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Abstract: Due to the advantages of rich dynamics, small size, and easy integration, semiconductor
lasers have many applications in microwave photonics. With a proper perturbation to invoke period-
one (P1) nonlinear laser dynamics, a widely tunable microwave signal can be generated. In this
paper, we concentrate on the realization and application of photonic microwave signal generation
based on the P1 oscillation state of semiconductor lasers. Recent developments in P1 dynamics-based
tunable microwave signal generation techniques are reviewed with an emphasis on the optical
injection system, which has a large frequency tuning range that is far beyond the intrinsic relaxation
oscillation frequency. In order to improve the spectral purity and stability of the generated microwave
signal, two typical approaches are introduced, i.e., microwave modulation stabilization, and delayed
feedback stabilization. Various applications of the P1 dynamics-based microwave signal generator in
diverse signal generation and photonic microwave signal processing are described. Development
trends of the P1 dynamics-based photonic microwave signal generator are also discussed.

Keywords: microwave photonics; semiconductor lasers; optical injection; period-one oscillation;
nonlinear dynamics; microwave generation

1. Introduction

A microwave signal source that produces a broadly tunable microwave signal with
low phase noise and high stability is considered a key component in many microwave
and millimeter-wave systems, ranging from wireless communication systems, modern
instrumentation, and radars to electronic warfare systems [1–3]. In recent decades, in order
to overcome the limitations of conventional electronic technologies in carrier frequency,
bandwidth and electromagnetic interference, photonic generation of microwave signals has
attracted extensive attentions [4–8]. Semiconductor lasers are compact, reliable, and efficient
coherent light sources with high-speed modulation capabilities. In addition, semiconductor
lasers are inherently nonlinear devices. With proper perturbations, rich dynamical states of
semiconductor lasers can be invoked, including stable locking, periodic oscillation, regular
pulsation, quasi-periodic pulsation, frequency-locking, chaotic oscillation, and chaotic
pulsation [9–15]. The dynamical states of semiconductor lasers have been utilized for
many photonic microwave applications, and these states can be well controlled by properly
varying the perturbation parameters. For instance, the simplest state of stable locking
has been applied in modulation bandwidth enhancement, chirp and noise reduction in
semiconductor lasers [16]. Chaotic dynamics have been demonstrated for chaos secure
communication, high-speed random number generation, chaotic radar and lidar [17–19].
When operating at the period-one (P1) oscillation state, an optical wave with a single-
frequency microwave modulation is obtained, which is suitable for photonic microwave
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signal generation [20]. In this paper, we focus on the realization and application of photonic
microwave signal generation based on the P1 oscillation state of the optical injection system,
whose microwave frequency is broadly tunable by varying the injection conditions, and
the frequency tuning range is far beyond the intrinsic laser bandwidth.

In this review, we will first introduce P1 dynamics-based tunable microwave sig-
nal generation techniques based on an optically injected semiconductor laser (OISL). In
Section 3, two typical approaches to improve the spectral purity and stability of the gener-
ated microwave signal are introduced, including microwave modulation stabilization, and
delayed feedback stabilization. Various applications of the P1 dynamics-based microwave
signal generator in diverse signal generation, and photonic microwave signal processing
are described in Section 4. Finally, development trends of the P1 dynamics-based photonic
microwave signal generator are also discussed.

2. Photonic Microwave Signal Generation Based on P1 Dynamics

Under proper perturbations, e.g., optical injection, optical feedback, and optoelectronic
feedback, a semiconductor laser can operate at the P1 oscillation, which outputs an optical
carrier with a single-frequency intensity modulation [21]. After photodetection, a broadly
tunable microwave signal can be generated. Due to the advantages of wide frequency
range, flexible control, and no need for electrical components, the optical injection scheme
has become the most preferred scheme.

