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Period functions and cotangent sums

Sandro Bettin and Brian Conrey

We investigate the period function of
∑∞

n=1 σa(n) e(nz), showing it can be ana-
lytically continued to |arg z|<π and studying its Taylor series. We use these re-
sults to give a simple proof of the Voronoi formula and to prove an exact formula
for the second moments of the Riemann zeta function. Moreover, we introduce a
family of cotangent sums, functions defined over the rationals, that generalize the
Dedekind sum and share with it the property of satisfying a reciprocity formula.

1. Introduction

In the well-known theory of period polynomials one constructs a vector space of
polynomials associated with a vector space of modular forms. The Hecke opera-
tors act on each space and have the same eigenvalues. Thus, either vector space
produces the usual degree 2 L-series associated with holomorphic modular forms.
Lewis and Zagier [2001] extended this theory and defined spaces of period func-
tions associated to nonholomorphic modular forms, that is, to Maass forms and
real analytic Eisenstein series. Period functions are real analytic functions ψ(x)
that satisfy three-term relations

ψ(x)= ψ(x + 1)+ (x + 1)−2sψ
(

x

1+x

)

, (1)

where s = 1/2+ i t . The period functions for Maass forms are characterized by (1)
together with the growth conditions ψ(x) = o(1/x) as x → 0+ and ψ(x) = o(1)
as x → ∞; for these, s = 1/2 + ir , where 1/4 + r2 is the eigenvalue of the
Laplacian associated with a Maass form. For Eisenstein series, the o’s in the growth
conditions above are replaced by O’s if t 6= 0 and by O(1/(x |log x |)) and O(log x)

if t = 0. They show that ψ , which is initially defined only in the upper half plane,
actually has an analytic continuation to all of C apart from the negative real axis.

To each period function is also associated a periodic and holomorphic function
f on the upper half plane,

f (z)= ψ(z)+ z−2sψ(−1/z).
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In this paper we focus on the case of real analytic Eisenstein series. For these,
the periodic function f turns out to be essentially

∞
∑

n=1

σ2s−1(n)e(nz),

where, as usual, σa(n) :=
∑

d|nda indicates the sum of the a-th power of the divisors
of n and e(z) := e2π i z . We interpret Lewis and Zagier’s results directly in terms of
this function, obtaining a better understanding of the Taylor series of the associated
period function. It turns out that the case s = 1/2, that is, t = 0, is especially useful.
In this case the arithmetic part of the n-th Fourier coefficient is d(n), the number
of divisors of n.

There are several nice applications that are consequences of the analytic con-
tinuation of the associated period function, that is, they are consequences of the
surprising fact that the function

∞
∑

n=1

d(n)e(nz)− 1
z

∞
∑

n=1

d(n)e(−n/z),

which apparently only makes sense when the imaginary part of z is positive, ac-
tually has an analytic continuation to C′ the slit complex plane (the complex with
the negative real axis removed). First, we obtain a new formula for the weighted
mean square of the Riemann zeta function on the critical line:

∫ ∞

0
|ζ(1/2 + i t)|2e−δt dt.

Previously, the best formula for this quantity was a main term plus an asymptotic,
but not convergent, series of powers of δ, each term an order of magnitude better
than the previous as δ → 0+. Our formula gives an asymptotic series that is also
convergent. The situation is somewhat analogous to the situation of the partition
function p(n). Hardy and Ramanujan found an asymptotic series for p(n) and
subsequently Rademacher gave a series that was both asymptotic and convergent.
In both the partition case and our case, the exact formula allows for the computation
of the sought quantity to any desired degree of precision, whereas an asymptotic
series has limits to its precision. Of course, an extra feature of p(n), which is not
present in our situation, is that since p(n) is an integer it is known exactly once it is
known to a precision of 0.5. However, our formula does have the extra surprising
feature that the time required to calculate our desired mean square is basically
independent of δ, apart from the intrinsic difficulty of the extra work required just
to write down a high precision number δ.

A second application proves a surprising reciprocity formula for the Vasyunin
sum, which is a cotangent sum that appears in the Nyman–Beurling criterion for the
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Riemann hypothesis. Specifically, the Vasyunin sum appears as part of the exact
formula for the twisted mean-square of the Riemann zeta function on the critical
line:

∫ ∞

0
|ζ(1/2 + i t)|2(h/k)i t

dt
1
4 + t2

.

The fact that there is a reciprocity formula for the Vasyunin sum is a nonobvious
symmetry relating this integral for h/k and the integral for h/k where hh ≡ 1
mod k. It is not apparent from this integral that there should be such a relationship;
our formula reveals a hidden structure.

The reciprocity formula is most simply stated in terms of the function

c0(h/k)= −
k−1
∑

m=1

m

k
cot πmh

k
,

defined initially for nonzero rational numbers h/k where h and k are integers with
(h, k)=1 and k>0. The reciprocity formula can be simply stated as, “The function

c0

(

h

k

)

+ k

h
c0

(

k

h

)

− 1
πh

extends from its initial definition on rationals x = h/k to an (explicit) analytic
function on the complex plane with the negative real axis deleted.” This is nearly
an example of what Zagier calls a “quantum modular form” [Zagier 2010]. We
proved this reciprocity formula in [Bettin and Conrey 2011]; in this paper, we
generalize it to a family of “cotangent sums”, containing both c0 and the Dedekind
sum.

These (imperfect) quantum modular forms are analogous to the “quantum Maass
forms” studied by Bruggeman [2007], the former being associated to Eisenstein
series and the latter to Maass forms. The main difference between these two classes
of quantum forms comes from the fact that the L-functions associated to Maass
forms are entire, while for Eisenstein series the associated L-functions are not,
since they are products of two shifted Riemann zeta functions. This translates into
quantum Maass forms being quantum modular forms in the strict sense, whereas
the reciprocity formulas for the cotangent sums contain a nonsmooth correction
term.

As a third application, we give a generalization of the classical Voronoi sum-
mation formula, which is a formula for

∑∞
n=1 d(n) f (n), where f (n) is a smooth

rapidly decaying function. The usual formula proceeds from

∞
∑

n=1

d(n) f (n)= 1
2π i

∫

(2)
ζ(s)2 f̃ (s) ds, where f̃ (s)=

∫ ∞

0
f (x)x−s dx .
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One obtains the formula by moving the path of integration to the left to Re s = −1,
say, and then using the functional equation

ζ(s)= χ(s)ζ(1 − s)

of ζ(s). Here, as usual,

χ(s)= 2(2π)s−1Ŵ(1 − s).

