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Fast radio bursts (FRBs) are bright, millisecond-duration radio transients originat-

ing from extragalactic distances1. Their origin is unknown. Some FRB sources emit

repeat bursts, ruling out cataclysmic origins for those events2–4. Despite searches

for periodicity in repeat burst arrival times on time scales from milliseconds to

many days2, 5–7, these bursts have hitherto been observed to appear sporadically,

and though clustered8, without a regular pattern. Here we report the detection of a

16.35± 0.15 day periodicity (or possibly a higher-frequency alias of that periodicity)

from a repeating FRB 180916.J0158+65 detected by the Canadian Hydrogen Inten-

sity Mapping Experiment Fast Radio Burst Project (CHIME/FRB) 4, 9. In 38bursts

recorded from September 16th, 2018 through February 4th, 2020, we find that all

bursts arrive in a 5-day phase window, and 50% of the bursts arrive in a 0.6-day

phase window. Our results suggest a mechanism for periodic modulation either of

the burst emission itself, or through external amplification or absorption, and dis-

favour models invoking purely sporadic processes.

Last year the CHIME/FRB collaboration reported the discovery of eight new repeat-

ing FRB sources4, including FRB 180916.J0158+65, which was recently localized to a

star-forming region in a nearby massive spiral galaxy at redshift 0.0337±0.000210. From

September 2018 to February 2020, CHIME/FRB has detected a total of 38bursts from

FRB 180916.J0158+65. It is the most active source in the published CHIME/FRB sam-

ple. The barycentric arrival times for the 38bursts (including those have been published

before) from FRB 180916.J0158+65, corrected for delays from pulse dispersion, are listed

in Extended Data Table 1.

To search for periodicity, the burst arrival times (spanning a 500-day time range) were

folded with different periods from 1.5 to 100 days (see Methods), with a Pearson’s χ2 test

applied to resulting profiles created with different numbers of phase bins11. A reduced

χ2 ≫ 1 with respect to a uniform distribution indicates a periodicity unlikely to arise by

chance. Furthermore, to account for the possible non-Poissonian statistics of the bursts8,

we have applied the search with different weighting schemes that consider clustered bursts

of different time range to be correlated events (see Methods).

Searches with different weightings return periodograms of similar shape and have the

same primary peak with significance varying between 4.5 − 10σ. As an example, the

reduced χ2 versus period with 5 phase bins, using a weighting that counts only active
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days instead of individual events, is shown in Figure 1a. A distinct peak is detected at

16.35±0.15 days, with a probability of chance occurrence ∼ 10−7 (equivalent to 5σ), ac-

counting for the number of independent periods searched. The other χ2 peaks correspond

to harmonics and subharmonics of the period, with the one at 32.7 days being the next

most prominent. As a check, the same procedure was run on two types of control samples:

(1) a mock data set, consisting of burst arrival times randomly sampled according to the

daily exposure of FRB 180916.J0158+65 with the full width at half maximum (FWHM)

of the telescopes synthesized beams at 600 MHz (Figure 1b) and (2) randomly selected

pulses from Galactic radio pulsars of similar declination detected by CHIME/FRB (Fig-

ure 1c) which have the same limited daily exposure and long-term sensitivity changes as

the data for FRB 180916.J0158+65. The 16.35-day periodicity is absent in the control

samples, and with 106 sets of control samples of each type, no other periods have reached

the level of significance of the 16.35-day period for FRB 180916.J0158+65 by chance

coincidence.

Alternative search methods, such as folding the events and evaluating the resulting

profiles with multinomial distribution, using the H-test12, and discrete Fourier transform

searches with incoherent harmonic summing13, also return the 16.35-day period, with

nominal significances between 4 and 13σ under various assumptions (see Methods). Fig-

ure 2 shows the arrival times of the bursts from FRB 180916.J0158+65 from August

28th, 2018 to February 4th, 2020, together with the daily exposure to the source and in-

strument sensitivity. The instrument was operating for the majority of this time interval

with nominal sensitivity; however, the bursts are detected only in a narrow interval at

the reported periodicity. Note that the short regular daily exposure of CHIME leads to

a degeneracy between specific periods of the order of hours to a day and the 16.35-day

period (see Methods). Nevertheless, the statistical significance of an astrophysical peri-

odicity remains unaffected. A modest amount of data with bursts detected outside the

CHIME observing windows can determine the true period. We conclude that this is the

first detected periodicity of any kind in an FRB source.