The schematic diagram of an optical injection system is shown in Figure 1. Two lasers
are arranged in master-slave configuration for optical injection. A continuous-wave (CW)
light with a frequency of f m from the master laser (ML) is injected into the slave laser after
passing through a variable optical attenuator (VOA), a polarization controller (PC) and an
optical circulator (CIR). The slave laser (SL) is a single-mode semiconductor laser with a
free-running frequency of f s. Here, the polarization of ML and SL are matched through the
PC to maximize the injection efficiency, and the optical injection strength is adjusted by the
optical attenuator. The output signal of the injected slave laser is sent to a photodetector
(PD) to implement optical-to-electrical conversion. The desired microwave signal can be
obtained at the output port of the PD.
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Figure 1. Schematic diagram of an optical injection system. ML: master laser; SL: slave laser; VOA:
variable optical attenuator; PC: polarization controller; CIR: optical circulator; PD: photodetector.

The dynamics of the OISL system can be described by the rate equations between the
intracavity optical field amplitude A(t) and the charge carrier density N(t) [22]:

dA
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=
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where A0 and N0 are the free-running values of A(t) and N(t), respectively. The optical gain
g is given by
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In Equations (1)–(3), b is the linewidth enhancement factor, γc is the cavity decay
rate, γs is the spontaneous carrier relaxation, γn is the differential carrier relaxation rate,
γp is the nonlinear carrier relaxation rate, and J is the normalized bias current above the
threshold. The optical injection is specified by the injection parameters (f i, ξi). Here, f i is the
detuning frequency of the ML with respect to the free-running SL, and ξi is the normalized
optical injection strength. χ denotes the complex Langevin fluctuating force, which is
used to characterize the spontaneous emission noise of SL [23]. Through adjusting the
optical injection parameters, different dynamical states of the OISL system can be invoked,
including stable locking, period-one, period-two and chaotic states [24]. In particular, we
focus on the microwave generation and application characteristics of the period-one state.

Figure 2 presents the spectral characteristics of an OISL in the period-one oscillation
state. P1 dynamics can be invoked through undamping the relaxation resonance of the
semiconductor laser. The physical mechanism behind the P1 oscillation can be explained
by the dynamical competition between injection-imposed laser oscillation and injection-
shifted cavity resonance of the injected laser. On the one hand, the injection light at f m
pulls the intracavity field oscillation of the SL toward f m by locking the optical phase of
the laser, leading to the frequency component f m at the laser output. On the other hand,
the necessary gain of the slave laser is modified by optical injection. The refractive index
inside the cavity changes through the antiguidance effect, resulting in the redshift of the
cavity resonance from f s toward f s’ [20]. Therefore, such injection-shifted cavity resonance
competes dynamically with the injection-imposed laser oscillation, which radically modifies
the dynamics of the injected laser. Under proper injection conditions, this would lead to
the emergence of an asymmetric double-sideband (DSB) spectrum that is equally separated
by the P1 oscillation frequency f o (f o = f m − f s’) through Hopf bifurcation. As illustrated
in Figure 2, such a spectrum is a typical signature of P1 dynamics in OISLs [20–24]. After
beating the optical components at a photodetector, a microwave signal with a fundamental
frequency of f o can be generated. Since the cavity resonance shift depends on the gain
reduction, which is determined by the injection condition, the beating microwave frequency
is dependent on the injection strength and the detuning frequency between the master
and slave lasers. In Figure 3, the dependence of the P1 oscillation frequency f o on the
master-slave detuning frequency and the optical injection strength (f i, ξi) is more clearly
presented as a mapping [23]. In the region of the period-one oscillation state, by simply
adjusting the detuning frequency and the injection strength, the fundamental microwave
frequency f o is broadly tunable from a few to over 60 GHz. Even higher frequencies, e.g.,
on the order of 100 GHz, can be generated by properly increasing ξi and/or f i, enabling the
possibility of reaching even the terahertz band [25].
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Figure 3. Dependence of the P1 oscillation frequency f o on detuning frequency and injection
strength [23].

