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PERIOD OF THE POWER GENERATOR
AND SMALL VALUES OF CARMICHAEL’S FUNCTION

JOHN B. FRIEDLANDER, CARL POMERANCE, AND IGOR E. SHPARLINSKI

Abstract. Consider the pseudorandom number generator

un ≡ uen−1 (mod m), 0 ≤ un ≤ m− 1, n = 1, 2, . . . ,

where we are given the modulus m, the initial value u0 = ϑ and the exponent

e. One case of particular interest is when the modulus m is of the form pl,
where p, l are different primes of the same magnitude. It is known from work of
the first and third authors that for moduli m = pl, if the period of the sequence
(un) exceeds m3/4+ε, then the sequence is uniformly distributed. We show
rigorously that for almost all choices of p, l it is the case that for almost all
choices of ϑ, e, the period of the power generator exceeds (pl)1−ε. And so, in
this case, the power generator is uniformly distributed.

We also give some other cryptographic applications, namely, to ruling-
out the cycling attack on the RSA cryptosystem and to so-called time-release
crypto.

The principal tool is an estimate related to the Carmichael function λ(m),
the size of the largest cyclic subgroup of the multiplicative group of residues
modulo m. In particular, we show that for any ∆ ≥ (log logN)3, we have
λ(m) ≥ N exp(−∆) for all integers m with 1 ≤ m ≤ N , apart from at most

N exp
(
−0.69 (∆ log ∆)1/3

)
exceptions.

1. Introduction

For an integer n ≥ 1 we define the Carmichael function λ(n) as the largest
possible order of elements of the unit group in the residue ring modulo n. More
explicitly, for a prime power pk we define

λ
(
pk
)

=
{
pk−1(p− 1), if p ≥ 3 or k ≤ 2;
2k−2, if p = 2 and k ≥ 3;

and finally,

λ(n) = lcm
(
λ(pk1

1 ), . . . , λ
(
pkνν )

)
,

where

n = pk1
1 · · · pkνν

is the prime number factorization of n.
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Various upper and lower bounds for λ(n) have been obtained in [9]. In particular,
it follows from Theorem 2 of [9] that for all except o(N) positive integers n ≤ N

λ(n) = n exp (− log log n log log logn− C log logn+ o(log logn))

for some explicitly given constant C. Here we obtain a modification of this result.
We are interested in the lower bound implicit in the above result but, with an
application in mind, we wish to be able to say a little more about the size of the
exceptional set. In order to do this we need to allow smaller values of λ(n) but
then can obtain an explicit and more precise upper bound on the cardinality of the
set of positive integers n ≤ N for which that bound is false.

We apply this estimate to study the largest possible period of the power generator

un ≡ uen−1 (mod m), 0 ≤ un ≤ m− 1, n = 1, 2, . . . ,(1)

with the initial value u0 = ϑ (an integer coprime to m) and exponent e (an integer
at least 2).

In the two special cases gcd(e, ϕ(m)) = 1, where ϕ(m) is the Euler function, and
e = 2, this sequence is known as the RSA generator and as the Blum–Blum–Shub
generator , respectively.

For integers g and M ≥ 2 with gcd(g,M) = 1, denote by ordMg the multiplica-
tive order of g modulo M .

It is easy to see that if gcd(e, λ(m)) = 1, then the sequence (1) is purely periodic
with some period t. Moreover, this period is given by t = ordse, where s = ordmϑ,
and the largest possible value of t, over all possible choices of ϑ and e, is λ(λ(m)).

This generator has numerous cryptographic applications and has been exten-
sively studied in the literature, see [4, 5, 7, 8, 10, 11, 12, 13, 15, 17, 19, 25, 26]. In
particular, it is quite important to provide sequences of large period. Because of
the aforementioned cryptographic applications this generator is mainly studied in
the case m = pl, where p and l are two distinct primes. In this case, the results
of [12] imply the uniformity of distribution of this generator provided the period
t ≥ m3/4+ε. Moreover, the result becomes stronger as t gets closer to m.

Nevertheless, despite quite active studies of this generator, no lower bounds for
the values of its largest period λ(λ(m)) are known. Here we apply the above-
mentioned lower bound for λ(n) to show that, for almost all pairs of primes p, l,
λ(λ(pl)) is nearly of order pl. We then use it to prove that for almost all inputs of
pairs of primes, initial values ϑ, and exponents e, the period of the corresponding
sequence (un) given by (1) is close to its largest possible value. In particular, for
almost all values of the above parameters it exceeds m1−ε for any ε and sufficiently
large m.

