the tremendous progress made in ocular biometrics 
(especially iris), there are significant challenges encountered 
by these systems: 
 
1. The iris is a moving object with a small surface area that is 

located within the independently movable eye-ball. The 
eye-ball itself is located within another moving object – the 
head. Therefore, reliably localizing the iris in eye images 
obtained at a distance from unconstrained human subjects 
can be difficult [5].  Furthermore, since the iris is typically 
imaged in the near infrared portion (700 – 900nm) of the 
electromagnetic (EM) spectrum, appropriate invisible 
lighting is required to illuminate it prior to image 
acquisition.  

2. Retinal vasculature cannot be easily imaged unless the 
subject is cooperative. In addition, the imaging device has 
to be in close proximity to the eye. 

3. While conjunctival vasculature can be imaged at a distance, 
the curvature of the sclera, the specular reflections in the 
image and the fineness of the vascular patterns, can 
confound the feature extraction and matching modules of 
the biometric system [6]. 

Periocular Biometrics in the Visible Spectrum: A Feasibility Study 
Unsang Park, Arun Ross, and Anil K. Jain 

O 
Fig. 1: Example periocular images from two different subjects: (a)(b) 
without eyebrows and (c)(d) with eyebrows.      
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In this work, we attempt to mitigate some of these concerns 

by considering a small region around the eye as an additional 
biometric. We refer to this region as the periocular region. In 
this work we explore the potential of the periocular region as a 
biometric in color images. We do not use the near-IR 
spectrum in this paper, although the eventual goal is to use a 
multispectral acquisition device that can image the periocular 
region in both the visible and near-IR spectral bands [7]. This 
would ensure the possibility of combining the iris texture with 
the periocular texture. The use of the periocular region has 
several benefits: 

 
1. In images where the iris cannot be reliably obtained (or 

used), the surrounding skin region may be used to either 
confirm or refute an identity.  

2. The use of the periocular region represents a good 
trade-off between using the entire face region or using only 
the iris for recognition. When the entire face is imaged 
from a distance, the iris information is typically of low 
resolution; this means the matching performance due to the 
iris modality will be poor. On the other hand, when the iris 
is imaged at close quarters, the entire face may not be 
available thereby forcing the recognition system to rely 
only on the iris.   

3. The periocular region can offer information about 
eye-shape that may be useful as a soft biometric. 

4. The depth-of-field of iris systems can be increased if the 
surrounding ocular region were to be included as well. 

 
The purpose of this work is to do a feasibility study on using 

periocular information as a biometric. Thus, images obtained 
in the visible spectrum are studied for this purpose.   

II. PERIOCULAR RECOGNITION  
The proposed periocular recognition process consists of a 

sequence of operations: image alignment (for the global 
matcher described below), feature extraction, and matching. 
We adopt two different approaches to the problem: one based 
on global information and the other based on local 
information. The two approaches use different methods for 
feature extraction and matching. We will first review the 
characteristics of these two approaches, and describe each 
intermediate process.   

A. Global vs. Local Matcher 
Most image matching schemes can be categorized as global 

or local. The basic difference between global and local 
methods is based on whether the features are extracted from 
the entire image (or a region of interest) or from a set of local 
regions. Representative global features are color, shape, and 
texture [8]. Global features are represented as a fixed length 
vector and the matching process simply compares these fixed 
length vectors, which is very time efficient.  

On the other hand, the local feature based approach first 

detects a set of key points and encodes each of the key points 
using the surrounding pixel values (resulting in a local key 
descriptor) [9, 10]. Then, the number of matching key points 
between two images is calculated as the match score.  Since 
the number of key points varies depending on the input image, 
two sets of key points from two different images cannot be 

Fig. 2: Example images showing difficulties in periocular image 
alignment.     

(a) Example images showing eyelid movement    

(b) Example images where multiple corner candidates are present    

Fig. 3: Global descriptor construction process.     
 
 

(a) Input image    (b) Iris detection    

(d) Interest region sampling  (c) Interest point sampling    

Fig. 4: Examples of local features and bounding boxes for descriptor 
construction in SIFT. Each bounding box is rotated with respect to 
the major orientation. 
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directly compared. Therefore the matching scheme has to 
compare each key point from one image against all the key 
points in the other image, thereby increasing the time for 
matching. There have been efforts to achieve a constant time 
matching using local features through the bag of words 
representation [11].  