In addition to the CHIME/FRB detections, FRB 180916.J0158+65 was detected by

the European Very-long-baseline-interferometry Network (EVN) during 3.5 hours of ex-

posure on June 19th, 2019 at a central frequency of 1.7 GHz10. The EVN arrival times

appear at the leading edge of the active phase determined from analysis of CHIME/FRB

timing data at lower frequencies of 400−800 MHz (Figures 2 and 3). On the other hand,

during a predicted epoch of peak activity (October 29th, 2019 and October 30th, 2019),

we observed towards the direction of FRB 180916.J0158+65 for 17.6 h using the 100-m

Effelsberg telescope at 1.4 GHz (see Methods). In the search, we did not detect any bursts

above a fluence limit of 0.17 Jy ms (for bursts with widths of 1 ms and a detection thresh-

old of S/N= 7σ). These observations were contemporaneous with two CHIME/FRB de-

tected bursts from FRB 180916.J0158+65. Future multi-frequency radio observations of

FRB 180916.J0158+65 will aid in understanding the relationship between burst activity

and emission frequency.

We estimate the detection rate of the CHIME/FRB system to be 0.9+0.5
−0.4 bursts per
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hour above a fluence threshold of 5.2 Jy ms for a ±2.7-day interval around each epoch of

activity. Additionally, we estimate the detection rate for three sub-intervals in the active

phase. We find the rate in a ±0.9-day sub-interval centred at the epoch of peak activity

to be inconsistent with that estimated for the sub-interval most separated from the epoch

of peak activity, suggesting that burst activity is not constant within the active phase (see

Methods). The 95% confidence upper limit on the detection rate during inactive phases

with non-zero exposure is 0.07 bursts per hour above a fluence threshold of 5.1 Jy ms.

Figure 3 shows the burst fluence and DM as a function of phase. The phase is com-

puted by folding burst arrival times at a period of 16.35 days with MJD 58369.18 refer-

enced as phase 0. In this definition, phase 0.5 corresponds to the mean of the folded arrival

times. There is no apparent trend of burst fluence in the 400–800 MHz band with phase.

The best-fit DMs of four CHIME/FRB bursts with high time-resolution data (marked red),

as well as the DM of the brightest burst detected by the EVN10, which is accurately deter-

mined due to the bursts narrowness, are consistent with each other, constraining changes

in DM to be < 0.1 pc cm−3. These bursts are detected over a time span of ∼ 176 days,

which strongly constrains any potential DM variation within this time period. The DMs

of the other bursts, although possibly subject to important biases (see Methods), disfavour

DM changes greater than 2 pc cm−3 over the full 400-day span of the events. In summary,

there is no obvious phase- or time-related change in DM in the current data.

Bursts from FRB 180916.J0158+65 and other repeating FRB sources display complex

morphological features14: they tend to exhibit 100–200 MHz bandwidth at different cen-

tral frequencies, with temporal widths of a few ms to tens of ms. Some exhibit downward-

drifting sub-bursts at a few to tens of MHz ms−1 in the CHIME band4, up to almost a GHz

ms−1 at 6.5 GHz in the case of FRB 12110214, 15. We observe no trend in burst temporal

width or bandwidth for FRB 180916.J0158+65 burst detections by CHIME/FRB thus far,

neither as a function of time nor phase. Moreover, drifting sub-bursts appear to occur

at all phases. In fact, when dedispersed to the average best-fit DM from high-resolution

baseband data (as in Extended Data Figure 1) nearly all bursts seem to exhibit downward-

drifting sub-bursts.

The discovery of a periodicity in a repeating FRB source is an important clue to the

nature of this object. Models in which the emission is purely sporadic (e.g. giant pulses

as seen from the Crab pulsar16, or from an isolated young magnetar17–19 – but see be-

low), are excluded for this source. One possible explanation for periodicity is orbital

motion, perhaps with the emitter being a neutron star (NS), which could be a radio pulsar

or magnetar. NSs are commonly found in binary systems with either stellar/substellar

or compact companions. Massive O/B companions to NSs have been observed, gener-

ally in eccentric orbits of many days to months 20. The narrow duty cycle for bursting

in the FRB 180916.J0158+65 system, assuming a 16.35-day period, could be related

to eccentricity. The periodicity could reflect phase-related emission (e.g. through an

interaction with companion’s wind21, 22/asteroid belt23). The periodicity could also re-

flect a reduction in effective radio opacity at apastron, where the radio bursts do not pass

through the companion wind/disk20, 21. Bursts could also be lensed by companion wind
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clumps or disk material near periastron24, but if so, the preference for downward-drifting

frequency structure is puzzling (see Fig. 1). With a companion casting material in the

orbit, phase-dependent DM or RM variations could eventually be observed, especially

with wideband/lower-frequency observations. Periodic variation could also arise from

classical binary precession, seen in some stellar/NS binaries25. In Galactic binaries com-

posed of a massive star and pulsar, bright X-ray and γ-ray emission can be observed26;

if detected in this system, such emission would be a strong diagnostic (but the 149-Mpc

distance10 here will make a detection challenging). A compact object companion to the

emitter is also possible. Given the source’s location10 in the outskirts of a massive spiral

galaxy, a supermassive black hole companion seems unlikely, however an intermediate-

or stellar-mass black hole companion is possible and could result in periodically observed

bursts if there is relativistic orbital precession.