We may remark that if one is willing to request large values of λ(λ(pl)) for many
pairs but not for almost all, then one can get very large values indeed. If one is
willing also to accept heuristic results, then, as a simple consequence of the well
known conjecture about prime k-tuplets (see [3]), there are in every interval (x, 2x)
with large x, at least c1x/(log x)3 primes p such that q = (p−1)/2 and r = (q−1)/2
are both also prime. That is, we request that r, q = 2r + 1, and p = 4r + 3 are
prime. It follows on pairing such primes p that there are at least c2Q2/(logQ)6

pairs of primes (p, l) with Q/2 < p < l ≤ Q for which λ(λ(pl)) = pl/8 + O (Q).
Here the constant 1/8 is best possible. As we shall see below it is possible using
sieve methods to unconditionally prove a result of the same strength (and even for
a larger number of pairs (p, l)) apart from that constant.
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Although studying the power generator (1) has been our primary motivation, we
mention two further applications of our results.

The first of these is the conclusion that the so-called cycling attack on the RSA
cryptosystem has a negligible chance to be efficient. Despite the common belief that
this should be the case, no rigorous proof of the statement has been given. The
attack is based on the observation that the power generator (1) can be considered
as a sequence of consecutive RSA encryptions starting with the “message” u0.
Thus, if the period is t, then after t − 1 iterations of the encrypted message u1

we obtain ut ≡ u0 (mod m), and if t is small, then this is an efficient procedure.
Even more, if t is small, then, because it is very likely that the periods tp and tl of
this sequence modulo p and l are distinct, after at most min{tp, tl} − 1 iterations
this attack may produce a complete factorization of m. This attack, as well as
various ways of protecting against it, have been discussed in the literature, see [5,
18, 22, 24]. In particular, the so-called safe primes have been introduced. Rivest
and Silverman [24] present arguments which show that randomly selected primes p
and l are likely to be strong against this attack. Our results imply a more precise
statement which basically means that for a random selection of parameters the
expected complexity of this attack is about m1/2, that is, of the same magnitude
as the trial-division factorization algorithm. Indeed, obviously tp(l − 1) ≥ t and
tl(p−1) ≥ t; thus when t is of order m and p ∼ l ∼ m1/2 we obtain that min{tp, tl}
is of order m1/2.

Our second application is related to the recently introduced notion of timed-
release crypto, see [23]. For example, for the construction of [23] it is essential to
guarantee that the power generator (1) has a large period; see the discussion at the
end of Section 2.1 of [23]. Our results provide rigorous support for this assumption.

Throughout the paper the implied constants in symbols “O”, “�” and “�” are
absolute. (The notations U � V and V � U are equivalent to U = O(V ) for
positive functions U, V .)

We use log x to denote the natural logarithm of x and we let P denote the set
of primes.

Acknowledgement. We thank Ron Rivest for his interest and for helpful refer-
ences.

2. Preparations

Here we collect some known number-theoretic estimates, which we use in the
sequel.

First of all we recall that

ϕ(k)� k

log log(k + 2)
,(2)

where ϕ(k) is the Euler function of k ≥ 1; see Theorem 5.1 of Chapter 1 of [21].
In estimating various sums over primes, we use that the nth prime pn satisfies

n logn� pn � n logn, for n ≥ 2.
Let π(X ; k, a) denote the number of primes p ≤ X with p ≡ a (mod k). We need

the following relaxed version of the Brun–Titchmarsh theorem. For any integers
k, a ≥ 1 with 1 ≤ k ≤ X1/2 and gcd(a, k) = 1, the bound

π(X ; k, a)� X

ϕ(k) logX
(3)

holds; see Theorem 4.1 of Chapter 2 of [21].
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We need the following estimate. For any integers X ≥ 3 and k ≥ logX ,∑
q∈P, q≤X

q≡1 (mod k)

1
q
� log k

ϕ(k)
.(4)

Indeed, for k ≥ X1/2 we have∑
q∈P, q≤X

q≡1 (mod k)

1
q
≤

∑
k≤n≤X

n≡1 (mod k)

1
n
� logX

k
� log k

k
.

For k < X1/2 we use the same bound, but also the Brun–Titchmarsh estimate (3),
to deduce that

∑
q∈P, q≤X

q≡1 (mod k)

1
q
�

dlogXe∑
s=dlog ke

π(exp(s); k, 1)
exp(s)

� log k
k

+
dlogXe∑

s=b2 log kc

π(exp(s); k, 1)
exp(s)

� log k
k

+
1

ϕ(k)

dlogXe∑
s=1

1
s
� log k

k
+

log logX
ϕ(k)

� log k
ϕ(k)

.