In terms of the matching accuracy, local feature-based 
approaches have shown better performance. When all 
available pixel values are encoded into the feature vector (as is 
the case when global features are used), it becomes more 
susceptible to image variations especially with respect to 
geometric transformations and spatial occlusions. The local 
feature based approach, on the other hand, is more robust to 
such variations because only a subset of distinctive regions is 
used to represent an image. This has resulted in more active 
research on local feature based image retrieval schemes [12, 
13, 14].    

Face, iris, and hand mostly adopt a global representation 
scheme while fingerprint mostly adopts a local representation 
scheme. The basic criterion for determining different 
representations in image-based biometrics is whether the trait 
under consideration has a common morphology across all 
subjects. If we take the average of a hundred face, iris, or hand 
images after proper scaling and alignment, the output will still 
appear as a legitimate face, iris, or hand image. However, the 
average of a hundred fingerprint images will not look like a 
fingerprint image anymore. Therefore, the face, iris, or hand 
images can be aligned in a certain common coordinate space 
and encoded into a fixed length feature vector. However, 
fingerprint and other general images need to be represented by 
their local key points.  

We use both global and local matching methods for 
periocular recognition in order to take advantage of the fixed 
length feature representation of the global scheme and the 
distinctiveness of the local scheme. 

B. Image Alignment 
Periocular images contain common components (i.e., iris, 

sclera, and eyelids) that can be represented in a common 
coordinate system. Once a common area of interest is 
localized, a global representation scheme can be used. The iris 
or eyelids are good candidates for the alignment process. Even 
though both the iris and eyelids exhibit motion, such 
variations are not significant in the periocular images used in 
this research, since the images were taken under similar 
operational conditions as traditional iris recognition systems, 
where variations due to the iris and eyelids are deliberately 
constrained. While frontal iris detection can be performed 
fairly well due to the approximately circular geometry of the 
iris and the clear contrast between iris and sclera, the accurate 
detection of eyelids is more difficult. The inner and outer 
corners of the eye can also be considered as anchor points, but 
there can be multiple candidates as shown in Fig. 2.   

Therefore, we primarily use the iris for image alignment. A 
public domain iris detector based on Hough transformation 

was used for localizing the iris [15]. The iris can be used for 
translation and scale normalization of the image, but not for 
rotation normalization. However, we overcome the small 
rotation variations using a rotation tolerant feature 
representation.  

The iris-based image alignment is only required by the 
global matching scheme. The local matcher does not require 
image alignment because the descriptors corresponding to the 
key points can be independently compared of each other. 

C. Feature Extraction 
We extract global features using all the pixel values in the 

detected region of interest that is defined with respect to the 
iris. The local features, on the other hand, are extracted from a 
set of characteristic regions.   

From the center, Ciris, and radius, Riris, of the iris, multiple 
(=npi) interest points p1, p2, …, pnpi are selected within a 
rectangular window defined around Ciris with a width of 6×Riris 
and a height of 4×Riris as shown in Fig. 3. The number of 
interest points is decided based on the sampling frequency 
(1/Dp) which is inversely proportional to the distance between 
interest points, Dp×Riris.     

For each interest point pi, a rectangular region ri is defined 
with a dimension of Dp×Riris as an interest region. We 
construct the key point descriptors from ri and generate a full 
feature vector by concatenating all the descriptors. The feature 
representation using partitioned image is regarded as a local 
feature representation in some image retrieval literature [16, 
17]. However, we consider this as a global representation 
because all the pixel values are used in the representation 
without considering the local distinctiveness of each region. 

Mikilajczyk et al. [10] have categorized the descriptor types 
as distribution-based, spatial frequency-based, and 
differential-based. We use two well known distribution-based 
descriptors: gradient orientation (GO) histogram and local 
binary pattern (LBP) [18]. We quantize both GO and LBP into 
8 distinct values to build an eight bin histogram. The eight bin 
histogram is constructed from a partitioned sub-region and 
concatenated to construct a full feature vector. A Gaussian 
blurring with a standard deviation σ is applied on both GO and 
LBP to smooth variations across local pixel values. This 
sub-partition based histogram construction scheme has been 
successfully used in SIFT [12] for the object recognition 
problem. 