Figure 4 presents the experimental results of tunable microwave signal generation
based on the P1 oscillation of an OISL [26]. Figure 4a shows a typical optical spectrum of
P1 dynamics (blue curve) when (f i, ξi) equals (5.7 GHz, 0.84). For comparison, the spectra
of the injection light (green curve) and the free-running SL (red curve) are also displayed.
As can be seen, two highly dominant wavelength components separated by a P1 oscillation
frequency of 21.5 GHz is observed after optical injection. Figure 4b plots the P1 frequency f o
as a function of the injection strength ξi when the detuning frequency f i equals 5.7, 16.2, 25.7
and 35.5 GHz. As can be observed, for a fixed detuning frequency f i, the P1 frequency f o
increases almost linearly with increasing injection strength ξi. In addition, the P1 frequency
increases with increasing detuning frequency f i for a fixed injection strength ξi. Here, a
P1 frequency of approximately 9.6–46.6 GHz is measured, which is mainly limited by the
bandwidth of the electrical spectrum analyzer. The corresponding electrical spectra of the
generated microwave signals when f i = 5.7 GHz are given in Figure 4c, and the frequency
range is 9.6–22.6 GHz. These results prove the feasibility of using the P1 oscillation of an
OISL as a photonic microwave source.
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ξi for different detuning frequencies f i; (c) electrical spectra when f i = 5.7 GHz.

Apart from the aforementioned P1 dynamics-based method, a variety of photonic mi-
crowave signal generation schemes have been reported, including those based on external
modulation [5], dual-frequency lasers [6], mode-locked lasers (MLLs) [7], and optoelectronic
oscillators [8]. Table 1 presents a comparison of photonic microwave signal generation tech-
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niques. As can be seen, compared with existing schemes, photonic microwave generation
using the P1 oscillation of an OISL offers the following advantages.

Table 1. Comparison of Photonic Microwave Signal Generation Techniques.

Techniques Complexity Cost Tunability Microwave
Linewidth

Frequency
Modulation

External modulation Moderate High Fair Determined
by source

Determined
by source

Dual-frequency lasers Moderate Moderate Fair Moderate No
Mode-locked lasers Complicated High Poor Narrow No

Optoelectronic oscillator Complicated Moderate Fair Narrow Special design
required

Period-one dynamics Simple Low Good Moderate Yes

(1) Simple Structure and Low Cost: The P1 oscillation generates photonic microwave
signals all optically without using any microwave sources or high-speed modulators;

(2) Good Frequency Tunability: The obtained microwave frequency f o has a large fre-
quency tuning range that is many times the original relaxation oscillation frequency of
the laser. A large microwave frequency range of a few to over 100 GHz is achievable
by simply adjusting the optical injection parameters;

(3) Frequency Modulation Capability: For a fixed master-slave detuning frequency f i,
the generated microwave frequency f o would increase approximately linearly with
the injection strength ξi over a large range, which has been verified in Figure 4b.
This unique feature provides a convenient way to flexibly control the instantaneous
frequency of the generated microwave signal. Therefore, assisted by dynamical
modulation of injection parameters, wideband reconfigurable microwave frequency-
modulated signals can be generated, which has important applications in modern
communication and radar systems.

3. Photonic Microwave Stabilization for P1 Dynamics

Despite the above advantages, the generated microwave signal based on the P1 dy-
namics of an OISL has poor spectral purity and limited frequency stability, which hampers
its usefulness to many practical applications. On the one hand, the generated microwave
signal has a relatively large 3-dB microwave linewidth, typically on the order of 1–10 MHz,
which mainly arises from the spontaneous emission noise of the injected laser. On the
other hand, fluctuations in the optical injection frequency and power result in significant
microwave frequency jitters, typically on the order of 10–100 MHz. To cope with these
problems, several photonic microwave stabilization approaches for P1 nonlinear dynamics
have been proposed, which can be classified into two main categories, i.e., microwave
modulation stabilization, and delayed feedback stabilization [27–36].