We shall also require a bound for smaller k. For any fixed α > 0, there exists X0(α)
such that the following holds. For all X ≥ X0(α) and all k ≤ logX ,∑

q∈P, Xα≤q≤X
q≡1 (mod k)

1
q
� log(1/α)

ϕ(k)
.(5)

This follows from the above Brun–Titchmarsh bound (3) by partial summation.
Let τ(k) denote the number of positive integer divisors of an integer k ≥ 1. The

following bounds are well known and hold for any X ≥ 2:∑
k≤X

τ(k)� X logX and
∑
k≤X

τ2(k)� X (logX)3 ;(6)

see Theorems 5.3 and 5.4 of Chapter 1 of [21].
Finally, we recall that an integer k ≥ 1 is called Y -smooth if it is divisible only

by primes p ≤ Y . Let Ψ(X,Y ) denote the total number of Y -smooth numbers
k ≤ X . The following estimate is a substantially relaxed and simplified version of
(for example) Corollary 1.3 of [16], see also [6]. Let X = Y u; then for any u→∞
with u ≤ Y 1/2 we have the bound

Ψ(X,Y )� Xu−u+o(u).(7)

We remark that all the above results are presented in very elementary and sim-
plified forms which nevertheless are sufficient to prove our main results. Much
stronger versions are known. For example, a much more precise version of (4) is
given in [20]. Unfortunately these more sophisticated results do not seem to improve
our estimates.

We need the following simple statement about the proportion of numbers whose
multiplicative order modulo M ≥ 2 is much smaller than λ(M). Some results of
this kind have been known [5] but they apply only to special moduli M .
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Lemma 1. Let M be a positive integer and j a divisor of λ(M). Let Nj(M) be the
number of integers g with 1 ≤ g ≤M , gcd(g,M) = 1 and ordMg dividing λ(M)/j.
Then

Nj(M) ≤ ϕ(M)/j.

Moreover, for any real K ≥ 1 the number SK(M) of integers g, 1 ≤ g ≤ M , with
gcd(g,M) = 1 and ordMg ≤ λ(M)/K satisfies

SK(M) ≤ ϕ(M)τ(λ(M))/K.

Proof. Let

M = pm1
1 . . . pmνν and λ(M) = ql11 . . . qlµµ

be the prime number factorizations of M and λ(M). For a divisor j of λ(M), let
j = qj11 · · · q

jµ
µ be its prime factorization, where each exponent jt satisfies 0 ≤ jt ≤ lt.

For each pmii in the prime factorization of M , let di be the product of those qjtt
in the prime factorization of j for which qltt (in the prime factorization of λ(M))
divides λ(pmii ). Note that for each qjtt there is at least one di divisible by qjtt , so
that j|d1 · · ·dν .

For ordMg to divide λ(M)/j, it is necessary that for each pmii we have that g is
a di-power modulo pmii . The number of residues g modulo pmii which are coprime
to pi and are a di-power is at most ϕ(pmii )/di. (It is equal to this bound except
when di = 2s, s ≥ 1, pi = 2, mi ≥ 3, in which case it is half of this bound.) Thus,
by the Chinese remainder theorem, we have

Nj(M) ≤ ϕ(M)/d1 · · · dν ≤ ϕ(M)/j,

as required. The second statement follows from the first simply by summing over
j|λ(M), j ≥ K (certainly this last part could be sharpened).

We also need the following elementary statement.

Lemma 2. Assume d ≥ 1 is a divisor of an integer n > 1. Then for any integer
g with gcd(g, n) = 1 we have that ϕ(d)/orddg divides ϕ(n)/ordng. We also have
ϕ(d)/λ(d) divides ϕ(n)/λ(n) and, as a consequence,

λ(d)
d
≥ λ(n)

n
.

Proof. The natural projection of multiplicative groups (Z/nZ)∗ → (Z/dZ)∗ gives
rise to the projection

(Z/nZ)∗ /〈g〉 → (Z/dZ)∗ /〈g〉,

and so ϕ(d)/orddg divides ϕ(n)/ordng as claimed. Next, taking any g satisfying
ordng = λ(n), we deduce that, for this g, ϕ(d)/orddg divides ϕ(n)/λ(n). But
since ϕ(d)/λ(d) divides ϕ(d)/orddg, the second statement follows. Finally, using
the inequality d/ϕ(d) ≤ n/ϕ(n), we obtain the third statement from the second
one.