The local matcher first detects a set of salient key points in 
scale space. Features are extracted from the bounding boxes 
for each key points based on the gradient magnitude and 
orientation. The size of the bounding box is proportional to 
the scale (i.e., the standard deviation of the Gaussian kernel in 
scale space construction). Fig. 4 shows the detected key points 
and surrounding boxes on a periocular image. While the 
global features are only collected around the eye, the local 
features are collected from all salient regions such as facial 
marks. Therefore, it is expected that the local matcher 
provides more distinctiveness.   
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Once a set of key points are detected, these points can be 
used directly as a measure of image matching based on the 
goodness of geometrical alignment. However, such an 
approach does not take into consideration the rich information 
embedded in the region around each interest points. 
Moreover, when there is affine transformation or occlusion it 
will be beneficial to match individual interest points rather 
than relying on the entire set of interest points. We used a 
publically available SIFT implementation [19] as the local 
matcher.   

D. Matching Scheme 
For the global descriptor, the simple Euclidean distance is 

used to calculate the matching distance. The distance ration 
based matching scheme [12] is used for the local matcher 
(SIFT). 

E. Parameter Selection for Each Matcher 
The global descriptor varies depending on the choice of σ 

and the frequency of sampling of interest points, 1/Dp.  
SIFT has many parameters that affects its performance. 

Some of the representative parameters are the number of 
octaves (no), number of scales (ns), and the cut-off threshold 
value, tex, related to the contrast of the extrema points. The 
absolute value of each extrema point in the Difference of 
Gaussian (DOG) space needs to be larger than tex to be 
selected as a key point.  

We construct a number of different descriptors for both the 
global and local schemes by choosing a set of different values 
for σ, Dp, no, ns, and tex. The set of parameters that results in 
the best empirical performance is selected to be used for the 
global and local representations.   

III. EXPERIMENTAL RESULTS 

A. Database 
We collected 899 high-resolution face images from 30 

different subjects in two different sessions (450 in session 1 
and 449 in session 2, 14~15 images per subject in each 
session) using a Canon EOS 5D Mark II camera. The camera 
parameters were set to the following options: maximum 
resolution (21.1 Mega pixels - 5616×3744), Auto-Focus, 
Optical Vibration Reduction Image Stabilization, Portrait 
Mode, ISO AUTO, and JPEG format. Each subject was asked 
to sit ~4 feet away from the camera during data acquisition. 
We manually cropped the periocular region from each face 
image in two different ways: with and without eyebrows. 
Some example periocular images are shown in Fig. 1. The 
sizes of periocular images are in the range [419,892] for width 
and [182,400] for height with no eyebrow. The periocular 
images with eye brow shows height in the range of [265,713] 
with the same width range as those without eyebrow.   

We assembled two different databases, DB1 and DB2, for 
the periocular recognition experiments. DB1 consists of 120 
images with two (left and right eye) periocular images per 
subject per session. DB2 consists of 958 images with 898 

probe and 60 gallery images. Probe dataset contains 28~30 
periocular images per subject and gallery contains 2 
periocular images per subject. DB1 is used for parameter 
selection and DB2 is used for evaluating the matching 

Fig. 6: Rank-1 accuracies of the local matcher (SIFT) with different  
choices of parameter: (a)(c)(e) without eyebrow and (b)(d)(f) with 
eyebrow.  
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Fig. 5: Rank-1 accuracies of the global matcher (GO and LBP) with 
different choices of parameter: (a)(c) without eyebrow and (b)(d) with 
eyebrow. 
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performance. 
 
Table 1: Periocular recognition accuracy (%) with respect 
to the use of eyebrows and side information. 
 