In this way one obtains a leading term

∫ ∞

0
f (u)(log u + 2γ ) du,

from the pole of ζ(s) at s = 1, plus another term

∞
∑

n=1

d(n) f̂ (n),

where f̂ (u) is a kind of Fourier–Bessel transform of f ; specifically,

f̂ (u)= 1
2π i

∫

(−1)
χ(s)2us−1 f̃ (s) ds =

∫ ∞

0
f (t)C(2π

√
tu) dt

with C(z)= 4K0(2z)− 2πY0(2z), where K and Y are the usual Bessel functions.
By contrast, the period relation implies, for example, that for 0 < δ < π and
z = 1 − e−iδ,

∞
∑

n=1

d(n)e(nz)= 1

4
+ 2

log(−2π i z)− γ
2π i z

+ 1

z

∞
∑

n=1

d(n)e(
−n

z
)+

∞
∑

n=1

cne−inδ, (2)

where cn ≪ e−2
√
πn . This is a useful formula that cannot be readily extracted from

the Voronoi formula. In fact, the Voronoi formula is actually an easy consequence
of the formula (2). In Section 4 we give some other applications of this extended
Voronoi formula.

The theory and applications described above are for the period function associ-
ated with the Eisenstein series with s = 1/2. In this paper we work in a slightly
more general setting with s = a, an arbitrary complex number. The circle of ideas
presented here have other applications and further generalizations, for example to
exact formulas for averages of Dirichlet L-functions, which will be explored in
future work.
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2. Statement of results

For a ∈ C and Im(z) > 0, consider

Sa(z) :=
∞
∑

n=1

σa(n)e(nz).

For a = 2k + 1 with k ∈ Z≥1, the series Sa(z) is essentially the Eisenstein series
of weight 2k + 2:

Ea+1(z)= 1 + 2
ζ(−a)

Sa(z),

for which the well-known modularity property

E2k(z)− 1
z2k

E2k

(

−1
z

)

= 0

holds when k ≥ 2. For other values of a this equality is no longer true, but the
period function

ψa(z) := Ea+1(z)− 1
za+1 Ea+1

(

−1
z

)

(3)

still has some remarkable properties.

Theorem 1. Let Im(z) > 0 and a ∈ C. Then ψa(z) satisfies the three-term relation

ψa(z)−ψa(z + 1)= 1
(z+1)1+a

ψa

(

z

z+1

)

(4)

and extends to an analytic function on C′ := C \ R≤0 via the representation

ψa(z)= i

π z

ζ(1 − a)

ζ(−a)
− i

1

z1+a
cot

πa

2
+ i

ga(z)

ζ(−a)
,

where

ga(z) := −2
∑

1≤n≤M

(−1)n
B2n

(2n)!ζ(1 − 2n − a)(2π z)2n−1

+ 1
π i

∫

(− 1
2 −2M)

ζ(s)ζ(s − a)Ŵ(s)
cosπa/2

sinπ(s − a)/2
(2π z)−s ds, (5)

and M is any integer greater or equal to −1
2 min(0,Re(a)).

Here and throughout the paper equalities are to be interpreted as identities between
meromorphic functions in a. In particular, taking the limit a → 0+, we have

ψ0(z)= −2
log 2π z − γ

π i z
− 2ig0(z),

g0(z)= 1

π i

∫

(− 1
2 )

ζ(s)2
Ŵ(s)

sin(πs/2)
(2π z)−s ds = 1

π i

∫

(− 1
2 )

ζ(s)ζ(1 − s)

sinπs
z−s ds.
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Theorem 1 is essentially a reformulation of Lewis and Zagier’s results [2001]
for the noncuspidal case and can be seen as a starting point for their theory of
period functions.

For ease of reference, note that (3) can be rewritten in terms of Sa and ga as

Sa(z)−
1

za+1
Sa

(

−1
z

)

= i
ζ(1 − a)

2π z
− ζ(−a)

2
+ eπ i(a+1)/2ζ(a + 1)Ŵ(a + 1)

(2π z)a+1
+ i

2
ga(z). (6)

Another important feature of the function ψa(z) comes from the properties of
its Taylor series. For example, in the case a = 0 one has

π i

2
(1 + z)ψ0(1 + z)= −1 − z

2
+

∞
∑

m=2

am(−z)m,

with

am := 1

n(n + 1)
+ 2bn + 2

n−2
∑

j=0

(

n−1
j

)

b j+2 and bn := ζ(n)Bn

n

and where B2n denotes the 2n-th Bernoulli number. In particular, the values am

are rational polynomials in π2. The terms involved in the definition of am are
extremely large, since

b2n ∼ B2n

2n
∼ (−1)n+12

√

π

n

( n

πe

)2n

as n → ∞, though there is a lot of cancellation; for example, for m = 20 one has

am = 1

420
+ π2

36
− 19π4

600
+ 646π6

19845
− 323π8

1500
+ 4199π10

343035

− 154226363π12

36569373750
+ 1292π14

1403325
− 248571091π16

2170943775000

+ 1924313689π18

288905366499750
− 30489001321π20

252669361772953125
= 0.0499998087 . . .

Notice how close this number is to 1
20 ; this observation can be made for all m and

in fact in [Bettin and Conrey 2011] we proved that

am − 1
m

= 25/4π3/4 e−2
√
πm

m3/4

(

sin(2
√
πm + 3

8π)+ O
(

1√
m

))

.
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In this paper we show that similar results hold for the Taylor series at any point
τ in the half plane Re(τ ) > 0 and for any a ∈ C. We give a proof in the following
theorem, using ga instead of ψa to simplify slightly the resulting formulas.

Theorem 2. Let Re(τ ) > 0 and for |z|< |τ |, let

ga(τ + z) :=
∞
∑

m=0

g
(m)
a (τ )

m! zm

be the Taylor series of ga(z) around τ . Then

g
(m)
a (1)

m! =−
∑

2n−1+k=m,
n,k≥1

(−1)n+m B2nζ(1−2n−a)
Ŵ(2n + a + k)

Ŵ(2n + a)k!(2n)!2(2π)
2n−1

+ (−1)m cot πa

2
ζ(−a)

Ŵ(1 + a + m)

Ŵ(1 + a)m!

+(−1)m
(Ŵ(1 + a + m)

Ŵ(a)(m + 1)! − 1
)ζ(1 − a)

π
, (7)

and in particular if a ∈ Z≤0 and (a,m) 6= (0, 0), then πg
(m)
a (1) is a rational poly-

nomial in π2. Moreover,

g
(m)
a (τ )

m! = cos
(

πa

2

) 27/4−a/2

π3/4+a/2

e−2
√
πτm

m1/4−a/2τm+3/4+a/2

×
(

cos
(

2
√
πτm − 1

8π(2a − 1)+ (τ + m)π
)

+ Oτ,a

(

1√
m

))

, (8)

as m → ∞.

