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Abstract—We present a new system for biometric recognition
using periocular images. The feature extraction method employed
describes neighborhoods around keypoints by projection onto
harmonic functions which estimates the presence of a series
of various symmetric curve families around such keypoints.
The iso-curves of such functions are highly symmetric w.r.t.
the keypoints and the estimated coefficients have well defined
geometric interpretations. The descriptors used are referred
to as Symmetry Assessment by Feature Expansion (SAFE).
Extraction is done across a set of discrete points of the image,
uniformly distributed in a rectangular-shaped grid positioned
in the eye center. Experiments are done with two databases
of iris data, one acquired with a close-up iris camera, and
another in visible light with a webcam. The two databases
have been annotated manually, meaning that the radius and
center of the pupil and sclera circles are available, which are
used as input for the experiments. Results show that this new
system has a performance comparable with other periocular
recognition approaches. We particularly carry out comparative
experiments with another periocular system based on Gabor
features extracted from the same set of grid points, with the
fusion of the two systems resulting in an improved performance.
We also evaluate an iris texture matcher, providing fusion results
with the periocular systems as well.

Index Terms—Biometrics, periocular recognition, eye, symme-
try filters, structure tensor

I. INTRODUCTION

Periocular recognition has gained attention recently in the

biometrics field [1], [2], [3] with some pioneering works

already in 2002 [4] (although authors here did not call the

local eye area ‘periocular’). Periocular refers to the face

region in the immediate vicinity of the eye, including the eye,

eyelids, lashes and eyebrows. While face and irises have been

extensively studied [5], [6], the periocular region has emerged

as a promising trait for unconstrained biometrics, following

demands for increased robustness of face or iris systems.

With a surprisingly high discrimination ability [1], this region

can be easily obtained with existing setups for face and iris,

and the requirement of user cooperation can be relaxed. It

has also another advantages, such as its availability over a

wide range of distances even when the iris texture cannot

be reliably obtained (low resolution) or under partial face

occlusion (close distances). Most face systems use a holistic

approach, requiring a full face image, so the performance

is negatively affected in case of occlusion [2]. Periocular

region has also shown to have superior performance than

face under extreme values of blur or down-sampling [7].

This points out the strength of periocular recognition when

only partial face images are available, for example forensics

or surveillance cameras, or in more relaxed scenarios such

as distant acquisition or mobile devices. In addition, the

periocular region appears in iris images, so fusion with the

iris texture has potential to improve the overall recognition

[8], [9]. In most of the existing studies, images have been

acquired in the visible range [1]. Periocular on visible light

works better than on near-infrared (NIR), because it shows

melanin-related differences [3]. On the other hand, many iris

systems work with NIR illumination due to higher reflectivity

of the iris tissue in this range [10]. Unfortunately, the use of

more relaxed scenarios will make NIR light unfeasible (e.g.

distant acquisition, mobile devices) so there is a high pressure

to the development of algorithms capable of working with

visible light.

An overview of existing approaches for periocular recogni-

tion is given in [1]. The most widely used approaches include

Local Binary Patterns (LBP) [11] and, to a lesser extent,

Histogram of Oriented Gradients (HOG) [12] and Scale-

Invariant Feature Transform (SIFT) keypoints [13]. The use

of different experimental setups and databases make difficult

a direct comparison between existing works. The study of Park

et al. [2] compares LBP, HOG and SIFT using the same data,

with SIFT giving the best performance (rank-one recognition

accuracy: 79.49%, EER: 6.95%), followed by LBP (rank-one:

72.45%, EER: 19.26%) and HOG (rank-one: 66.64%, EER:

21.78%). Other works with LBPs, however, report rank-one

accuracies above 90% and EER rates below 1% [14], [15],

[8]. Gabor features were also proposed in a seminal work

of 2002 [4], although this work did not call the local eye

area ‘periocular’. Here, the authors used three machine experts

to process Gabor features extracted from the facial regions

surrounding the eyes and the mouth, achieving very low error

rates (EER≤0.3%). This system served as inspiration for a

Gabor-based periocular system that we proposed in [16] (used

in the experiments of this paper). Another important set of

research works have concentrated their efforts in the fusion

of different algorithms. For example, Bharadwaj et al. [17]

fused Uniform LBPs (ULBP) with a global descriptor (GIST)

consisting of perceptual dimensions related with scene descrip-

tion (image naturalness, openness, roughness, expansion and



ruggedness). The best result, obtained by the fusion of both

systems, was a rank-one accuracy of 73.65%. Juefei-Xu et al.