As we mentioned above, the largest possible period for the power generator given
by (1) for a given modulus m is λ(λ(m)). The next result shows that many pairs
ϑ, e lead to a period that is not much smaller than the maximum.
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Lemma 3. For any positive integer m and any numbers K1,K2 ≥ 1, let W denote
the number of pairs of integers ϑ, e with 1 ≤ ϑ ≤ m, 1 ≤ e ≤ λ(m) and gcd(ϑ,m) =
gcd(e, λ(m)) = 1, such that the period of the power generator given by (1) is at
most λ(λ(m))/K1K2. Then

W ≤ ϕ(m)ϕ(λ(m))
(
τ(λ(m))
K1

+
τ(λ(λ(m)))

K2

)
.

Proof. We apply Lemma 1 first with M = m and K = K1. So the number of values
of ϑ in [1,m] with s := ordmϑ > λ(m)/K1 is at least ϕ(m)(1 − τ(λ(m))/K1).
For each such ϑ we again apply Lemma 1 now with M = s and K = K2. We
deduce that the number of choices for e in [1, s] with ordse > λ(s)/K2 is at least
ϕ(s)(1− τ(λ(s))/K2). Thus, there are at least ϕ(λ(m))(1− τ(λ(s))/K2) choices of
e ∈ [1, λ(m)] that are coprime to λ(m) and such that ordse > λ(s)/K2.

Note that Lemma 2 implies that if ϑ, e are chosen as above, then the period
ordse of the power generator satisfies

ordse >
λ(s)
K2
≥ λ(λ(m))s

λ(m)K2
>
λ(λ(m))λ(m)
λ(m)K1K2

=
λ(λ(m))
K1K2

.

Since τ(λ(s)) ≤ τ(λ(λ(m))), the result follows.

Using the well-known bound τ(k) ≤ ko(1) (see Theorem 5.2 of Chapter 1 of [21]),
we can obtain the following corollary, which is possibly useful if λ(λ(m)) is not too
small in comparison to λ(m):

Corollary 4. Let ε > 0 be arbitrary and let the integer m be sufficiently large
depending on the choice of ε. The number of pairs of integers ϑ, e in the range
1 ≤ ϑ ≤ m, 1 ≤ e ≤ λ(m) with gcd(ϑ,m) = gcd(e, λ(m)) = 1, and such that the
period t of the power generator given by (1) satisfies t ≤ λ(λ(m))/λ(m)ε is at most
ϕ(m)ϕ(λ(m))/λ(λ(m))ε/3 .

3. Lower bounds for the Carmichael function

Theorem 5. For sufficiently large numbers N and for ∆ ≥ (log logN)3, the num-
ber of positive integers n ≤ N with

λ(n) ≤ n exp (−∆)

is at most N exp
(
−0.69 (∆ log ∆)1/3

)
.

Proof. Fix ∆ ≥ (log logN)3 and let us define K from the equation

(logK)3

log logK
= ∆−∆1/2;

thus K = exp
((

3−1/3 + o(1)
)

(∆ log ∆)1/3
)

. Note that K ≥ (logN)α(N) for some
α(N)→∞ as N →∞.

Let S1 denote the set of n ≤ N with p2|ϕ(n) for some prime p > K. There are
four possibilities for n ∈ S1.
• There exists a prime p > K with p3|n. There are at most∑

K≤p≤N1/3

⌊
N

p3

⌋
≤ N

∑
K≤k≤N

1
k3
� NK−2
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such n ≤ N . Here, and in a number of places below, we are a little inefficient
by not saving all possible logarithmic factors.
• There exists a prime p > K with p2|n and also there exists a prime q|n with
q ≡ 1 (mod p). From (4) and partial summation we derive that the number
of such n ≤ N is at most∑

K≤p≤N1/3

∑
q∈P, p<q≤N/p2

q≡1 (mod p)

⌊
N

p2q

⌋
� N

∑
K≤p≤N

log p
p3
� NK−2.

• There exists a prime p > K and there exists a prime q|n with q ≡ 1 (mod p2).
As before we see that the number of such n ≤ N is bounded by

N
∑

K≤p≤N1/3

log p
p2
� NK−1.

• There exists a prime p > K and there exist two distinct primes q1q2|n with
q1 ≡ q2 ≡ 1 (mod p). In this, the most frequently occurring case, we see that
the number of such n ≤ N is majorized by

N
∑

K≤p≤N1/3

(log p)2

p2
� NK−1 logK.

So the cardinality of S1 satisfies | S1| � NK−1 logK ≤ NK−1+o(1).
Put

v =
logK

log logK
and L = Kv.