Some of the ideas used in the proofs of Theorems 1 and 2 can be easily gener-
alized to a more general setting. For example, let F(s) be a meromorphic function
on 1 − ω ≤ Re(s) ≤ ω for some 1 < ω < 2 with no poles on the boundary and
assume |F(σ + i t)| ≪σ e(π/2−η)|t | for some η > 0. Let

W+(z) := 1
2π i

∫

(ω)

F(s)Ŵ(s)(−2π i z)−s ds,

W−(z) := 1
2π i

∫

(ω)

F(1 − s)Ŵ(s)(−2π i z)−s ds,

(9)

for π2 −η < arg z< π
2 +η. (Notice that these functions are essentially convolutions

of the exponential function and the Mellin transform of F(s).) Then we have

∞
∑

n=1

d(n)W+(nz)− 1
z

∞
∑

n=1

d(n)W−
(

−n

z

)

= R(z)+ k(z), (10)
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where R(z) is the sum of the residues of F(s)Ŵ(s)ζ(s)2(−2π i z)−s between 1−ω
and ω, and

k(z) := 1
2π

∫

(1−ω)
F(s)

ζ(s)ζ(1 − s)

sinπs
z−s ds

is holomorphic on |arg(z)|< π
2 +η. Moreover, if we assume that F(s) is holomor-

phic on Re(s) < 1−ω, then it follows that the Taylor series of k(z) converges very
fast, that is,

k(n)(τ )

n! ≪ n−B |τ |−n

for any B > 0 and τ such that |arg τ | < η. Also, W−(z) decays faster than any
power of z at infinity and so the second sum in (10) is rapidly convergent and is
very small if we let z go to zero in |arg z|<η. In Section 4 we will give an explicit
example; a subsequent paper will elaborate on this.

The Voronoi summation formula is an important tool in analytic number theory;
in its simplest form, it states that, if f (u) is a smooth function of compact support,
then

∞
∑

n=1

d(n) f (n)=
∞
∑

n=1

d(n) f̂ (n)+
∫ ∞

0
f (t)(log t + 2γ ) dt + 1

4 f (0), (11)

where

f̂ (x) := 4
∫ ∞

0
f (t)(K0(4π

√
t x)− 1

2πY0(4π
√

t x)) dt.

This formula can be deduced from (10) (or also directly from (6)) as a very easy
corollary. Actually, Voronoi’s formula can be interpreted as a version of (6) con-
fined to the positive real axis. If we get rid of this limitation and we use directly
the period formula (6), we are able to obtain interesting results also for weight
functions of the shape f (u) = e−δu , for which the Voronoi summation formula
fails to give a useful formula. (Try it!) Thus, we have a generalization of Voronoi’s
formula.

The use of a weight function of the shape e−δu is fundamental to investigate the
smoothly weighted second moment of the Riemann zeta function,

L2k(δ) :=
∫ ∞

0

∣

∣ζ(1
2 + i t)

∣

∣

2k
e−δt dt,

in the case k = 1. These integrals play a major role in the theory of the Riemann
zeta function and getting good upper bounds on their growth as δ → 0+ would
imply the Lindelöf hypothesis. Unfortunately, the only two value of k for which
the asymptotics are known are k = 1 [Hardy and Littlewood 1916] and k = 2
[Ingham 1927]. For other values we have just conjectures; see [Conrey and Ghosh
1998; Conrey and Gonek 2001; Keating and Snaith 2000]. For k = 1, it is easy to
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see that the smooth moment is strictly related to the sum S0(−e−iδ) and, from this,
it is easy to deduce an asymptotic expansion for L2k(δ). This classical asymptotic
series is not convergent. Here we replace the series by two series, each of which
are absolutely convergent asymptotic series. (See also [Motohashi 1997].) The
following theorem provides a new exact formula for L1(δ), by applying Theorem 1
and 2 to S0(−e−iδ).

Theorem 3. For 0< Re(δ) < π , we have

L1(δ)= γ − log 2πδ

2 sin δ/2
+ π i

sin δ/2
S0

( −1

1 − e−iδ

)

+ h(δ)+ k(δ),

where k(δ) is analytic in |Re(δ)|< π and h(δ) is C∞ in R and holomorphic in

C
′′ := C \ {x + iy ∈ C | x ∈ 2πZ, y ≥ 0} .

Moreover, h(0)= 0 and, if Im(δ)≤ 0,

h(δ)= i
∑

n≥0

hne−i(n+1/2)δ,

with

hn = 27/4π1/4 e−2
√
πn

n1/4
sin(2

√
πn + 5

8π)+ O

(

e−2
√
πn

n3/4

)

,

as n → ∞.

The most remarkable aspect of this theorem lies in the fact that the arithmetic
sum S0(−1/(1 − e−iδ)) decays exponentially fast for δ → 0+, while the Fourier
series h(δ) is very rapidly convergent. Moreover, Theorem 3 implies that L1(δ)

can be evaluated to any given precision in a time that is independent of δ.
For a rational number h/k, with (h, k)= 1 and k > 0, define

c0

(

h

k

)

= −
k−1
∑

m=1

m

k
cot
(πmh

k

)

.

The value of c0(h/k) is an algebraic number, that is, c :Q→Q, and, more precisely,
cℓ(h/k) is contained in the maximal real subfield of the cyclotomic field of k-th
roots of unity. Moreover, c0 is odd and is periodic of period 1. See Figure 1 and
Figure 2.

The cotangent sum c0(h/k) arises in analytic number theory in the value

D(0, h/k)= 1

4
+ i

2
c0

(

h

k

)

(12)
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Figure 1. Graph of c0(h/k) for 1 ≤ h < k = 541.

Figure 2. Graph of c0(h/k) for 1 ≤ h ≤ k ≤ 100, with (h, k)= 1.

at s = 0 of the Estermann function, defined for Re(s) > 1 by

D(s, h/k) :=
∞
∑

n=1

d(n)e(nh/k)

ns
.