 Without eyebrow With eyebrow 
L or R 
eye * 

Same 
eye ** 

L or R 
eye 

Same 
eye 

GO 52.5 49.2 62.5 60.8 
LBP 56.7 50.8 70.0 66.7 
SIFT 71.7 74.2 70.8 70.0 

GO+SIFT 76.7 80.8 80.0 75.8 
LBP+SIFT 76.7 80.8 80.0 78.3 

GO+LBP+SIFT 73.3 77.5 80.0 79.2 
                  * Left (Right) eyes can match with Right (Left) eyes 
                  ** Left (Right) eyes cannot match with Right (Left) eyes 
 

B. Recognition Accuracy  
The recognition accuracy using the aforementioned 

periocular feature set is assessed using the Cumulative Match 
Characteristic (CMC) curve. For DB1, given N (=120) images 
I1, I2, …, IN, every image Ii is taken as the query and the rest of 
the images are used as the gallery. For DB2, separate set of 
probe and gallery images are used. Matching experiments on 
DB1 are performed with and without eyebrows, and with and 
without the Left/Right (eye side) information. When the 
Left/Right information is used, Left (Right) side periocular 
image can only match to the Left (Right) side. To take 
advantage of the characteristics of both global and local 
descriptors, we used a fusion scheme that combines the global 
and local information. We used a score level fusion based on 
weighted sum with min-max normalization. The weights are 
empirically selected for both the global and local matchers. 

Fig. 5 shows the rank-1 accuracy of the global matcher 
using GO and LBP descriptors based on different 
configuration of the parameters. The best performance was 
observed to be 62.5% and 70.0% for the GO and LBP 
descriptors, respectively. The performance of both GO and 
LBP shows a dependency on Dp rather than σ. The use of 
eyebrow showed better recognition accuracy for both the GO 
and LBP descriptors.  

Fig. 6 shows the rank-1 accuracy of the SIFT matcher. 
Larger values of tex and ns than those shown in Fig. 6 resulted 
in lower accuracy. With a large value of ns, the standard 
deviation of the Gaussian kernel increases by a small amount 
when constructing the scale space, resulting in smaller values 
across the DOG space. This has a similar effect as increasing 
tex, which also decreases the matching accuracy. Larger no 
helps in improving the matching accuracy, in general. The 
accuracy decreases with the use of eyebrows. We believe this 
is due to the noisy keypoints detected around the eyebrow, 
which results in false matches thereby inflating the imposter 
matching scores. The best rank-1 performance is obtained as 
74.2% with no eyebrow and using information about the 
location of the periocular region (i.e., left or right eye). 

The matching accuracy of the best global matchers, local 

matcher, and the resulting fusion schemes on DB1 and DB2 
are shown in Fig. 7. The best performance is observed to be 
80.8% and 77.3% by fusing the LBP based global matcher 
with SIFT on DB1 and DB2, respectively. 

The first five rows of Fig. 8 show examples of image pairs 
that were not correctly matched at rank-1 by the LBP and 
SIFT schemes but were correctly matched after fusion for the 
first five rows. The last two rows show failure cases both 
before and after fusion. Periocular images from different 
subjects appear similar in the last two rows, resulting in the 
false matches. 

IV. CONCLUSIONS AND FUTURE WORK 
We have proposed a method for using periocular images as 

a biometric trait. Both global and local descriptors have been 
explored for feature extraction and matching. Further, a 
score-level fusion scheme was employed to enhance the 
recognition accuracy. Based on the evaluation of a total of 958 

Fig. 7: CMC curve of the global, local, and fusion matchers on (a) DB1 
and (b) DB2.  

(a)   

(b)   
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images, taken from 30 different subjects, the proposed method 
demonstrates the feasibility of using periocular images as a 
biometric trait. The feature extraction time is about 6 sec for 
both LBP and SIFT, and the matching time is negligible on a 
2.4 GHz, 4GB RAM PC. 

We also performed a face recognition experiment on the 
full-face images using 449 images in session 2 as probes and 
30 images in session 1 as gallery images. A commercial face 
recognition engine, FaceVACS [20], was used for this 
purpose. A 100% accuracy was obtained in the face 
recognition test. This implies the following; i) periocular 
biometric should be used as a secondary method supporting 
the primary biometric or as an alternative when the primary 
biometric is not available and ii) periocular region contains 
~80% of the identity information in associated with the face. 
This complies with the results in an earlier study in [21], 
where the periocular region was shown to be the most 
important region in identifying a face.  

Future work will involve utilizing multispectral 
information for feature extraction; using more robust image 
alignment and matching methods; combining the periocular 
matcher with iris matcher; and developing more robust feature 

encoding schemes. We would also like to study the impact of 
cosmetics on the texture of the periocular region and the 
ensuing recognition capability. 
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