[18], [19] fused LBP and SIFT with other local and global

feature extractors including Walsh masks [20], Laws Masks

[21], DCT [22], DWT [23], Force Fields [24], SURF [25],

Gabor filters [26], and Laplacian of Gaussian. The best result

obtained was a rank-one accuracy of 53.2% by fusion of DWT

and LBP. Finally, Hollingsworth et al. [3] evaluated the ability

of (untrained) human observers to compare pairs of periocular

images, resulting in a rank-one accuracy of 88.4% (VW data)

and 78.8% (NIR data).

Fig. 1. Example of families of symmetric patterns. Top row of each subplot:
analytic function q(z) used to generate each pattern. Bottom row of each

subplot: symmetry derivative filter Γn,σ2

of order n suitable to detect the
pattern family.
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Fig. 2. Sampling grid configuration. Parameter d indicates the horizon-
tal/vertical distance between adjacent points.

In this paper, we propose a new periocular recognition

system based on a systematic series of structure tensors in

curvilinear coordinates, which estimates the spatially varying

orientation by projection onto harmonic functions. This en-

codes the presence of a series of various symmetric curve

families (Figure 1) around keypoints. Features are extracted

in a set of discrete points (pixels) only, uniformly distributed

across the image in a rectangular-shaped sampling grid which

is centered in the pupil (Figure 2). The functions share a

singularity at their origin, defining the location of keypoints

precisely, whereby they describe the object properties of neigh-

borhoods. Energies of the features measure object properties

which are concentrated to a point by design. This is novel

and complementary to traditional texture features which are

purposively invariant to translation (within a texture). The

features used are called Symmetry Assessment by Finite

Expansion (SAFE), which we have recently proposed and used

for forensic fingerprint recognition [27].

We use two iris databases, one with close-up NIR data

and another with webcam (visible) data. Our system achieves

competitive verification rates with respect to existing pe-

riocular approaches. We carry out direct comparison with

another periocular system based on Gabor texture features

[16], showing that the fusion of the two systems can achieve

better performance (up to 14% of improvement in the EER

has been observed). We also evaluate an iris texture matcher

based on 1D Log-Gabor wavelets. Despite the performance of

this matcher is considerably lower with the webcam database,

we observe an interesting complementarity with the perioc-

ular modality under this type of images, with performance

improvements of more than 40% with the fusion of the iris

matcher and any of the periocular systems.

II. SYSTEM DESCRIPTION

Our recognition system is based on the SAFE features

proposed in [27] for forensic fingerprint recognition. We

start by extracting the complex orientation map of the image

(Figure 3) [28]. We then project ring-shaped areas of different

radii around selected keypoints onto an space of harmonic

functions [29]. By keeping the number of basis and rings

low, the extracted features are low dimensional. The system is

described in detail next.

A. The Generalized Structure Tensor (GST) and the Linear

Symmetry Tensor (LST)

The Generalized Structure Tensor (GST) has been intro-

duced as a tool for symmetry detection [29]. The GST rep-

resents a pair of functions (I20(n), I11(n)) which are result

of nonlinear operations between an image f and the n-th

symmetry derivative of a Gaussian, Γn,σ2

:

GST (n) = (I20(n), I11(n)) =

(Γn,σ2

2 ∗ (Γ1,σ2

1 ∗ f)2, |Γn,σ2

2 | ∗ |Γ1,σ2

1 ∗ f |2)
(1)

with

Γn,σ2

= rn
1

2πσ2
e−

r
2

2σ2 einϕ, being r = |x+ iy|. (2)