The Estermann function extends analytically to C \ {1} and satisfies a functional
equation; these properties are useful in studying the asymptotics of the mean square
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Figure 3. Graph of V (h/k) for 1 ≤ h, k ≤ 100 and (h, k)= 1.

of the Riemann zeta function multiplied by a Dirichlet polynomial (see [Balasub-
ramanian et al. 1985]), which are needed, for example, for theorems that give a
lower bound for the portion of zeros of ζ(s) on the critical line. See also [Conrey
1989; Iwaniec 1980]. The sum

V
(

h

k

)

:=
k−1
∑

m=1

{

mh

k

}

cot
(

πm

k

)

= −c0(h/k),

known as the Vasyunin sum (see Figure 3), arises in the study of the Riemann zeta
function by virtue of the formula

ν(h/k) := 1

2π
√

hk

∫ ∞

−∞

∣

∣ζ(1
2 + i t)

∣

∣

2
(

h

k

)i t dt
1
4 + t2

= log 2π − γ
2

(

1
h

+ 1
k

)

+ k−h

2hk
log h

k
− π

2hk

(

V
(

h

k

)

+ V
(

k

h

))

;
(13)

see Figure 4.
This formula is relevant to the approach of Nyman, Beurling, Báez-Duarte and

Vasyunin to the Riemann hypothesis, which asserts that the Riemann hypothesis is
true if and only if limN→∞ dN = 0, where

d2
N = inf

AN

1
2π

∫ ∞

−∞

∣

∣1 − ζ AN (
1
2 + i t)

∣

∣

2 dt
1
4 + t2

and the infimum is over all the Dirichlet polynomial AN (s)=
∑N

n=1 an/n
s of length

N ; see [Bagchi 2006] for a nice account of the Nyman–Beurling approach to the
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Figure 4. Graph of
√

hk ν(h/k) for 1 ≤ h ≤ 5k, k = 307, and
(h, k)= 1.

Riemann hypothesis with Báez-Duarte’s significant contribution and see [Báez-
Duarte et al. 2005; Landreau and Richard 2002] for information about the Vasyunin
sums, as well as interesting numerical experiments about dN and the minimizing
polynomials AN . Thus d2

N is a quadratic expression in the unknown quantities am

in terms of the Vasyunin sums.
In [Bettin and Conrey 2011] we showed that c0(h/k) satisfies the reciprocity

formula
c0

(

h

k

)

+ k

h
c0

(

k

h

)

− 1
πh

= i

2
ψ0

(

h

k

)

(14)

(and in particular that c0(h/k) can be computed to within a prescribed accuracy in
a time that is polynomial in log k). See Figure 5.

This behavior is analogous to that of the Dedekind sum,

s
(

h

k

)

= − 1

4k

k−1
∑

m=1

cot
(πm

k

)

cot
(πmh

k

)

,

which satisfies the well-known reciprocity formula

s
(

h

k

)

+ s
(

k

h

)

− 1
12hk

= 1
12

(

h

k
+ k

h
− 3

)

. (15)

In this paper we prove that these results can be generalized to the sums

ca

(

h

k

)

:= ka

k−1
∑

m=1

cot
(

πmh

k

)

ζ
(

−a,
m

k

)

,

where ζ(s, x) is the Hurwitz zeta function (note that at a = −1 the poles of
ζ(−a,m/k) cancel).
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Figure 5. Graph of c0(h/k)+ (k/h)c0(k/h)− 1/πh for h ≤ 5k,
k ≤ 50 and (h, k)= 1.

Notice that, for all a, ca(h/k) is odd and periodic in x = h/k with period 1
and, for nonnegative integers a, it takes values in the maximal real subfield of the
cyclotomic field of k-th roots of unity.

At the nonnegative integers, a = n ≥ 0, these cotangent sums can be expressed
in terms of the Bernoulli polynomials:

cn

(

h

k

)

= −kn

k−1
∑

m=1

cot
(πmh

k

) Bn+1(m/k)

n + 1
,

which is most interesting when n is even, since cn ≡ 0 for positive odd n.
If a = −n is a negative integer one can write ca as

c−n

(

h

k

)

= (−1)n

kn(n − 1)!

k−1
∑

m=1

cot
(

πmh

k

)

9
(

n − 1, m

k

)

,

where

9(m, z) := dm+1

dzm+1
logŴ(z)

is the polygamma function.
By the reflection formula for the polygamma function,

9(m, 1 − z)+ (−1)m+19(m, z)= (−1)mπ
dm

dzm
cot(π z),
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for a positive odd integer n we can write c−n as

c−n

(

h

k

)

= − π

2kn(n − 1)!

k−1
∑

m=1

cot
(

πmh

k

) dn−1

dzn−1
cot(π z)

∣

∣

∣

z=m/k

and, in particular,

c−1

(

h

k

)

= 2πs
(

h

k

)

.

Like the case a = 0, these cotangent sums appear in the value

D
(

0, a,
h

k

)

= −1

2
ζ(−a)+ i

2
ca

(

h

k

)

, (16)

at s = 0 of the function D(s, a, h/k), defined for Re(s) > 1 by

D
(

s, a,
h

k

)

:=
∞
∑

n=1

σa(n)e(nh/k)

ns
.

Moreover, the cotangent sums ca appear also in a shifted version of Vasyunin’s
formula (13) (see Theorem 5 at the end of the paper for a new analytic proof).

Theorem 4. Let h, k ≥ 1, with (h, k)= 1. Then

ca

(

h

k

)

−
(

k

h

)1+a

ca

(−k

h

)

+ ka aζ(1 − a)

πh
= −iζ(−a)ψa

(

h

k

)

. (17)

(Note that, since g−1(z) is identically zero, for a = −1 the reciprocity formula re-
duces to (15).) In particular, ca(h/k) gives an example of an “imperfect” quantum
modular form of weight 1 + a.

New formulas can be obtained by differentiating (17); for example, if we write

c∗
−1

(

h

k

)

:= 1

k

k−1
∑

m=1

cot
(

πmh

k

)

γ1

(

m

k

)

,

where γ1(x) is the first generalized Stieltjes constant defined by

ζ(s, x)= 1

s − 1
+

∞
∑

n=0

(−1)n

n! γn(x)(s − 1)n,

then, taking the derivative at −1 of (17) multiplied by k−a , we get the formula

c∗
−1

(

h

k

)

− c∗
−1

(−k

h

)

+ ζ ′(2)+π2/6

πkh
+π log k

(

1
6

k

h
− 1

2

)

= q
(

h

k

)

,

where

q(z) := − 1

π z
ζ ′(2)+ π

2
(log z + γ )+ g′

−1(z)

is holomorphic in C′.
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3. The period function

In this section we give a proof of Theorems 1 and 2.

Proof of Theorem 1. Firstly, observe that the three-term relation (4) follows easily
from the periodicity in z of E(a, z).