Denote by Q the set of primes p ≤ N such that the contribution to p − 1 from
primes q < K is at least L. Let L denote the set of K-smooth integers k with
N ≥ k ≥ L. Then, from (4) we see that∑

p∈Q

1
p
≤
∑
k∈L

∑
p≤N

p≡1 (mod k)

1
p
�
∑
k∈L

log k
ϕ(k)

.

For the last sum, using (2) we derive

∑
k∈L

log k
ϕ(k)

�
dlogNe∑
s=dlogLe

s log s
exp(s)

Ψ(exp(s),K).

It is easy to verify that if for dlogLe ≤ s ≤ dlogNe we define u by the equation
exp(s) = Ku, then v ≤ u ≤ logN + 1 ≤ K1/2, so the bound (7) applies. Therefore

∑
p∈Q

1
p
≤ v−v+o(v)

dlogNe∑
s=dlogLe

s log s

≤ v−v+o(v) (logN)2 log logN ≤ K−1+o(1).

Denote by S2 the set of n ≤ N which are divisible by a prime from Q. Then

| S2| ≤
∑
p∈Q

⌊
N

p

⌋
≤ N

∑
p∈Q

1
p
≤ NK−1+o(1).
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Similarly, the cardinality of the set S3 of n ≤ N , such that the contribution to
n itself from primes q < K is at least L, satisfies

| S3| ≤
∑
k∈L

⌊
N

k

⌋
≤ N

∑
k∈L

1
k
� NK−1+o(1).

Let ω(n) denote the number of distinct prime divisors of an integer n ≥ 1.
Denote by S4 the set of n ≤ N with ω(n) ≥ logK − 1. Because, for every n ∈ S4,
τ(n) ≥ 2ω(n) ≥ 1

2K
log 2 > K1/2, we derive from the second part of (6) that

| S4| ≤ K−1
∑
n≤N

τ2(n)� NK−1+o(1).

Finally, we define the set

N = {NK−1 ≤ n ≤ N}\ (S1 ∪ S2 ∪ S3 ∪ S4) .

Combining the above results, one verifies that | N | = N +O
(
NK−1+o(1)

)
.

For n ∈ N we write ϕ(n) = mM , where m is the contribution of primes q < K
and M is the contribution of primes q ≥ K. We see that for any n ∈ N

m ≤ Lω(n)+1 ≤ LlogK = exp
(
v (logK)2

)
= exp

(
∆−∆1/2

)
because of our choice of K and v. We also remark that M is squarefree. Therefore,

λ(n) ≥ M =
ϕ(n)
m
� n

m log logn

� NK−1

log logN
exp

(
−∆ + ∆1/2

)
� N exp (−∆)

for sufficiently largeN . Taking into account that 3−1/3 > 0.69 we obtain the desired
statement.

4. Period of the power generator

Here we apply Theorem 5 to obtain a lower bound for the largest possible period
of the power generator. Recall that P denotes the set of primes.

Theorem 6. For Q sufficiently large and for any ∆ ≥ 2 (log logQ)3, the number
of pairs (p, l) ∈ P2, 1 < p < l ≤ Q, with

λ (λ(pl)) < Q2 exp (−∆)

is at most Q2 exp
(
−0.16 (∆ log ∆)1/3

)
.

Proof. Fix ∆ ≥ 2(log logQ)3 and put

D = exp
(

0.16 (∆ log ∆)1/3
)
.

The number W of pairs (p, l) ∈ P2, 1 < p < l ≤ Q, with gcd(p − 1, l − 1) ≥ D
satisfies

W ≤
∑
d≥D

π(Q; d, 1)2.
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We use the estimate (3) for d < Q1/2 together with (2) and just π(Q; d, 1) ≤ Q/d
for d ≥ Q1/2, getting

W �
∑

Q1/2≥d≥D

Q2

ϕ(d)2 (logQ)2 +
∑

d≥Q1/2

Q2

d2
� Q2(log logD)2

D (logQ)2 +Q3/2.

Let R(n) be the number of solutions of the equation n = λ(pl) in pairs (p, l) ∈ P2,
1 < p < l ≤ Q, with gcd(p − 1, l − 1) < D. Obviously R(n) ≤ Dτ(n). Indeed, we
have at most τ(n) possibilities for p−1 and at mostD possibilities for gcd(p−1, l−1).
These two choices determine l.

Put N = Q2. We say that n is exceptional if λ(n) ≤ N exp (−∆). Because
we have ∆ ≥ (log logN)3, Theorem 5 may be applied. Let E denote the set of
exceptional n ≤ N . Applying Theorem 5 and the Cauchy inequality and (6) we
obtain

∑
n∈E

R(n) ≤ | E|1/2
(∑
n∈ E

R(n)2

)1/2

� |E|1/2D

∑
n≤N

τ(n)2

1/2

� ND exp
(
−0.34 (∆ log ∆)1/3

)
.