The main use of the GST is the detection of position

and orientation of symmetric patterns such as lines, circles,

parabolas, etc., as those shown in Figure 1. Symmetric pat-

terns are generated by harmonic function pairs ξ (x, y) and

η (x, y) with iso-curves of ξ and η being locally orthogo-

nal to each other [30]. These harmonic function pairs can

be easily obtained as the real and imaginary parts of any

analytic function q(z), with z = x + iy. For example, the



symmetric patterns of Figure 1 are generated by using the

1D equation (−ξ sin θ + η cos θ) = constant. The top row

indicates the analytic function used to generated each pattern,

while the bottom row indicates the order of the symmetry

derivative of gaussian (indexed by n) suitable to detect the

pattern family by means of Equation 1. The iso-curves of

the patterns are parallel lines in curvilinear coordinate system

(given by the two harmonic basis curves ξ and η) and they

reverse to parabola, circle, spiral, etc. when transformed to

Cartesian coordinates. The beauty of this method is that

these transformations are not applied to the input image, but

they are implicitly encoded in the utilized complex filters,

so detection of such intricate patterns is done directly in

Cartesian coordinates, as per Equation 1. The parameter

θ controls the orientation of the symmetric pattern (except

for q(z) = log (z)) and changing the pair ξ, η results in a

completely different family of patterns. It can be demonstrated

from the triangle inequality that |I20(n)| ≤ I11(n), so I11(n)

is normally used for normalizing values of I20(n) to be scale

invariant for any n:

∣

∣I20(n)
∣

∣

I11(n)
≤ 1 (3)

Thus, the image
∣

∣I20(n)
∣

∣ /I11(n) gives evidence/certainty

of a specific symmetry type in f (with location given by

local maxima) and the orientation of the pattern is encoded

in the argument ∠I20(n) (in double angle). The latter is also

important, since one unique filter detects a whole family of

patterns regardless of the orientation of the pattern. Equality

in Equation 3 holds in case of strong directional dominance

(i.e. presence) of the corresponding pattern. For Cartesian

coordinate space, ξ = x and η = y, the GST evaluates the

direction in which most of the energy is concentrated, i.e.

linear symmetry. This corresponds to the local orientation of

the image, and it is referred as the Linear Symmetry Tensor

(LST) [28]:

LST = (I20(0), I11(0))
∆
= GST (0) (4)

The argument of complex pixel values of I20(0) encodes the

local orientation of the image (in double angle), and values of

I11(0) measure the strength, which is used to normalize values

of I20(0), according to Equation 3.

B. Feature Extraction by Projection on Harmonic Functions

The complex image I20(n) can also be obtained as:

I20(n) = Γn,σ2

2 ∗ I20(0) (5)

meaning that the image I20(n) used to detect the particular

pattern given by n can be viewed as a scalar product between

the orientation image I20(0) and the corresponding symmetry

derivative filter Γn,σ2

. The parameter σ1 in Equation 1 defines

the derivation filters in the computation of the orientation

image (determined by the estimated noise level), whereas σ2,

used in the computation of I20(n) and I11(n), defines the size

extension of the sought pattern. This makes Γn,σ2

a projection

basis for a Hilbert space [31], which is achieved here by

choosing the spatial supports of Γn,σ2

in radially disjoint

regions defined by concentric annular rings. Every annulus

is constructed by means of a derivative of a Gaussian, using

a modified version of Equation 2:

ψmk = (1/κk)r
ne−

r

2σ2 eimϕ. (6)

Here, ψmk is identical to Γn,σ2

except that ∥ψmk∥ = 1
is ensured via the normalization constant κk, and that the

exponent of rn is now a constant n (which defines the width

of the filter), independent of the symmetry order (which is

now called m). The position of the filter peak is controlled by

σ via rk =
√
nσ, with rk being the desired position of the

peak. In other words, we can tune the filters to be used by

the GST to work on a desired annular band of the image,

with known radius and width, via Equation 6. For feature

extraction, we define a range of radii [rmin, rmax], and build

Nf filters with peaks log-equidistantly sampled in this range

(Figure 4). The filters are normalized (via ∥ψmk∥ = 1) to

have an underlying area of the same size, so that the value

of extracted features is independent of the annuli size. We

therefore extract image information at Nf annular rings of

different radii rk (k = 1...Nf ).