Sa(z) can be written as

Sa(z)=
∞
∑

n=1

σa(n)
1

2π i

∫

(2+max(0,Re(a)))
Ŵ(s)(−2π inz)−s ds

= 1

2π i

∫

(2+max(0,Re(a)))
ζ(s)ζ(s − a)Ŵ(s)eπ is/2(2π z)−s ds

= 1

2π i

∫

(− 1
2 −2M)

ζ(s)ζ(s − a)Ŵ(s)eπ is/2(2π z)−s ds + ra,M(z),

(18)

where M is any integer greater or equal to −1
2 min(0,Re(a)) and

ra,M(z) := − 1
2ζ(−a)+ i

ζ(1 − a)

2π z
+ i

ζ(1 + a)Ŵ(1 + a)eπ ia/2

(2π z)1+a

−
∑

1≤n≤M

i(−1)n
B2n

(2n)!ζ(1 − 2n − a)(2π z)2n−1

is the sum of the residues encountered moving the integral (and has to be interpreted
in the limit sense if some of the terms have a pole). Now, consider

1

z1+a
Sa

(

−1
z

)

= 1

z1+a

1

2π i

∫

(2+max(0,Re(a)))
ζ(s)ζ(s−a)Ŵ(s)eπ is/2

(

2π
−1

z

)−s

ds

= 1

2π i

∫

(2+max(0,Re(a)))
ζ(s)ζ(s−a)Ŵ(s)e−π is/2(2π)−szs−1−a ds,

since in this context 0< arg z<π and 0< arg −1/z<π , so arg −1/z = π−arg z.
Applying the functional equation to both ζ(s) and ζ(s−a) we get, after the change
of variable s → 1 − s + a,

1

z1+a
Sa

(

−1
z

)

= − 1

2π

∫

(−1+min(0,Re(a)))
ζ(s − a)ζ(s)Ŵ(s)

eπ i(s−a)/2 cos πs
2

sin π(s−a)
2

(2π z)−s ds

= − 1

2π

∫

(−1/2−M)

ζ(s − a)ζ(s)Ŵ(s)
eπ i(s−a)/2 cos πs

2

sin π(s−a)
2

(2π z)−s ds, (19)
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since the integrand doesn’t have any pole on the left of −1 + min(0,Re(a)). The
theorem then follows summing (18) and (19) and using the identity

eπ is/2 + i
eπ i(s−a)/2 cos πs

2

sin π(s−a)
2

= i
cos πa

2

sin π(s−a)
2

. �

We remark that for a = 2k + 1, with k ≥ 1, Theorem 1 reduces to

E2k(z)−
1

z2k
E2k

(

−1
z

)

= 0,

while, for a = 1, the theorem reduces to the well-known identity

E2(z)−
1

z2
E2

(−1
z

)

= − 12

2π i z
.

To prove Theorem 2 we need the following lemma.

Lemma 1. For fixed complex numbers A and α we have, as n → ∞

Jn :=
∫ ∞

0
un+αe−A

√
ue−u du

u

=
√

2πeA2/8e−A
√

ne−nnn+α−1/2
(

1 − C√
n

+ O
(

1
n

))

,

where

C = 4α− 1

8
A + A3

96
.

Proof. After the change of variable u = nx2, we have

Jn = 2nn+α
∫ ∞

0
x2α−1e−A

√
nx−n(x2−2 log x)dx

= 2nn+αe−A
√

n

∫ ∞

−1
(x + 1)2α−1e−A

√
nx−n((x+1)2−2 log(x+1))dx

= 2nn+αe−A
√

ne−n(1 + O(e−nδ2/2))

×
∫ δ

−δ
(x + 1)2α−1e−A

√
nx−2nx2

(1 + 2
3 nx3 + O(nx4))dx

for any small δ > 0. We can then approximate the binomial and extend the integral
to R at a negligible cost, getting

Jn = 2nn+αe−A
√

ne−n

∫ ∞

−∞
(1 + (2α− 1)x + 2

3 nx3 + O(x2 + nx4))

× e−A
√

nx−2nx2
dx .

Evaluating the integrals, the lemma follows. �



Period functions and cotangent sums 231

Proof of Theorem 2. The three-term relation (4) implies that

ga(z + 1)= 1
(z+1)1+a

cot
(

πa

2

)

ζ(−a)− 1
π z(z+1)a

ζ(1 − a)

+ 1
π z(z+1)

ζ(1 − a)+ ga(z)− 1
(z+1)1+a

ga

(

z

z+1

)

.

Now, from the definition (5) of ga(z), it follows that

ga(z)= 2
∑

1≤n≤M

(−1)n
B2n

(2n)!ζ(1 − 2n − a)(2π z)2n−1 + O(|z|2M+1/2)

for any M ≥ 1. Thus

ga(z)−
ga(z/(z + 1))

(z + 1)1+a

= 2
∑

1≤n≤M

(−1)n
B2n

(2n)!ζ(1−2n−a)(2π z)2n−1
(

1− 1
(z+1)2n+a

)

+O(|z|2M+1/2)

= −2
2M
∑

m=1

(

∑

2n−1+k=m,
n,k≥1

(−1)n+m B2nζ(1−2n−a)
Ŵ(2n+a+k)

Ŵ(2n+a)k!(2n)!(2π)
2n−1

)

zm

+O(|z|2M+ 1
2 ).

Therefore,

ga(z + 1)=
2M
∑

m=0

bmzm + O(|z|2M+1/2),

where

bm := −2
∑

2n−1+k=m,
n,k≥1

(−1)n+k B2nζ(1 − 2n − a)
Ŵ(2n + a + k)

Ŵ(2n + a)k!(2n)!(2π)
2n−1

+ (−1)m cot
(

πa

2

)

ζ(−a)
Ŵ(1 + a + m)

Ŵ(1 + a)m!

+ (−1)m
(Ŵ(1 + a + m)

Ŵ(a)(m + 1)! − 1
)ζ(1 − a)

π
,

and, since ga(z) is holomorphic at 1, bm must coincide with the m-th coefficient
of the Taylor series of ga(z) at 1.

Now, let’s prove the asymptotic (8). Fix any M ≥−1
2 min(0,Re(a)) and assume

m ≥ 2M + 1 and Re(τ ) > 0. By the functional equation for ζ and basic properties
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of Ŵ(s), we have

(2π)aτm

cos πa
2

g(m)a (τ )

= (−1)m

π i

∫

(− 1
2 −2M)

Ŵ(s)
ζ(s)ζ(s − a)

sin π(s−a)
2

s(s + 1) · · · (s + m − 1)(2π)−s+aτ−s ds

= (−1)m

π i

∫

(− 1
2 −2M)

ζ(s)ζ(s − a)

sin π(s−a)
2

Ŵ(s + m)(2π)−s+aτ−s ds

= (−1)m

π3i

∫

(− 1
2 −2M)

ζ(1 − s)ζ(1 − s + a)

×Ŵ(1 − s)Ŵ(1 − s + a)Ŵ(s + m)sin
(

πs

2

)(

2π
τ

)s

ds.

We can see immediately that g
(m)
a (τ )≪a m−B |τ |−mm! for any fixed B > 0, just by

moving the path of integration to the line Re(s) = −B and using trivial estimates
for Ŵ. To get a formula asymptotic as m → ∞, we expand ζ(1 − s)ζ(1 − s + a)

into a Dirichlet series and integrate term-by-term; the main term arises from the
first term of the sum. We have

g(m)a (τ )= 2
(−τ)−m cos πa

2

π2(2π)a

∞
∑

ℓ=1

σ−a(ℓ)

ℓ
Im,a

(

ℓ

τ

)

,

where

Im,a(x) := 1

2π i

∫

(− 1
2 −2M)

Ŵ(1 − s)Ŵ(1 − s + a)Ŵ(s + m) sin
(πs

2

)

(2πx)s ds.