Isolated compact object scenarios may present challenges. One popular model to ex-

plain repeating FRBs invokes a magnetar central engine 17–19. A periodicity could arise

from the rotation of such a star. However, known Galactic magnetars27 have rotation

periods <12 s. One young 6.67-hr X-ray pulsar has been argued to be a magnetar28,

with torque from a disk of material having spun it down. However, simulations of such

“fall-back disks” 29 suggest it is difficult to produce periodicities of several hours (the

time scale of possible aliased period), let alone several weeks. A handful of known ra-

dio pulsars show intermittent, quasi-periodic emission intervals having periods of several

days, and which are known to be magnetospheric in origin30 (though otherwise poorly

understood). However, those sources’ radio luminosities are at least nine orders of mag-

nitude lower than in this, and all other, FRB sources. Long-term precession in an isolated

spinning pulsar could modulate the visibility of bright bursts produced through an exotic

mechanism. However, long-lived precession in isolated neutron stars was thought impos-

sible because of rapid damping due to superfluid vortex line pinning in the stellar interior
31. More recent work 32, 33 incorporates modifications to the superfluid properties and may

allow for precession. If the source were precessing, the bursts would likely be emerging

from a fixed region on the star, likely a magnetic pole, and the ∼0.2 burst active phase

would suggest either a small viewing angle or a large polar region, possibilities that may

be distinguishable using observations of the variation of the position angle of linearly

polarized emission.

Observations with exposure functions different from that of CHIME are encouraged

to test for an aliased periodicity. Future observations, both intensity and polarimetric, and

at all wavebands, could distinguish among models and are strongly encouraged, as are

searches for periodicities in other repeaters, to see if the phenomenon is generic.
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Figure 1: Periodograms of FRB 180916.J0158+65 and control samples. a: the reduced

χ2 with respect to a uniform distribution of burst arrival times for different folding periods

for FRB 180916.J0158+65 detected by CHIME/FRB. Only bursts separated by a sidereal

day are considered independent in this approach. Details of the calculation of χ2 and other

approaches are presented in Methods. b: the periodogram of mock burst arrival times

randomly sampled according to the daily exposure to FRB 180916.J0158+65 within the

FWHM of the telescopes synthesized beams at 600 MHz. c: the periodogram of randomly

selected pulses of Galactic radio pulsar B2319+60 detected by the same instrument and

software. The arrows indicate the first 5 subharmonics of the 16.35-day periodicity, while

the vertical lines mark the harmonics of 1/2 period.
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Figure 2: Timeline of CHIME/FRB’s daily exposure to FRB 180916.J0158+65. a:

The exposure to the source within the FWHM of the synthesized beams at 600 MHz is

shown in black. Downward triangle markers indicate arrival times for detections with

CHIME/FRB or EVN with the number of detections in each active phase indicated above

these markers while the upward triangle marker indicates the epoch of non-detection of

the source by the Effelsberg telescope. The grey shaded regions show a ±2.7-day in-

terval around estimated epochs of source activity. We truncate our reported exposure on

September 30th, 2019 due to an upgrade of the software (see Methods). b: The variation

in the daily relative RMS noise at the position of FRB 180916.J0158+65, depicted as

coloured points with 1σ uncertainties, measured using a collection of pulsars detected by

CHIME/FRB. There is clearly substantial exposure and nominal sensitivity to the source

well outside the regions of observed activity.
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Figure 3: Burst properties against phase. FRB 180916.J0158+65 bursts folded at the

16.35-day period with MJD 58369.18 referenced as phase 0. The 1.7 GHz EVN detection

are in green. a: Fluence versus phase. Purple arrows indicate lower bounds derived from

CHIME detections; orange lines are the fluence threshold for 1 ms bursts for the search in

the 1.4 GHz Effelsberg data. Error bars on the CHIME detections represent the average

fluence uncertainty estimated from known point source transits. b: DM versus phase, with

1σ error bars. DMs derived from high-resolution baseband data from CHIME/FRB are in

red. DMs from CHIME/FRB intensity data are in black; these are subject to potential bi-

ases (see Methods). Data points with larger errors are assigned with higher transparency.

c: Number of bursts at each phase. d: Relative exposure time of different phase bins to

FRB 180916.J0158+65 within the FWHM of the CHIME synthesized beams at 600 MHz.
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Methods

Burst characterization: Burst DMs and models of dynamic spectra were determined in

a manner similar to that used for earlier detections of the source 3. In summary, bursts

were dedispersed to a fiducial DM = 349.75 pc cm−3 and their DMs were subsequently

optimized to maximize structure by calculating the phase coherence of emission in all

frequency channels with the DM phase package34(Seymour et al. in prep.) over a range

of trial DMs. The alignment of sub-bursts in burst dynamic spectra was verified by eye

and best-fit values are listed in Extended Data Table 1.