According to Equation 5, the feature extractor requires as

input the complex orientation image. We extract annular rings

from the orientation image around selected keypoints as:

fk =
I20(0)

I11(0)
|ψmk| (7)

Keypoints are selected on the basis of an sparse retinotopic

sampling grid positioned in the center of the eye (Figure 2).

The grid has rectangular geometry, with sampling points

distributed uniformly. We use a relative low dense grid, to keep

the size of the feature set small, and to allow faster processing.

This grid is inspired by other periocular works [9], where it

is also demonstrated that more dense grids do not necessarily

lead to better performance. Feature extraction is thus made in

the points of the grid in an analogue way as Equation 1, but

with the orientation image I20(0)/I11(0) now confined to a

ring:

I20(m) =< ψmk, fk >=< |ψmk|2eimϕ,
I20(0)

I11(0)
> (8)

I11(m) =< |ψmk|, |fk| >=< |ψmk|2,
|I20(0)|
I11(0)

> (9)

Therefore, we use the result of scalar products of harmonic

filters ψmk with the orientation image neighborhood around

keypoints to quantify the amount of presence of pattern fam-

ilies as those shown in Figure 1 in annular rings around each

keypoint (with order of the symmetric pattern given by m).

The feature vector dimension describing a keypoint is given

by the number of rings (Nf ) and the size of the projection

base (Nh) inside each ring, leading to Nf × Nh features
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Fig. 3. Feature extraction process for one filter radius. The hue encodes the direction, and the saturation represent the complex magnitude.

Fig. 4. Cross-section of annular filters (Nf = 7).

for each sampling point. In this work, we employ Nf = 9
annular regions and Nh = 9 different families symmetries

(from m = −4 to 4). As it follows from the triangle inequality,

the extracted features are normalized as:

SAFEmk =
I20(m)

I11(m)
∈ C, with |SAFEmk| ≤ 1 (10)

and all features computed in a keypoint are put together in a

complex array SAFE of Nf × Nh elements. The suggested

SAFEmk features are complex-valued and their magnitudes

represent the amount of reliable orientation field within the

annular ring k explained by the m− th symmetry basis, with

SAFEmk = 1 being full explanation.

C. Matching

To match two complex-valued feature vectors SAFE
r and

SAFE
t, we use again the triangle inequality:

M =
< SAFE

r,SAFE
t >

< |SAFE
r|, |SAFE

t| >
∈ C (11)

The argument ∠M represents the angle between SAFE
r

and SAFE
t (which is expected to be zero when symmetry

patterns detected by GST coincide for reference and test

feature vectors, and 180◦ when they are orthogonal). The

confidence of measure is given by |M |. To include confidence

into the measured angle difference, we use the projection of

angle:

MS = |M | cos∠M (12)

The resulting matching score MS ∈ [−1, 1] and is equal

to 1 for coinciding symmetry patterns in the reference and

test vectors (full match). Low or zero certainty (MS ≃ 0)

happens when the certainties in one of the respective descriptor

components (their magnitudes) are zero, because of low qual-

ity data in annular rings or if the orientation data of reliable

sectors of annular rings cannot be explained by the respective

symmetric patterns. Full miss-match, or MS = −1, happens

when reliable sectors (having |M | = 1) of all components

between reference and test feature vectors point at symmetry

patterns that are locally orthogonal. Matching between two

images is done by computing the matching score MS between

corresponding points of the sampling grid. All matching

scores are then averaging, resulting in a single matching score

between two given images.

III. BASELINE PERIOCULAR AND IRIS SYSTEMS

The algorithm presented here is compared with the periocu-

lar system proposed in [16]. It makes use of the same sampling

grid shown in Figure 2, so features are extracted from the same

keypoints. The local power spectrum of the image is sampled

at each point of the grid by a set of Gabor filters organized

in 5 frequency channels and 6 equally spaced orientation

channels. The Gabor responses from all points of the grid are

grouped into a single complex vector, which is used as identity

model. Matching between two images is using the magnitude

of complex values. Prior to matching with magnitude vectors,

they are normalized to a probability distribution (PDF), and

matching is done using the χ2 distance [32]. Due to different

image size (see Section IV), Gabor filter wavelengths span

from 4 to 16 pixels with the MobBIO database and 16 to 60

with BioSec. This covers approximately the range of pupil

radius of each database, as given by the groundtruth.