3.1. Microwave Modulation Stabilization

Figure 5 shows two typical configurations of photonic microwave stabilization for
P1 dynamics using microwave modulation. As shown in Figure 5a, on the basis of the
conventional optical injection system, an external microwave signal with a frequency f L
from a microwave frequency synthesizer (MFS) is applied to directly modulate the injected
SL. By properly setting the frequency and power of the microwave modulation signal, the
microwave signal generated by P1 oscillation could be locked to the MFS, thus improving
the spectral purity and frequency stability. Simpson et al. demonstrated that the microwave
linewidth can be reduced to below 1 kHz, when the MFS frequency was tuned to the P1
frequency, namely, f L = f o [27]. This method, also known as optical double-locking, has
limitations in generating high-frequency microwave signals: (1) high-frequency modulation
is difficult due to the limited laser response of direct modulation; (2) a stable microwave
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signal with the same frequency as the P1 oscillation frequency is needed. In [27], the highest
locked microwave frequency was limited to approximately 17 GHz.
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To address the above problems, Fan et al. proposed a subharmonic microwave modula-
tion stabilization scheme [28,29], i.e., an MFS with a frequency of f L ≈ f o/N (N is an integer
larger than one) is employed to modulate the SL. With a proper modulation power, the
modulation sidebands around the injection light at f m ± Nf L and P1 oscillation sidebands
at f m ± f o become mutually locked. Consequently, the P1 oscillation is stabilized, while
the P1 frequency f o is locked and driven to Nf L. In the experimental demonstration, via
1/4 and 1/9 subharmonic microwave modulation, a stabilized microwave signal up to
65.07 GHz was obtained with a linewidth below 1.6 kHz and a single-sideband (SSB) phase
noise less than −98 dBc/Hz at 10 kHz [29]. Figure 5b presents a schematic diagram of
the optical modulation sideband injection-locking approach. A high-purity microwave
signal (f L) is used to drive an optical phase modulator (PM), which has a larger modu-
lation bandwidth than the SL. After PM, the injection signal from ML carrying multiple
modulation sidebands is injected into the SL and injection-locks the P1 oscillation when f L
is approximately equal to f o/N (N is a positive integer). As a result, the poor microwave
spectral purity and limited stability of the P1 oscillation state are effectively improved to a
level close to that of the microwave reference. In [30], Hung et al. reported that the 3-dB
linewidth was reduced to less than 1 Hz for microwave generation up to 40 GHz. Recently,
V- and W-band microwave signal generation has been realized based on a similar setup in
Figure 5b [31]. Furthermore, cascaded injection of semiconductor lasers in P1 oscillations
has also been investigated for stabilized signal generation in the millimeter-wave range [32].

3.2. Delayed Feedback Stabilization

To eliminate the requirement of a high-performance microwave reference signal,
photonic microwave stabilization methods for P1 dynamics using a delayed feedback loop
were proposed [33–36]. Figure 6a is a schematic diagram of the optical feedback stabilization
approach. In this scheme, a portion of the output optical signal from the optical circulator,
which carries a microwave modulation with a frequency of f o is fed back to inject the SL
and locks the P1 oscillation. An optical tunable delay-line (OTDL) and a variable optical
attenuator (VOA2) are inserted in the feedback loop to optimize the feedback delay and
feedback strength. In other words, the optical injection is responsible for the generation of
the modulated optical signal through the P1 oscillation dynamics, and the optical feedback
loop provides the delayed replica of the optical signal to injection-lock itself to stabilize
the P1 oscillation. In [33], Zhuang et al. demonstrated the generation of 45.424 GHz signal
with a linewidth less than 50 kHz using the optical feedback stabilization of P1 oscillation
dynamics. However, it is difficult to further reduce the obtained linewidth of generated
microwave signal, which is influenced by the optical interference between the original
injection signal and the delayed feedback signal. In [34], Simpson et al. reported that using
a polarization-rotated feedback loop can reduce the impact of the optical interference noise,
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and the linewidth of the P1 oscillation signal was narrowed to ~3 kHz. The main drawback
of this method is that the polarization of the feedback signal should be carefully aligned.
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Compared with the optical feedback stabilization scheme, the optoelectronic feedback
stabilization scheme is more favorable to overcome the influence of optical interference,
as shown in Figure 6b. Instead of using an MFS in Figure 5a, the delayed replica of
the generated microwave signal by P1 oscillation is employed to modulate the SL and
stabilize the P1 oscillation after passing through a proper delay and power adjustment.
The principle of this method can also be understood to be that the P1 oscillation signal is
spectrally filtered by the high-Q external feedback cavity. The linewidth was reduced to
the range of 10–160 kHz for the P1 frequency in the range 10–23 GHz with stabilization
through a 10 m optoelectronic feedback cavity [35]. Afterwards, Suelzer et al. demonstrated
that a linewidth below 3 Hz and an SSB phase noise below −95 dBc/Hz at 10 kHz were
achieved with dual-loop optoelectronic feedback of 10 km and 10.1 km, respectively [36].
The aim of adopting a dual-loop structure in the delayed feedback stabilization approach is
to suppress the undesired side modes based on the Vernier effect [37].