We reexpress this integral as a convolution integral. Recall that for |arg x |<π we
have

1

2π i

∫

( 3
2 +2M)

Ŵ(s)Ŵ(s + a)u−s ds = 2ua/2Ka(2
√

u),

where Ka denotes the K -Bessel function of order a. Also,

1

2π i

∫

(− 1
2 −2M)

Ŵ(s + m)u−s ds = ume−u .

Thus,

Im,a(x)= I +
m,a(x)+ I −

m,a(x),

where

I ±
m,a(x)= (2πx)1+a/2e±π ia/4

∫ ∞

0
um+a/2Ka(2e±π i/4

√
2πxu)e−u du.
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Now, for |arg z|< 3
2π

Ka(z)=
√

π

2z
e−z

(

1 + 4a2 − 1

8z
+ Oa

(

1
|z|2

))

,

as z → ∞, and

K−a(z)= Ka(z)∼
{

2a−1Ŵ(a)z−a if Re(a)≥ 0, a 6= 0,

− log(x/2)− γ if a = 0,

as z → 0. Therefore, by Lemma 1,

I ±
m,a(x)= (2πx)1+ a

2
π

1
4 e±π i(a− 1

2 )/4

2
5
4 x

1
4

∫ ∞

0
um+ a

2 − 1
4 e−u−2(1±i)

√
πxu

×
(

1 + 4a2−1

2
9
2π

1
2 e± π i

4
√

xu
+ Oa

(

1
u

))

du

∼ 2
1
4 + a

2π
7
4 + a

2 e±π i(a− 1
2 )/4x

3
4 + a

2 e±iπx e−2(1±i)
√
πxne−mmm+ 1

4 + a
2

×
(

1 + ξ±
√

m
+ O

(

1
m

))

,

where

ξ± = −(1 ± i)
√
πx(1 + a)

2
+ (1 ∓ i)(πx)

3
2

6
+ (4a2 − 1)(1 ∓ i)

32π
1
2
√

x
,

and (8) follows. �

4. An extension of Voronoi’s formula

Formula (10) can be proved with the same techniques used to prove Theorems 1
and 2. In this section we give an application of this formula and we discuss a
similar formula for convolutions of the exponential function. We conclude the
section showing how these results can be used to prove Voronoi’s formula.

Applying formula (10) to F(s)=Ŵ(s/2)/2Ŵ(s) we get, for 1
4π < arg(z) < 3

4π ,

∞
∑

n=1

d(n)e(2πnz)2 = 1

z

∞
∑

n=1

d(n)T (4πnz)+ R(z)+ k(z), (20)

where, in the same range of arg(z),

T (z) := 1√
π i

∫

(2)

Ŵ(s)

Ŵ(1 − s/2)
(−i z)−s ds =

∞
∑

n=0

(i z)n

n!Ŵ(1 + n/2)
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and

R(z) := 1

4
+ 2 log(−4π i z)− 3γ

8
√
π i z

,

k(z) := 1

4π2

∫

(− 1
2 )

Ŵ(s/2)Ŵ(1 − s)ζ(s)ζ(1 − s)z−s ds.

Notice that we have T (z)≪ |z|−B for all fixed B > 0; moreover, k(z) is holomor-
phic in |arg(z)|< 3

4π and, if |arg(τ )|< 1
4π ,

cτ (m) := k(m)(τ )

m! ≪ |τ |−mm−B

for all B > 0. In particular, if we set z = iδ with 0 < δ ≤ 1, taking the real part
of (20) we get

∞
∑

n=1

d(n)e−(2πnδ)2 = 1

4
+ −2 log(4πδ)− 3γ

4
√
πδ

+Re
∞
∑

m=0

cm

(

√
3

2
+i
(1

2
−δ
))m

(21)

with

cm := c(
√

3+i)/2(m)≪ m−B

for all B > 0.
We now state a similar formula for convolutions of the exponential function and

a function that is compactly supported on R>0.
Let g(x) be a compactly supported function on R>0 and let

W+(z) :=
∫ ∞

0
f (1/x)e(zx)

dx

x
and W−(z) :=

∫ ∞

0
f (x)e(zx) dx .

If we denote the Mellin transform of f (x) with F(s), then it follows that F(s) is
entire and that W+(x) and W−(x) can be written as in (9). In particular, since

F(0)=
∫ ∞

0
f (x)

dx

x
, F(1)=

∫ ∞

0
f (x) dx, F ′(1)=

∫ ∞

0
f (x) log x dx,

formula (10) can be written as

∞
∑

n=1

d(n)W+(nz)− 1

z

∞
∑

n=1

d(n)W−(−n/z)

=
∫ ∞

0
f (x)

(

1
4x

− 1
4z

− γ − log(2π z/x)

2π i z

)

dx + k(z)

+
∫ ∞

0
f (x)

∫

(− 1
2 )

ζ(s)ζ(1 − s)

sinπs

( z

x

)−s

ds
dx

2πx
(22)

for Im(z) > 0.
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Proof of Voronoi’s formula. Let f : R≥0 → R be a smooth function that decays
faster than any power of x and let

f̃ (x) := 2
∫ ∞

0
f (y) cos(2πxy) dy

be the cosine transform of f (x). Then, f̃ (x) is smooth and, by partial integration,
f̃ (m)(x) ≪ 1/x2+m for all m ≥ 0. For 0 < Re(s) < 2, we can define the Mellin
transform of f̃ ,

F(s) :=
∫ ∞

0
f̃ (x)x s−1 dx .