We also conduct matching experiments of iris texture using

1D log-Gabor filters [33]. The iris region is unwrapped to

a normalized rectangle using the Daugman’s rubber sheet

model [10] and next, a 1D Log-Gabor wavelet is applied

plus phase binary quantization to 4 levels. Matching between

binary vectors is done using the normalized Hamming distance

[10], which incorporates the noise mask, so only significant

bits are used in computing the Hamming distance. Rotation

is accounted for by shifting the grid of the query image in

counter- and clock-wise directions, and selecting the lowest

distance, which corresponds to the best match between two

templates.

Fig. 5. Example of images of the BioSec database with the annotated circles
modeling iris boundaries and eyelids.

0 10 20 30 40 50 60
Radius value

MOBBIO database

 

 

20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

Radius value

P
ro

b
a

b
ili

ty
 o

f 
o

cc
u

re
n

ce

BIOSEC database

 

 

 

Pupil
Sclera

Fig. 6. Histogram of pupil and sclera radii of the two databases used here,
as given by the groundtruth [34].

IV. DATABASES AND EXPERIMENTAL PROTOCOL

We use the BioSec [35] and MobBIO [36] databases.

From BioSec, we select 1,200 images from 75 individuals

acquired in 2 sessions (4 images of each eye per person, per

session). Images are of 480×640 pixels, acquired with a LG

IrisAccess EOU3000 close-up infrared iris camera. MobBIO

has been captured with the Asus Eee Pad Transformer TE300T

Tablet (a webcam in visible light) in one session. Images in

MobBIO were captured in two different lightning conditions,

with variable eye orientations and occlusion levels, resulting

in a large variability of acquisition conditions. Distance to

the camera was kept constant, however. From MobBIO, we

use 800 iris images of 200×240 pixels from 100 individuals

(4 images of each eye per person). The two databases have

been annotated manually by an operator [34], meaning that the

radius and center of the pupil and sclera circles are available,

which are used as input for the experiments. Similarly, the

eyelids are modeled as circles, which are used to build the

noise mask of the iris matcher. Examples of annotated images

are shown in Figure 5.

We carry out verification experiments. We consider each

eye as a different user (200 available users in MobBIO,

150 in BioSec). Experiments with MobBIO are as follows.

Genuine matches are done by comparing each image of a

user to his/her remaining images, avoiding symmetric matches.

Impostor matches are obtained by comparing the 1st image

of a user to the 2nd image of the remaining users. We

then get 200×6=1,200 genuine and 200×199=39,800 impostor

matchings. With BioSec, genuine matches for a given user

are obtained by comparing all images of the 1st session to

all images of the 2nd session. Impostor matches are obtained

by comparing the 2nd image of the 1st session of a user to

the 2nd image of the 2nd session of the remaining users. We

then obtain 150×4×4=2,400 genuine and 150×149=22,359

impostor matchings. Note that experiments with BioSec are

made by matching images of different sessions, but these inter-

session experiments are not possible with MobBIO.

Some fusion experiments are also done between different

matchers. The fused distance is computed as the mean value

of the distances due to the individual matchers, which are

first normalized to be similarity scores in the [0, 1] range

using tanh-estimators as s′ = 1
2

{

tanh
(

0.01
(

s−µs

σs

))

+ 1
}

.

Here, s is the raw similarity score, s′ denotes the normalized

similarity score, and µs and σs are respectively the estimated

mean and standard deviation of the genuine score distribution

[37].