For the schemes in Figure 6b, the fiber and other devices in the feedback cavity are
sensitive to environmental perturbations. Therefore, the frequency accuracy and stability
of the generated microwave signal are limited. In addition, the phase noise performance at
low offset frequencies deteriorates. In [38], Zhou et al. proposed combining the advantages
of subharmonic microwave modulation and dual-loop optoelectronic feedback to stabilize
the P1 oscillation signal of OISLs, as shown in Figure 7. Therefore, both the performance
of the spectral purity and frequency stability were significantly improved. As shown in
Figure 8a,b, a 17.45 GHz signal was generated with a side-mode suppression ratio of
70.08 dB and an SSB phase noise of −87.13 (−113.39) dBc/Hz at 1 kHz (10 kHz). Fur-
thermore, the frequency drift over a period of 20 min, which characterizes the long-term
stability, was reduced to less than 1 Hz, as shown in Figure 8c.
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4. Photonic Microwave Applications Based on P1 Dynamics

As mentioned in Section 3, photonic microwave generation using the P1 oscillation
of an OISL has some unique advantages. In recent years, various potential applications
of P1 dynamics-based microwave signal generators in the field of microwave photonics
have been reported. On the one hand, diverse signal generation has been implemented
based on P1 dynamics, including the following: linear frequency-modulated (LFM) mi-
crowave waveforms, microwave frequency combs (MFCs), and chaotic signals. In addition,
microwave frequency conversion, optical DSB-to-SSB conversion, photonic microwave
carrier recovery and other photonics microwave signal processing schemes have also been
presented.

4.1. Diverse Signal Generation

A linear frequency-modulated (LFM) microwave waveform with a large time-bandwidth
product (TBWP) is one of the most widely used transmitting waveforms in modern radar
systems to simultaneously achieve a large detection range and a high ranging resolution.
Numerous photonic approaches have been proposed to generate LFM waveforms, includ-
ing the space-to-time mapping method [39,40], spectral shaping and frequency-to-time
mapping method [41], external phase modulation method [42,43], and self-heterodyne
method [44]. LFM waveform generation can also be realized based on the P1 oscillation
of an OISL [45]. Compared with these photonic schemes using a spatial light modulator,
fabricated fiber Bragg grating (FBG), femtosecond pulsed laser, high-speed modulator, high-
speed electrical arbitrary waveform generator (AWG) or specially designed wavelength
sweeping laser, the P1 oscillation-based approach only needs a commercial semiconductor
laser and a low-speed intensity modulator. In addition, it has the advantages of a large
TBWP and high tunability. As shown in Figure 9, an “injection strength controller”, which
consists of an intensity modulator (IM) and an electrical control signal S(t), is inserted into
the optical injection system to dynamically control the optical injection ξi and the resultant
P1 frequency f o. Through setting S(t) to have a near-sawtooth profile, the optical injection
strength and the resultant output microwave frequency increase linearly, namely, an LFM
waveform is obtained. In addition, the main operating parameters of the generated LFM
signal are tunable by adjusting the injection parameters and/or the control signal, including
the center frequency, bandwidth, and temporal period.