Noting that the cardinality of the set Q of these pairs (p, l) ∈ P2, 1 < p < l ≤ Q,
for which λ(pl) is exceptional is at most

| Q| ≤W +
∑
n∈E

R(n),

after simple calculations we derive the result.

We now show using sieve methods that for a large number of pairs (p, l) ∈ P2

we have λ (λ(pl))� pl. Specifically we prove the following result.

Theorem 7. There exist positive constants c1 and c2 such that, for more than
c1Q

2/ (logQ)4 pairs (p, l) ∈ P2, 1 < p < l ≤ Q, we have

λ (λ(pl)) > c2Q
2.

Proof. This proof contains a real parameter α > 0 which will eventually be fixed.
Throughout we shall assume, as we may, that Q is chosen sufficiently large in terms
of α. We shall require both upper and lower bound sieve results.

The upper bound we require is as follows. Let β > 0 and define

P =
∏
p<Qβ

p.

Let 1 ≤ k ≤ Q1−β be an integer satisfying gcd(k, P ) = 1. The number of
primes p < Q satisfying gcd ((p− 1)/2, P ) = 1 and also p ≡ 1 (mod k) is ma-
jorized by the number of positive integers m ≤ Q, m ≡ 1 (mod k) for which
gcd (m(m− 1)/2, P ) = 1. Bounding this latter set above by means of the (“two-
dimensional” upper bound) sieve (for example Theorem 5.1 of the standard refer-
ence [14]), we see that this number is O

(
Q/kβ2 (logQ)2

)
.

Using the lower bound sieve (see for example Theorem 8.3 of [14]), and estimating
the error term with the aid of the Bombieri–Vinogradov theorem, we may fix α > 0
sufficiently small that, in every interval (Q/2, Q) there are at least cQ/α (logQ)2

primes p such that (p−1)/2 is free of primes less than Qα where the constant c > 0
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is absolute. We may assume, by discarding no more than Q1−α of our primes, that
p − 1 is also squarefree. By possibly making α somewhat smaller (and using the
above upper bound sieve to remove the primes and products of two primes) we can
also demand that (p− 1)/2 is the product of three or more primes, the product of
any two of which is thus no more than Q1−α. To remove the primes we merely take
k = 1 and β = 1/2. To remove the products of two primes, we group in accordance
with the smaller of the two, calling that one k, apply the upper bound, again with
β = 1/2, and then sum over k. The result follows from (5) in view of the fact that
as α decreases log(1/α) grows more slowly than 1/α.

Consider now the integers pl in the interval
(
Q2/4, Q2

)
formed by pairing distinct

primes p, l as above. There are at least c2Q2/3α2 (logQ)4 of them.
By removing O

(
Q2−α) of these pairs, we may assume that

gcd
(
p− 1

2
,
l − 1

2

)
= 1

for all pairs under consideration. Thus, for such a pair (p, l) we may write

p− 1
2

l− 1
2

= q1 · · · qr,(8)

where q1, . . . , qr ∈ P are distinct and each satisfies Qα ≤ qj < Q1−2α, j = 1, . . . , r.
In particular, r < 2/α. Moreover we have

λ (λ(pl)) = λ (lcm (p− 1, l− 1)) = lcm (q1 − 1, . . . , qr − 1),

and for all large Q this satisfies

λ (λ(pl)) ≥ (q1 − 1) · · · (qr − 1)
D(p; l)r2/2

≥ Q2

17D(p; l)r2/2
,

where

D(p; l) = max
1≤i<j≤r

gcd(qi − 1, qj − 1).

For given d, we next apply our upper bound sieve result to bound the number
of pairs (p, l) ∈ P2, 1 < p < l ≤ Q, for which qi ≡ qj ≡ 1 (mod d) for some
1 ≤ i < j ≤ r, where q1, . . . , qr are defined by (8). We choose β = α. To bound
the number of occurrences with qi and qj both coming from the same member of
the pair, we apply the bound once with k = qiqj < Q1−α. For the case where each
of the two comes from a different member of the pair we apply the bound twice,
once with k = qi and once with k = qj . The number of pairs in question for both
cases is bounded by

Nd �
Q2

α4 (logQ)4

 ∑
q∈P, Qα≤q<Q1−α

q≡1 (mod d)

1
q


2

.