V. RESULTS

The performance of the periocular system proposed based

on SAFE features is given in Figure 7 (top). We also provide

results of the baseline periocular and iris matchers, as well as

of different fusion combinations (bottom). The corresponding

EERs are given in Table I. We test different range of radii

of the symmetry filters based on the groundtruth information

(Figure 6). For Mobbio, the smallest filter radius is set to 5 or

10, which is in proportion to the average radius of the pupil

(around 10). Similarly, the biggest filter radius is set to 32 or

64, in proportion to the average radius of the sclera (around

32). This leads to the different combinations shown (‘5-32’,

etc.). A similar reasoning is applied with Biosec: smallest

filter radius proportional to 30 (average pupil radius), and

biggest filter radius proportional to 100 (slightly smaller than

the average sclera radius). This leads to the combinations ‘15-

100’ and ‘30-200’. For comparative reasons, we have also used

with Biosec a range of radii comparable with those used with

Mobbio, i.e.: ‘5-30’, ‘5-60’, and ‘10-60’. An example of these

different configurations can be seen in Figure 8.

With Biosec (Figure 7 top, left), we observe that the

different filter configurations have approximately the same

performance. The best configuration corresponds to ‘5-60’.

Only when the top-end of the range of radii is made large in

comparison with the iris size (i.e. ‘30-200’), the performance

shows a little worsening. This is in contrast with Mobbio,

where the best configuration is the one covering as much as

twice the average sclera radius (i.e. ‘10-64’). Decreasing the

top-end of the radii here results in an appreciable worsening

in performance (see ‘5-32’). It is worth highlighting that the

optimum range of filter radii is quite similar for both databases,
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Fig. 7. Top: Performance of the periocular system proposed based on SAFE
features for different configurations of the filters. Bottom: Comparison with
the baseline periocular and iris matchers. The PP configurations employed in
the bottom plot are the ones giving the best EER (‘5-60’ with Biosec, ‘10-64’
with Mobbio).

despite different image size and illumination. These are also

good news in the sense that the size of the filters of Equation 6

can be kept low even with bigger iris images, leading to

computational savings during the convolutions of Equations 8

and 9.

As regards to differences between the two databases, the

proposed system achieves better performance with Mobbio

(EER of 11.96% vs. 12.81%). On the contrary, the baseline

periocular system (labeled ‘PG’ in Figure 7 and Table I)

shows opposite behavior. This can suggest that one feature

is better than the other for a particular type of illumination

used in the acquisition, but this is difficult to assess given

the different image size. Different systems configurations than

the ones used here may lead to different results. What is

relevant however, is that Mobbio uses approximately half of

the sampling points than Biosec (35 vs. 63, see Figure 2), but

the performance of the periocular systems are not necessarily

worse. The two periocular systems are also observed to be

complementary, with the fusion (‘PP+PG’) resulting in up to

14% of EER improvement in both databases.

With respect to the iris matcher, its performance is much

better in BioSec than in MobBIO, which is expected, since iris

systems usually work better in NIR range [10]. An additional

factor could be the differences in image size, and the worse

Rmin=5, Rmax=30 Rmin=5, Rmax=60 Rmin=10, Rmax=60

Rmin=15, Rmax=100 Rmin=30, Rmax=200

Rmin=5, Rmax=32 Rmin=5, Rmax=64 Rmin=10, Rmax=64

BIOSEC database

MOBBIO database

Fig. 8. Different configurations of the smallest and largest radii of the
symmetry filters (examples are shown for the grid point situated in the center
of the pupil).

acquisition conditions of MobBIO. It is worth noting that

the periocular systems work better than the iris matcher in

MobBIO. The smaller image size makes more difficult to

reliably extract identity information for the iris texture. In

this situation, the periocular region is still able to provide a

rich source of identity. But even in the adverse acquisition

conditions of MobBIO, the iris system is able to comple-

ment the periocular systems, as shown in the fusion results

(with improvements in performance of more than 40%). This

complementarity between the iris and periocular matchers is

not observed in Biosec. The latter, however, should not be

taken as a general statement. Other fusion rules may lead

to different results with BioSec, specially if the supervisor

is data quality and/or expert adaptive [38], [37]. Additional

optimizations of the periocular systems towards smaller error

rates can be another avenue to overcome this issue.