Figure 10 gives an example of the generated LFM waveform. Figure 10a is a 1 MHz
control signal, and its profile is designed to compensate for the nonlinearity of the am-
plitude transfer function of the system [45,46]. As seen from Figure 10b,c, an LFM signal
centered at 16 GHz with a bandwidth of 12 GHz and a temporal period of 1 µs was
generated, leading to a large TBWP of 1.2 × 104. In addition to the LFM signal, the P1 oscil-
lation state of an optically injected semiconductor laser has been applied to the generation
of other radar waveforms, such as microwave frequency-hopping sequences, nonlinear
frequency-modulated (NLFM) waveforms, and dual-chirp LFM waveforms [47–49]. Similar
to Section 3.2, the spectral purity and stability of the generated LFM signals based on the
P1 oscillation of an OISL can be improved using delayed feedback stabilization approaches,
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including optoelectronic feedback stabilization [50,51] and optical feedback stabilization
approaches [52]. Recently, another generation approach based on P1 laser dynamics of
an OISL has been demonstrated for LFM signal generation [53]. The optical modulation
sideband injection-locking structure in Figure 5b is adopted, and the MFS is replaced by an
AWG to vary the modulation frequency. Through the phase locking established between
the modulated optical injection and the P1 oscillation signal, LFM signals with high stability
and purity are achieved.
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Microwave frequency comb (MFC) signals, which consist of a series of uniformly
spaced frequency components with a coherent and stable phase relationship, are highly
attractive for various applications, including radar detection, radio-over-fiber systems,
and metrology. A typical photonics-based MFC generation approach is heterodyning an
optical frequency comb (OFC) from an MLL. However, the comb spacing of the generated
MFC signals has poor tunability due to the limited pulse repetition rate of the MLL [54].
Alternatively, photonic MFC generation can be realized by P1 oscillation of an OISL. In [55],
Fan et al. reported that the generation of broadband MFC signals can be realized based on
the same setup in Figure 5a. First, the OISL was driven into the P1 state with a fundamental
frequency of f o = 26.44 GHz. Then, by adopting a 1/8 subharmonic modulation with a
proper modulation power, an MFC with a bandwidth of 59.4 GHz within a 10 dB flatness
was experimentally obtained, and the comb spacing was equal to f L = 3.3 GHz. Dense
MFC signals, which have a small comb spacing, can also be produced based on the P1
oscillation of an OISL. In [56], Zhang et al. utilized an OISL with dual-loop optoelectronic
feedback for generating high-performance dense MFC signals. A sinusoidal voltage signal
is used to modulate the P1 oscillation of the OISL for the initial MFC generation, and then
two optoelectronic feedback loops are introduced to enhance the performance of the MFC:
a short-delay feedback loop is first applied to improve comb contrast based on Fourier
domain mode locking (FDML), and a long-delay feedback loop is added to reduce the comb
linewidth based on the self-injection-locking technique. As shown in Figure 11, a K-band
MFC (18–26 GHz) with a line spacing of 8.45 MHz was obtained, where a comb linewidth
of approximately 500 Hz and a comb contrast over 45 dB were simultaneously achieved.
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The P1 oscillation of an OISL can also be applied for the generation of broadband
chaotic signals. Through destabilization of P1 nonlinear dynamics in a semiconductor
laser subject to intensity-modulated optical injection, Tseng et al. experimentally generated
chaotic microwaves with a bandwidth of approximately 33 GHz, which is much wider
than that generated by the chaotic oscillation state of an OISL [57]. A numerical study
has also been conducted to systematically investigate this approach in wider regions of
injection and modulation parameters [58]. The results proved that intensity-modulated
optical injection is able to obtain chaotic signals in wider parameter regions in contrast with
the case of optical injection alone. Recently, broadband chaos generation with record-high
entropy has been demonstrated using the same approach, which can be used as a 2-bit
physical random number generator at a rate of 160 Gbits/s [59].