For d > logQ we use (4) and for smaller d we use (5). These give∑
q∈P, Qα≤q<Q1−α

q≡1 (mod d)

1
q
� log(1/α) log d

ϕ(d)
.
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Thus the number of of pairs (p, l) ∈ P2, 1 < p < l ≤ Q, in our set which satisfy
D(p; l) > D is bounded above by∑

d>D

Nd � Q2

α4 (logQ)4

∑
d>D

(
log(1/α) log d

ϕ(d)

)2

� Q2

(logQ)4

(log(1/α))2

α4

(logD)2

D
.

Provided D is chosen sufficiently large in terms of α, say D = α−3, and α is
sufficiently small, this latter set makes a small contribution compared to those for
which D(p; l) ≤ D and the result follows.

We remark that the constants c1 and c2 in Theorem 7 can be effectively evaluated.
Now we study the period of the sequence (un) given by (1) with m = pl when the

primes p and l, the initial value ϑ, and the exponent e are all selected at random.

Theorem 8. For Q sufficiently large, for any ∆ ≥ 6 (log logQ)3, and for all pairs
(p, l) ∈ P2, 1 < p < l ≤ Q, except at most Q2 exp

(
−0.1 (∆ log ∆)1/3

)
of them, the

following statement holds. For all pairs (ϑ, e) with

1 ≤ ϑ ≤ m− 1, 1 ≤ e ≤ λ(m), gcd(ϑ,m) = gcd(e, λ(m)) = 1,

where m = pl, except at most mλ(m) exp (−0.2∆) of them, the period t of the
sequence (un) given by (1) satisfies

t ≥ Q2 exp (−∆) .

Proof. First of all we recall that the above period t = ordse, where s = ordmϑ.
It follows from (6) that the number of pairs (p, l) ∈ P2, 1 < p < l ≤ Q, with

τ ((p− 1)(l − 1)) > exp (∆/8)

is at most

exp (−∆/8)
∑
k≤Q2

τ2(k)� Q2 exp (−∆/9) .

We will consider only pairs p, l where gcd(p − 1, l − 1) < D, where D is as in the
proof of Theorem 6. So, as in that proof, for any number n, the number of pairs
p, l with λ(λ(pl)) = n is at most Dτ(n). Thus, the number of pairs p, l with

τ(λ(λ(pl))) > exp (∆/8) ,

is at most

D
∑
n≤Q2

τ(n)>exp(∆/8)

τ(n).

From the second part of (6) the number of n ≤ Q2 with B ≤ τ(n) < 2B is
O
(
Q2(logQ)3/B2

)
, so the sum of these values of τ(n) is O

(
Q2(logQ)3/B

)
. Letting

B run over powers of 2 starting just below exp (∆/8), we get that

D
∑
n≤Q2

τ(n)>exp(∆/8)

τ(n)� DQ2(logQ)3 exp (−∆/8)� Q2 exp (−∆/9) .
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Let R be the set of the pairs (p, l) ∈ P2, 1 < p < l ≤ Q, for which

λ (λ(pl)) ≥ Q2 exp (−∆/3)

and

τ (λ(pl)) ≤ exp (∆/8) , τ(λ(λ(pl))) ≤ exp (∆/8) .

It follows from the above estimates and from Theorem 6 that

|R| ≥ Q2 −Q2 exp
(
−0.1 (∆ log ∆)1/3

)
.

Let us fix some pair (p, l) ∈ R and put m = pl. We apply Lemma 3 with K1 =
K2 = exp(∆/3). It follows that, except for at most

2ϕ(m)ϕ(λ(m)) exp(−∆/5) ≤ mλ(m) exp(−∆/5)

of them, the period t of the power generator is at least λ(λ(m)) exp(−2∆/3). But
this bound is at least Q2 exp(−∆), so the result follows.

A similar result also holds for p and l described in Theorem 7.
It would be of great interest to be able to give a result of the strength of Theo-

rem 8 but where now e is kept fixed while the other parameters p, l, ϑ vary. This
seems a much harder question and is quite reminiscent of the Gauss–Artin problem
on primitive roots. Using the same ideas as in Theorem 7, we are able to show
that quite often the period is reasonably large. Because of its special interest we
consider the case when e = 2, that is the Blum–Blum–Shub generator.

Theorem 9. Given ε > 0, there exist positive constants c, γ such that for Q suffi-
ciently large, there are more than cQ2/ (logQ)4 pairs (p, l) ∈ P2, p < l ≤ Q, such
that for all integers ϑ with

1 ≤ ϑ ≤ m− 1 and gcd(ϑ,m) = 1,

where m = pl, except at most m1−γ of them, the period t of the sequence (un) given
by (1) with e = 2 satisfies

t ≥ cQ1−ε.

