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Qualitative features of a one-dimensional lattice of coupled-logistic maps are investigated. First, 
kink-antikink patterns of 2"-periodic cycles with their period-doubling bifurcations are found. Secondly, 
antiferro-like structures with some kinks are observed, which show the transition from torus to chaos. 
Lastly, spatial intermittent structures are investigated, with the emphasis on the propagation of bursts. 

§ 1. Introduction and models 

Recent studies on low-dimensional dynamical systems have made great advances, 
which elucidate various aspects of chaos and the mechanism of its onset. 1) The success 
of the low-dimensional theory is, however, limited to systems with a few number of excited 
modes, which are relevant near the onset of turbulence owing to Ruelle and Takens' 
picture2

),3) and abundance of phase lockings.4
)-6) Then a question arises; what happens in 

a system with a large number of excited modes? Such a question is important for the 
study of fully-developed turbulence, chemical turbulence/) optical turbulence,s) nonlinear 
field theory9) and a pattern formation theory. The main topics are as follows: character­
ization of patterns, bifurcations of a solution with a spatial structure and transitions to 
chaos, characterization of spatial complexity, estimation of the fractal dimensions and 
Lyapunov spectra,10),l1) validity of a low-dimensional theory, stability of a direct product 
state, and phase transitions in spatial structures. 

In the present paper we report some preliminary results on such questions by making 
use of coupled maps.12)-IS) The models we study in the present paper are given by 

(1) Xn+1(i)= /(XnU))+ D((xnU + 1)+ XnU -1))/2- XnU))/2) 

(II) Xn+1(i)= f(xn(i))+ D'((f(xn(i + 1))+ /(XnU -1)))/2- /(XnU)))/4) 

where i = 1, 2,"', N denote one-dimensional lattice sites with periodic boundary condition 
(xn(N + 1)=Xn(1)). The function f(x) is chosen to be 1-Ax2 (i.e., coupled logistic 
map). The number N is chosen to be 100 in most cases. See Ref. 12) for the case with 
N = 2. (For Model II, we use the notation D = D' A.) 

§ 2. Period-doublings of kink-antikink patterns 

One characteristic pattern of the coupled logistic lattice (eLL) (1 and II) appears for 
*) Reported at the meeting of Physical Society of Japan (1984, April). 
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the parameter region A where the period­
doubling bifurcations proceed for the logistic 
map. The pattern is characterized by flat 
regions and domain boundaries (kinks or 
antikinks). The phase of the periodic oscil­
lation (with a period 2n) varies among flat 
regions but is the same within a flat region. 
An example of the pattern is shown in Fig. 1, 
where the initial condition is given by xo( i) 
=sin(27ri/N) and the period is 4. As A is 

8-0.9 X (i) 1.3 increased, period-doubling bifurcations pro-
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Fig. 1. Pattern of a 4-cycle. Plotted are XnU)'S for 

n=400 (0), n=401(X), n=402(D.), and n 

=403(.) for Map (II) with A=1.30, D=0.05 and 
the initial condition xU)=sin(27ri/N), after the 
transients have already decayed out. 

ceed, which lead to chaos*) (see Fig. 2(a) for 
a 24-periodic cycle and Fig. 2(b) for chaos). 
We note the following features: 
i) Doubling occurs only a finite number of 
times in general. 17) The number can depend 
on initial conditions, coupling D, and the size 
N. 
ii) The width of a kink is rather small (5 or 
6 sites in maximum). It increases as the 
coupling is increased for Model II. 
iii) Period-doubling brings about the spatial 
structure with more complexity. Structures 
with smaller wavelengths appear owing to 
the doubling. Small spatial structures are 
feasible to disappear as the increase of the 
coupling (i.e., a structure with a fewer kinks 
appears). 
iv) Even after the transition to chaos 

occurs, patterns of kink-antikinks are conserved and chaos is localized in each domain. 
As the nonlinearity A is further increased, the structure collapses. 