By partial integration we see that F(s) extends to a meromorphic function on
Re(s) < 2 with simple poles at most at the nonpositive integers. Also, F(s) decays
rapidly on vertical strips. Moreover, by Parseval’s formula, for 0 < Re(s) < 1 we
have

F(s)= 2

s

∫ ∞

0
f (y)(2πy)−sŴ(s + 1) cos

(

πs

2

)

dy

= 2

s

∫ ∞

0
f (y) dy − 2

∫ ∞

0
f (y)(log(2πy)+ γ ) dy + O(|s|)

= F−1

s
+ F0 + O(|s|),

say. For Im(z)≥ 0 we can define

W+(z) := 1

2π i

∫

( 3
2 )

F(s)Ŵ(s)(−2π i z)−s ds =
∫ ∞

0
f̃
(

1
x

)

e(zx)
dx

x
,

W−(z) := 1

2π i

∫

( 3
2 )

F(1 − s)Ŵ(s)(−2π i z)−s ds

=
∫ ∞

0
( f̃ (x)− Ress=0 F(s))e(zx) dx,

(23)

with the second representation of W−(z) defined only on Im(z) > 0. Since F(s)

is rapidly decaying at infinity, (10) holds for Im(z) ≥ 0 and so we can apply that
formula for z = 1 and take the real part. By the definition of f̃ , we have

Re(W+(n))= 2
∫ ∞

0
f (y)

∫ ∞

0
cos
(2πy

x

)

cos(nx)
dx

x
dy

=
∫ ∞

0
f (y)(2K0(4π

√
ny)−πY0(4π

√
ny)) dy
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and

Re(W−(−n))= lim
z→1,

Im(z)>0

Re(W−(−nz))

= lim
z→1,

Im(z)>0

Re
∫ ∞

0
f̃ (x)e(−nzx) dx − lim

z→1,
Im(z)>0

Re
Ress=0 F(s)

−2π inz

= 1
2 f (n),

since Ress=0 F(s) is real. Moreover, (2π)−1
∫

(−1/2) F(s)
ζ(s)ζ(1−s)

sinπs
z−s ds is purely

imaginary on the real line, so we just need to compute

Re
(

Ress=0,1 F(s)Ŵ(s)ζ(s)2(−2π i)−s
)

= Re

(

F(1)(γ − log(−2π i))+ F ′(1)

−2π i

+ −F−1(log(−2π i)+ γ − 2 log 2π)+ F0

4

)

= − f (0)

8
− 1

2

∫ ∞

0
f (y)(log y + 2γ ) dy,

since F(1)= f (0)/2 and F ′(1) is real. This completes the proof of the theorem. �

5. An exact formula for the second moment of ζ(s)

In this section we prove the exact formula for the second moment of the Riemann
zeta function.

Proof of Theorem 3. Firstly, observe that

L2(δ)= −ie−iδ/2
∫ 1

2 +i∞

1
2

ζ(s)ζ(1 − s)eiδs ds.

The functional equation for ζ(s),

ζ(1 − s)= χ(1 − s)ζ(s),

where

χ(1 − s)= (2π)−sŴ(s)(eπ is/2 + e−π is/2),

allows us to split L2(δ) as

L2(δ)= −ie−iδ/2
∫ 1

2 +i∞

1
2

χ(1 − s)ζ(s)2eiδs ds= −ie−iδ/2(L+(δ)+ L−(δ)),
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where

L±(δ)=
∫ 1

2 +i∞

1
2

(2π)−sŴ(s)e±π is/2ζ(s)2eiδs ds.

By Stirling’s formula, L+(δ) is analytic for Re(δ) > −π . Moreover, by contour
integration,

L−(δ)=
∫

(2)
(2π)−sŴ(s)e−π is/2ζ(s)2eiδs ds − G(δ)= J (δ)− G(δ),

say, where

G(δ) :=
∫ 1

2

1
2 −i∞

(2π)−sŴ(s)e−π is/2ζ(s)2eiδs ds

+ 2π i Ress=1
(

(2π)−sŴ(s)e−π is/2ζ(s)2eiδs
)

is analytic for Re(δ) < π . Now, expanding ζ(s)2 into its Dirichlet series, for
Re(δ) > 0 we have

J (δ)=
∞
∑

n=1

d(n)

∫ 2+i∞

2−i∞
Ŵ(s)(2π ine−iδ)−s ds

= 2π iS0(−e−iδ)= 2π iS0(1 − e−iδ).

(24)

By Theorem 1, we can write this as

J (δ)= log 2πδ− γ
1 − e−iδ

−πg0(1 − e−iδ)+ 2π i

1 − e−iδ
S0

( −1

1 − e−iδ

)

+ ieiδω(δ),

where

ω(δ)= −
log((1 − e−iδ)/δ)− 1

2π i

2 sin(δ/2)

is holomorphic in |Re(δ)|< π . Summing up, we have

L2(δ)= γ − log 2πδ

2 sin(δ/2)
+ π i

sin(δ/2)
S0

( −1

1 − e−iδ

)

+ iπe−iδ/2g0(1 − e−iδ)

+ω(δ)− ie−iδ/2(L+(δ)− G(δ)). (25)

The theorem then follows after writing

h(δ) := iπe−iδ/2g0(1 − e−iδ)

and applying Theorems 1 and 2. �
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6. Cotangent sums

We start by recalling the basic properties of D(s, a, h/k).

Lemma 2. For (h,k)=1, k > 0 and a ∈ C,

D
(

s, a,
h

k

)

− k1+a−2sζ(s − a)ζ(s)

is an entire function of s. Moreover, D(s, a, h/k) satisfies a functional equation,

D
(

s, a,
h

k

)

= −2
k

(

k

2π

)2−2s+a

Ŵ(1 − s + a)Ŵ(1 − s)

×
(

cos
(

π

2
(2s − a)

)

D
(

1 − s,−a,−h

k

)

− cos πa

2
D(1 − s,−a,

h

k
)
)

, (26)

and

D
(

0, a,
h

k

)

= i

2
ca

(

h

k

)

− 1
2
ζ(−a).

Proof. The analytic continuation and the functional equation for D(s, a, h/k) can
be proved easily using the analogous properties for the Hurwitz zeta function and
the observation that

D
(

s, a,
h

k

)

= 1

k2s−a

k
∑

m,n=1

e
(

mnh

k

)

ζ
(

s − a,
m

k

)

ζ
(

s,
n

k

)

.

Moreover, applying this equality at 0, we see that

D
(

0, a,
h

k

)

= −ka

k−1
∑

m,n=1

e
(

mnh

k

)

ζ
(

−a,
m

k

)

B1

(

n

k

)

− ζ(−a)

2

= i

2
ca

(

h

k

)

− ζ(−a)

2
,

where we used

k−1
∑

n=1

B1

(n

k

)(

e
(

mh

k

))n

= −1

2

1 + e(mh
k
)

1 − e(mh
k
)

= − i

2
cot
(πmh

k

)

,

which can be easily obtained from the equality

B1(x)= d

dt

( text

et − 1

)

∣

∣

∣

∣

t=0
. �

Proof of Theorem 4. First observe that we can assume 0 6= |a|< 1, since the result
extends to all a by analytic continuation. Now, taking z = h

k
(1 + iδ), with δ > 0,
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we have

Sa(z)=
∑

n≥1

σa(n)e
(

n
h

k

)

e−2πn(h/k)δ

= 1

2π i

∫

(2)
Ŵ(s)D

(

s, a,
h

k

)(

2π h

k
δ
)−s

ds.

Therefore, moving the integral to σ = − 1
2 ,

Sa(z)= ka

2πhδ
ζ(1 − a)+ 1

(2πhδ)1+a
ζ(1 + a)Ŵ(1 + a)+ D

(

0, a,
h

k

)

+ O(δ1/2).