4.2. Photonic Microwave Signal Processing

P1 nonlinear dynamics can also find applications in photonic microwave signal
processing. Microwave frequency multipliers facilitate frequency multiplication from
a low-frequency input signal (f IN) to a high-frequency output signal (f OUT), described
as f OUT = N f IN (N is an integer larger than one). In fact, the photonic microwave stabi-
lization scheme for P1 dynamics using microwave modulation in Figure 5 can function
as a microwave frequency multiplier, which also satisfies the aforementioned frequency
relationship [28,29,60]. Since an OISL operating at the P1 state is by itself a photonic mi-
crowave oscillator with a broad tuning range, it can be used as the local oscillator (LO)
signal in a microwave photonic frequency mixer. Both microwave frequency up-conversion
and down-conversion have been realized based on the P1 dynamics of an OISL [61,62].
Furthermore, taking advantage of subharmonic modulation stabilization of P1 dynamics,
Zhou et al. demonstrated a photonic microwave harmonic down-converter based on an
OISL, which can essentially lower the demand for the LO frequency in the frequency mixer,
as shown in Figure 12a [63]. In the experiment, the 4th, 6th, 9th, and 12th harmonic down-
conversions were demonstrated, and an RF signal with a frequency as high as 39 GHz was
down-converted to frequency-tunable intermediate frequency (IF) signals within 2 GHz.
Figure 12b,c display the optical spectrum before photodetection and the electrical spectrum
of the 1.4-GHz IF signal for the 4th harmonic down-conversion. Previously, major photonic
microwave harmonic down-conversion methods have been reported based on OFCs or
MLLs [64,65]. The main drawbacks lie in the limited tunability and complex structures,
i.e., consisting of multiple electro-optic modulators or semiconductor optical amplifiers.
As a comparison, the proposed photonic MHDC features a wide frequency range, flexible
harmonic factors, a low LO-frequency, and a simple structure.
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As mentioned in Section 2, the optical spectrum of an OISL operating at P1 dynamics
consists of highly intensity-asymmetric sidebands separated from the regeneration of the
injection by the P1 oscillation frequency f o. The high asymmetry in the optical power of
the oscillation sidebands is due to the redshifting effect. Based on these unique character-
istics, P1 dynamics have been studied for applications of optical DSB modulation to SSB
modulation conversion, and photonic microwave carrier recovery [66,67]. In [66], Hung
et al. experimentally demonstrated optical DSB-to-SSB conversion by taking advantage of
oscillation sideband asymmetry. An optical DSB signal with modulation frequency up to
40 GHz was successfully converted to an optical SSB signal with an intensity difference of
over 20 dB. An all-optical microwave carrier recovery scheme based on P1 nonlinear dy-
namics of an OISL for coherent detection in an orthogonal frequency division multiplexing
radio-over-fiber (OFDM-RoF) link was demonstrated [67]. Through the injection locking
established between the OFDM-RoF signal and the P1 dynamics, the recovered microwave
carrier inherently possesses the same frequency and preserved phase quality as those of the
original microwave carrier. A bit-error ratio (BER) as low as 1.9 × 10−9 was experimentally
achieved using the proposed scheme for coherent detection of a 32-GHz OFDM-RoF signal
with 4 Gb/s 16-quadrature amplitude modulation (QAM) [67].

5. Discussion and Conclusions

In conclusion, we reviewed recent advances in P1 dynamics-based tunable microwave
signal generation techniques. Two typical approaches to stabilize the P1 oscillation and thus
improve the spectral purity and stability of the generated microwave signal are introduced,
i.e., microwave modulation stabilization, and delayed feedback stabilization. Applications
of P1 dynamics of an OISL in diverse signal generation and photonic microwave signal
processing, were also described, including the following: LFM waveform generation, MFC
generation, chaotic signal generation, microwave frequency conversion, optical DSB-to-SSB
conversion, and photonic microwave carrier recovery. It should be noted that other po-
tential applications of the P1 dynamics-based microwave signal generator have also been
reported, such as triangular waveform generation [68], optical pulse generation [69], pho-
tonic microwave signal amplification [70], photonic microwave time delay [71], microwave
frequency measurement [72], and lidar and radar systems [73,74], which are not discussed
in this paper.

Currently, photonic microwave generation and applications based on P1 dynamics
are mainly realized using commercial semiconductor lasers, e.g., distributed feedback
(DFB) lasers and vertical-cavity surface-emitting lasers (VCSELs). In the future, more
research should be devoted to controlling the P1 dynamics of new lasers for photonic
microwave generation and applications, which may have a simpler structure and higher
performance [75–77]. One possible laser is spin-polarized VCSEL (spin-VCSEL), which can
be utilized for broad tunable photonic microwave generation, and no additional master
laser is needed [77]. In addition, taking advantage of integrated microwave photonic
technologies [78], an on-chip optical injection system is possible, which is expected to
achieve better performance for practical applications.
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