§ 3. Transition from torus to chaos in antiferro-like structures 

Another interesting pattern in eLL is an "antiferro-like" structure, which is shown in 
Fig. 3 (the figure shows a cycle with period two). It is characterized by an alternate 
structure with a wavelength two. This structure is remarkably seen in Model I though it 
can be seen in a narrower parameter region for Model II. We note that there can be kinks 
in the antiferro-like structure as can be seen in Fig. 3, which is rather analogous to solitons 
in polyacetylene.18) As the nonlinearity A is increased, there occurs a Hopf bifurcation 
and a torus appears (see Fig. 4(a») for the attractor in X (l)-x (2-) space). The shape of 
the projected torus (Fig.4(a).for example) differs by the projected space (see, i.e., Fig. 4(b) 
for the projection into x(1)-x(50) space). As the nonlinearity is increased further, the 
torus is modulated (3-torus is expected19» and finally chaos appears (see Fig. 4(C».12),20) 

*) in the present paper, we regard the attract or as chaos if the pattern is irregular and the time series of xU) 
does neither have a cycle with the period less than lOOO, nor does it show a quasiperiodic behavior as in §3. 
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Fig. 2. Snapshot of Map (II) with the initial condition x(i)=sin(27fi/N) after the decay of the 
transients. 

(a) A=1.4 and D=O.005(2'·cycle), shown by •. 
(b) A=1.42 and D=O.005 (chaos), shown by x. 

We note the following features: 
i) We can construct various types of struc· 
tures in which the number of kinks differs, by 
choosing suitable initial conditions. Kinks 
cause the modulation of the phase of the 
torus, which bring about the transition to 
chaos. 
ii) In some parameter regions, two types of 
patterns can coexist, i.e., the structures of §2 
and the present section .. ' Small irregularities 
in the pattern in §2 can cause the transition 
to the antiferro-like pattern (e.g., the pattern 
in §2 with x(i)=O for i=1, 2, "', 10 or 
the initial condition with some singularities 
(e.g., x(i)=sin(Jri/N)) show this type of 
behavior). 
iii) Even after the transition from torus to 
chaos, the kinks can exist; which do not 

. change their positions by the iteration of the 
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Fig. 3. Snapshot of Map (I) with the initial condi· 
tion x(i)=sin(7fi/N) and A=O.74 and D=O.2. 
The symbols x and • denote the odd and even 
sites respectively. We note the existence of 
some kinks (shown by arrows). The attract or is 
a 2·cycle. 

map. As the nonlinearity is increased further, the antiferro-like structure collapses and 
the chaotic structure with more spatial complexity appears. 
iv) The antiferro-like structure is also observed in other parameter regions of A, where 
basic dynamics shows not a 2-cycle but a 4-cycle or chaos. (See for example Fig. 2.) 
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Fig. 4. Projection of the attractor of Map I, with the 
initial condition x{i)=sin(27fi/N) and D=0.2. 
(a) xn(1}·xn(2) plane; A=0.84 
(2000< n< 10000). 
(b) xn(1}-xn(50), plane; A=0.84 
(2000< n< lOOOO). 
(c) xn(l)-x~(2) plane; A=0.88 
(2000< n< 10000). 

§ 4. Spatial intermittency 

The last structure which is treated in this paper is seen near the parameter value A 
where the intermittent transition21

) occurs for the logistic map.22) Let us consider the 
system with A ~ 1.75 (as A is decreased from 1.75, the intermittent transition from a 3-
cycle occurs for the logistic map). A snapshot of thepattem of "spatial intermittency" 
is given in Fig. 5, where bursts between laminar regions with x ~ -0.75,1.0, and 0.0~0.003 
can be remarkably seen. (In the present section Map II is stu9ied, though similar 
behavior is observed.also for Map 1.) For avery small coupling D,.a structure only with 
a laminar region (consequently a cycle with period-three) exists, which is analogous to the 
structure in §2. The structure is, however, stable only for a much smaller coupling than 
the case in §2 and a kink with a finite width cannot be observed in the present case. This 
instability of the kink structures will be due to the existence of the topological chaos for 
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the logistic map with A ~ 1.75 (the topological chaos does not exist in the case in §2). The 
time series for x(10), x(l1) andx(50) is shown in Fig. 6, which shows the temporal 
intermittency for each site and the correlation of the bursts between the neighboring sites. 