VI. CONCLUSIONS

A new periocular recognition system based on detection of

local symmetry patterns is proposed. It is based on projecting

ring-shaped areas of different radii around selected keypoints

onto an space of harmonic functions which are tuned to detect

various symmetric curve families [29]. Extracted features

therefore quantify the presence of pattern families (Figure 1)

in annular rings around each keypoint. The proposed features

are called Symmetry Assessment by Finite Expansion (SAFE),

which we have recently used for forensic fingerprint recog-

nition [27]. Keypoints are selected on the basis of a sparse

sampling grid positioned in the eye center, having rectangular

geometry, with sampling points uniformly distributed across

the image. The system is evaluated with two databases of iris

data, one acquired with a close-up NIR camera, and another



BIOSEC database (NIR)

smallest largest Periocular Iris Periocular+Iris

filter filter Proposed Gabor Fusion Fusion Fusion

(PP) (PG) PP+PG IR PP+IR PG+IR

5 30 13.07 9.35 (-13.20%) 2.57

5 60 12.81 9.28 (-13.87%) 2.40

10 60 13.12 10.77 9.44 (-12.33%) 1.12 2.41 2.16

15 100 13.47 9.82 (-8.84%) 2.40

30 200 13.96 9.89 (-8.21%) 2.04

MOBBIO database (visible)

smallest largest Periocular Iris Periocular+Iris

filter filter Proposed Gabor Fusion Fusion Fusion

(PP) (PG) PP+PG IR PP+IR PG+IR

5 32 14.99 12.81 (-14.11%) 11.33 (-39.77%)

5 64 13.01 14.92 11.39 (-12.40%) 18.81 9.67 (-48.58%) 11.11 (-40.94%)

10 64 11.96 10.98 (-8.22%) 9.71 (-48.37%)

TABLE I
VERIFICATION RESULTS IN TERMS OF EER. THE BEST CASE OF EACH COLUMN IS MARKED IN BOLD. FUSION RESULTS: THE RELATIVE EER VARIATION

WITH RESPECT TO THE BEST INDIVIDUAL SYSTEM IS GIVEN IN BRACKETS (ONLY WHEN THERE IS PERFORMANCE IMPROVEMENT).

in visible light with a webcam. One advantage of periocular

systems is that existing setups of face and iris can be used for

recognition purposes.

We carry out experiments for different range of radii of the

ring-shaped areas, which are set in proportion to the average

radius of the pupil and sclera boundaries of the databases

(as given by available groundtruth). All the configurations

tested with the NIR database have similar performance, and

only when the top-end of the range of radii is made large

in comparison with the iris size, a worsening in performance

is observed. On the other hand, the best configuration with

the visible database is the one covering as much as twice the

average sclera radius. In absolute terms, the optimum range is

very similar for both databases, despite differences in image

size. This is good, since making iris images larger does not

imply making the extraction filters bigger, with significant

implications in computational time savings.

The system proposed here is also compared with another

periocular system based on Gabor filters, as well as with

an iris texture matcher. It is observed that each periocular

system works better with one particular database, but the

fusion of both systems results in a significant improvement

for both databases (up to 14% of improvement in the EER).

As regards the iris matcher, it works considerably better than

the periocular systems with NIR data, while the opposite

behavior is observed with visible data. Despite the poorer

performance with the webcam database, however, fusing the

iris matcher with any of the two periocular systems leads to

EER improvements of more than 40%.

Most studies of periocular recognition have not focused on

detection of the periocular region (it is manually extracted) but

on feature extraction only. Only Park et al. [2] used a Viola-

Jones face detector [39] plus heuristics measurements (not

specified) to extract the periocular region, so successful extrac-

tion relied on an accurate detection of the whole face. In this

initial work, we have proposed and evaluated the feasibility of

local symmetry patterns for periocular recognition purposes.

Our future work will include incorporating automatic detection

of the periocular region [9] to the developments proposed here,

as well as incorporating other periocular approaches to our

comparison [1]. The use of visible images of higher resolution

is also another avenue of study, as well as the use of full-face

images.
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