Similarly,

1

z1+a
Sa

(−1

z

)

= 1

z1+a

∑

n≥1

σa(n)e
(

−n
k

h

)

e−2πn(k/h)δ/(1+iδ)

= ka

2πδh
ζ(1 − a)+ 1

(2πδh)1+a
ζ(1 + a)Ŵ(1 + a)

− ia
ka

2πh
ζ(1 − a)+

(

k

h(1+iδ)

)1+a

D
(

0, a,− k

h

)

+ O(δ1/2).

In particular, as δ goes to 0, we have

Sa(z)− 1
z1+a

Sa

(−1
z

)

−→ D
(

0, a,
h

k

)

−
(

k

h

)1+a

D
(

0, a,− k

h

)

+ia
ka

2πh
ζ(1−a).

Applying Theorem 1, it follows that

D
(

0, a,
h

k

)

−
(

k

h

)1+a

D
(

0, a,− k

h

)

+ ia
ka

2πh
ζ(1 − a)

= ζ(−a)

2

((

k

h

)1+a

− 1 +ψa

(

h

k

))

,

which is equivalent to (17). �

We conclude the paper by giving a new proof of Vasyunin’s formula (with a
shift).

Theorem 5. Let (h, k)= 1, with h, k ≥ 1. Let |Re(a)|< 1. Then

1+a

2π

∫ ∞

−∞
ζ
(

1
2

+ a

2
+ i t

)

ζ
(

1
2

+ a

2
− i t

)(

h

k

)−i t dt

( 1
2 + a

2 + i t)( 1
2 + a

2 − i t)

= − ζ(1 + a)

2

((

k

h

)
1
2 + a

2 +
(

h

k

)
1
2 + a

2
)

− ζ(a)

a

((

k

h

)
1
2 − a

2 +
(

h

k

)

1
2 − a

2

)

−
(

1
hk

)
1
2 + a

2
(2π)aŴ(−a) sin πa

2

(

ca

(

h

k

)

+ ca

(

k

h

))

.
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Proof. We need to evaluate

1 + a

2π(hk)
1
2 + a

2

∫ ∞

−∞
ζ
(

1
2

+ a

2
+ i t

)

ζ
(

1
2

+ a

2
− i t

)(

h

k

)i t dt

( 1
2 + a

2 + i t)(1
2 + a

2 − i t)

= 1 + a

2π i

∫

( 1
2 − Re(a)

2 )

ζ(s + a)ζ(1 − s)

hs+ak1−s

ds

(s + a)(1 − s)
.

We rewrite this as

1 + a

2π i

∫

( 1
2 − Re(a)

2 )

ζ(s + a)ζ(1 − s)

hs+ak1−s

ds

(s + a)(1 − s)

= 1

2π i

∫

( 1
2 − Re(a)

2 )

ζ(s + a)ζ(1 − s)

hs+ak1−s

ds

1 − s
+ 1

2π i

∫

( 1
2 − Re(a)

2 )

ζ(s + a)ζ(1 − s)

hs+ak1−s

ds

s + a

= Ia

(

h

k

)

+ Ia

(

k

h

)

,

where

Ia

(

h

k

)

:= 1

2π i

∫

( 1
2 − Re(a)

2 )

ζ(s + a)ζ(1 − s)

hs+ak1−s

ds

1 − s
.

The integral is not absolutely convergent, so some care is needed. One could
introduce a convergence factor eδs

2
and let δ → 0+ at the end of the argument,

or one could work with the understanding that the integrals are to be interpreted as
limT →∞

∫ c+iT

c−iT
. We opt for the latter. Recall that ζ(s)= χ(s)ζ(1 − s), where

χ(1 − s)= ((−2π i)−s + (2π i)−s)Ŵ(s).

This leads to

1

2π i

∫

(2)

χ(1 − s)

1 − s
u−s ds = −1

2π i

∫

(2)
((−2π i)−s + (2π i)−s)

Ŵ(s)

s − 1
u−s ds

= −1

2π iu

∫

(1)
((−2π i)−s−1 + (2π i)−s−1)Ŵ(s)u−s ds = sin 2πu

πu
.

Using Cauchy’s theorem, the functional equation for ζ(s), and the Dirichlet series
for ζ(s + a)ζ(s), we have

Ia

(

h

k

)

= − Ress=1
χ(1 − s)ζ(s + a)ζ(s)

hs+ak1−s(1 − s)
− Ress=1−a

χ(1 − s)ζ(s + a)ζ(s)

hs+ak1−s(1 − s)

+ 1

πh1+a

∞
∑

n=1

σ−a(n) sin(2πn h
k
)

n

= −ζ(1 + a)

2h1+a
− ζ(a)

ahka
+ 1

πh1+a

∞
∑

n=1

σ−a(n) sin(2πn h
k
)

n
.
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By the functional equation for D we see that

D(s,−a, h
k
)− D(s,−a,− h

k
)

2i
= 2

k

( k

2π

)2−2s−a

Ŵ(1 − s − a)Ŵ(1 − s)

×
(

cos
(

π

2
(2s + a)

)

+ cos πa

2

)(

D
(

1 − s, a,
h

k

)

− D
(

1 − s, a,−h

k

))

,

so that, defining

S
(

s,−a,
h

k

)

:=
∞
∑

n=1

σ−a(n) sin(2πn h
k
)

ns
,

we have

S
(

s,−a,
h

k

)

= 2

k

( k

2π

)2−2s−a

Ŵ(1 − s − a)Ŵ(1 − s)

×
(

cos(π
2
(2s + a))+ cos πa

2

)

S
(

1 − s, a,
h

k

)

. (27)

In particular, S(s,−a, h
k
) is regular at s = 1. Noting that

lim
s→1

Ŵ(1 − s − a)Ŵ(1 − s)
(

cos
(

π

2
(2s + a)

)

+ cos πa

2

)

= −πŴ(−a) sin πa

2

and

S(0, a, h/k)= 1
2 ca(h/k),

we obtain, by letting s → 1 in (27), the identity

S
(

1,−a,
h

k

)

= 2a
(

π

k

)1+a

Ŵ(−a) sin πa

2
ca

(

h

k

)

,

whence
∞
∑

n=1

σ−a(n) sin(2πn h
k
)

πnh1+a
= −

(

1
hk

)1+a

(2π)aŴ(−a) sin πa

2
ca

(

h

k

)

.

Thus,

Ia

(

h

k

)

= −ζ(1 + a)

2h1+a
− ζ(a)

ahka
−
(

1
hk

)1+a

(2π)aŴ(−a) sin πa

2
ca

(

h

k

)

and the theorem follows. �
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