Let us consider the propagation of the 
bursts in more detail. To see the propaga­
tion clearly, we choose the following initial 
condition; xU)=0.0013 for i=l, 2,·'·, 50 and 
xU)=-0.75 for i=51, 52, ... , 100. Initially, 
bursts exist at the sites 50 and 100. The 
bursts propagate for D > D c ~ 0.00185 and 
they expand through all the space after the 
propagation time tP.*) An example is given 
in Fig. 7, where the dots are plotted for the 

\ 

'" .. 

-0.9 

I 

j 

.-

Xli) 1.3 

Fig. 5. Snapshot of Map II with the initial condition 
xU)=0.2sin(7fi/N) and A=1.752 and D=O.OOlS, 

after the decay of the transients. 
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Fig. 6. Time series of Map II with the initial condi· 
tion x(i)=0.2sin(27fi/N) and A=1.752 and 
D=O.OOlS for xan(lO), xan(lI), and xan(50). 

300 

Fig. 7: Propagation of the bursts fo'rMap II with the initial condition xU)=0.0013 (1::;;i::;;50), -0.75 

(51::;; i::;; 100) and A=1.752 and D=0.002. xaon(i)'S for 0<n<300are plotted. See the text for 
, the notations. 

*) The propagation time t is defined as the time step when the bursts from i == 0 and i = 50 make the first 
collision. (see Fig. 7). 
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sites which satisfy ix(i+1)-x(i)i>O.1. We. note the similarity between the figure and 
the propagation of the perturbation in the experiment by Reynolds.23

),24) The propagation 
time obeys the relation tpcx:(D- D c tO.

75
(±0.05), from numerical data. 

§ 5. Summary and discussion 

The present paper shows some qualitative results on three typical behaviors in the 
coupled logistic lattice. In connection with the coupled map lattice systems, the following 
problems will be important for the future study: 
1) It will be useful to introduce a reduction to a symbolic system with a finite number of 
states. Let us introduce, for example, y(i)=x(i + 1)-x(i) and assign a value 1 or 0 to 
each site according to the sign of y(i). The pattern obtained in this way is rather 
analogous to the patterns in cellular automata.25

) The method in §4 (i.e., 1 for burst and 
o for otherwise) also gives a pattern similar to those observed in cellular automaton 
theory. Especially, we observed a self-similar pattern at D ~ Dc. which looks quite like 
the interesting pattern reported in Ref. 25). Detailed results with the computation of the 
fractal dimension will be given elsewhere. 
2) It may be also useful to introduce "pattern entropy" to characterize the complex 
structure of the system. Using the reduction to a sequence of [0, 1] in 1), an entropy in 
a spatial sequence can be defined in a manner similar to the entropy in a time series. It 
is an open problem to study the meaning of this quantity and its convergence for a large 
system. 
3) As a coupling is increased the correlation among the sites is increased and some sort 
of "order" appears even if the system is chaotic. The order can be seen in the behavior 
of spatial correlation function. Thus, it will be important to study a "phase transition" 
in CLL with various dimensionalities. 
4) Some states for our CLL clearly breaks the translational invariance (i.e., the long-time 
average for x(i) differs sites by sites). The search for the transition accompanied by the 
breaking of the translational symmetry will be also a fascinating problem. 
5) Coupled circle maps are U(x)=x+Asin(27rx)+D) also relevant models for the 
turbulence, especially in connection with the stability of a high-dimensional torus. 20) 

There are a lot of problems to be solved in future. Some answers to the above 
problems will be hopefully reported in the forthcoming papers in addition to the detailed 
study of the three features in the present paper. 
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Notes added: 
1) The width of a kink increases near the onset of a 2n-cyc1e. It is proportional to (A - An)-1/2(An is the 

parameter value for the onset of the 2n-cyc1e), which can be obtained by analytic calculations. 
2) To be precise, the value Dc.in §4 is not a single parameter. There exists a fine stripe structure between the 

phases with and without bursts near D=Dc. 
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