Proof. We select the pairs (p, l) ∈ P2, 1 < p < l ≤ Q, which gave us large values
of λ(λ(pl)) as described in the proof of Theorem 7 and then eliminate those pairs
for which

ordq1...qr2

is small. Here q1, . . . , qr are given by (8) and also satisfy the condition that gcd(qi−
1, qj − 1) is bounded for all i 6= j. The number of primes q up to a bound B for
which ordq2 < q1/2−ε/2 is at most B1−ε, since these primes divide the product of
2j − 1 for j up to B1/2−ε/2 and each factor 2j − 1 clearly has fewer than j prime
factors. Thus, the number of primes p ≤ Q with p− 1 divisible by a prime q > Qα

with ordq2 < q1/2−ε/2 is O
(
Q1−αε). Hence, we may assume that the pairs p, l
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produced in Theorem 7 all have, for each i, ordqi2 ≥ q
1/2−ε/2
i . Then

ordq1···qr2 = lcm (ordq12, . . . , ordqr2)
� ordq12 · · · · · ordqr2

≥ (q1 · · · qr)1/2−ε/2

� (pl)1/2−ε/2

� Q1−ε.

But, by Lemma 1 the number of choices of ϑ up to m that are coprime to m and
with ordmϑ < q1 · · · qr is O (m/Qα). Hence, ordmϑ is either q1 · · · qr or 2q1 · · · qr
(since λ(m) = 2q1 · · · qr) for all ϑ up to m and coprime to m, except at most
O
(
m1−α) of them. For any choice of ϑ, the period t of the power generator with

e = 2 is the order of 2 modulo the largest odd divisor of ordmϑ. So, but for few
exceptional choices of ϑ, this period is ordq1...qr2 and, as we have already seen,
ordq1...qr2� Q1−ε. This completes the proof.

5. Remarks

Our results cover the important special case where one wishes to show that the
exceptional set has cardinality O

(
N(logN)−A

)
with an arbitrary A, which is more

than sufficient to deal with integers of the form pl. Actually they go rather further
than that. Moreover, one can take slightly smaller values of ∆ in both Theorems 5
and 6. On the other hand, some heuristic arguments show that there are at least
N1−o(1) integers m ≤ N with λ(m) ≤ mo(1). So to get an exceptional set of size
O
(
N1−ε) one may have to allow very small values of λ.
Rigorously, we can show that there are at least N7/10 values of m ≤ N with

λ(m) < m1/ log logm. This is done using a recent paper of Baker and Harman [2].
Here is a sketch of the proof: Let M denote the least common multiple of the
integers up to logN/ log logN . Consider the primes p up to (logN)3.37 for which
p − 1 divides M . From [2], there are more than (logN)3.37/(log logN)O(1) such
primes p. Consider now the squarefree integers m up to M composed solely of
these primes p. A simple binomial coefficient calculation shows that there are
more than N .703 such numbers m. But each such m has λ(m)|M , and note that
M ≤ NO(1/ log logN).

In addition, using some ideas in [1] one can force λ(m) to be even smaller and
still have a power of N values of m. Namely, for each ε > 0 there is a number Nε
such that if N ≥ Nε, the number of m ≤ N with λ(m) < exp

(
(log logm)5/(2ε)

)
exceeds N5/12−ε. Here is a sketch of the proof: Let c = 5/12− ε/2 and γ = 5/(2ε).
Let y be large and let L be the product of the primes in the interval [yγ/ log y, yγ ].
Let x = exp

(
y2
)
. Using Theorem 3.1 in [1] there is an integer K < x1−c such that

#{d|L : d < xc, dK + 1 ∈ P} � 1
log x

#{d|L : d < xc}.

A simple binomial coefficient calculation shows that there are at least xc(1−2/γ)

such divisors d. Now, take these primes dK + 1 and form squarefree integers
m. In fact, take them t at a time, where t =

⌊
exp

(
y3/2

)⌋
. These numbers m

are all at most N := xt and each such λ(m) is a divisor of KL, and so is at most
exp ((log logN)γ). Again, a simple binomial coefficient calculation shows that there
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are at least N c(1−3/γ) such integers m. Since c(1 − 3/γ) > 5/12 − ε, the proof is
complete.

Given the results above for general integers m, it seems reasonable to expect
that there are many pairs (p, l) ∈ P2, 1 < p < l ≤ Q, with quite small values of
λ(λ(pl)). On the other hand, to prove that this is the case seems quite a difficult
proposition. Indeed, it is not even known that there are infinitely many values of
p − 1 which are very smooth and, for λ(λ(pl)) to be small, necessarily both p − 1
and l − 1 must be smooth.
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