In addition, we fit structure-optimizing DMs using the same method for four FRB

180916.J0158+65 bursts for which complex voltage (baseband) data were saved to disk:

the 181225 and 181226 bursts presented previously4, and the 190604 burst and second

190605 burst presented in this work. The baseband system has a 2.56-µs time resolu-

tion and 0.390625-MHz frequency resolution, but we downsampled the data in time to

40.96, 40.96, 20.48 and 81.92 µs, for the four bursts respectively, to optimize S/N and

resolution. We find DMs 348.78±0.02, 348.82±0.02, 348.82±0.05 and 348.86±0.05 pc

cm−3, respectively, best align the sub-structures in the four bursts. We note that DMs

measured from CHIME/FRB intensity data, which have 0.98304-ms time resolution, are

biased high if a burst is comprised of unresolved downward-drifting sub-bursts that only

become obvious at higher time resolution. As the DMs fitted at high time resolution are

all consistent with one average DM = 348.82 pc cm−3, which is also consistent with the

DM of the brightest burst detected by the EVN10, we use that value to dedisperse intensity

data for visualization of the millisecond-resolution data.

Dynamic spectra for the four bursts for which the baseband data (at a time resolution

of few tens of µs) were analyzed are shown in Extended Data Figure 4 and dynamic spec-

tra of the intensity data (at ∼millisecond time resolution) for the 27 new bursts presented

in this work are shown in Extended Data Figure 1.

Single- or multi-component models of dynamic spectra were fit to millisecond-resolution

total-intensity data acquired for each burst using a least-squares algorithm3, 4, 15, 35. We ap-

plied two-dimensional models of spectra that consisted of Gaussian temporal shapes and

either Gaussian or weighted power-law spectral energy distributions. Due to the complex,

varying structure of bursts from this source, we report best-fit parameters using models

that do not explicitly fit for one-sided scattering tails, and thus yield estimates of “ob-

served” widths. Best-fit observed widths and burst arrival times, referenced to the Solar

System Barycentre and infinite frequency using per-burst DMs and the EVN position10

for this source are presented in Extended Data Table 1.

Three CHIME/FRB events from FRB 180916.J0158+65 (on MJDs 58410, 58720 and

58836) consist of two sub-bursts that occur widely separated in time, with no emission

observed between them. In such cases it is unclear whether these pairs of bursts belong to

the same envelope emitted by the source, or if they instead represent distinct moments of

source activity. Given this ambiguity, we here consider them to be separate bursts. One

of the events is reported before4. Therefore, while we report on 10 events registered by
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the CHIME/FRB instrument previously4, we here consider the event on MJD 58410 to be

two bursts, and therefore report values for 11 bursts in Extended Data Table 1.

The burst flux calibration method is nearly identical to that previously presented4,

with one crucial difference. Previously we assumed that each burst was detected along

the meridian of the primary beam, at the peak sensitivity of its declination arc. Under

this assumption, we calibrated using meridian transit observations of bright sources near

the declination of each burst to obtain lower-bound fluences and fluxes. For the current

analysis, we instead leverage the precise localization10 of FRB 180916.J0158.6 combined

with our beam model to scale the fluences and fluxes and obtain more accurate values.

From the beam model, we determine a per-frequency scaling between the location of the

calibrator at the time of transit and the location of the FRB at the time of burst occurrence.

We apply this scaling to the calibrated dynamic spectrum of each burst before generating

the band-averaged time series from which the fluence and flux are calculated. If there

were multiple sub-bursts in a given burst, then separate fluences and fluxes were obtained

for each component.

We use this method to calculate fluences and peak fluxes for all FRB 180916.J0158.6

bursts detected by CHIME/FRB, including recalculations for the 11 previously published

bursts4. More specifically, for each burst located within the FWHM (at 600 MHz) of

the synthesized beam in which it was detected, we complete the scaling analysis using

the precise position. For all other bursts, we use the method previously presented4 to

obtain lower bounds. For each calculation, we use meridian transit observations of the

supernova remnant SNR G130.7+03.1, which is located within 1◦ in declination from

FRB 180916.J0158.6. Fluences and peak fluxes for all bursts are listed in Extended Data

Table 1. For bursts within the beam FWHM, fluences calculated using the precise position

are on average ∼40% larger than the corresponding lower bounds calculated assuming

detection along the meridian.

Including both newly and previously detected bursts, but omitting those for which

only lower bounds could be calculated, we obtain a population of fluences for 25 FRB

180916.J0158.6 bursts, or a total of 33 sub-bursts. The cumulative distribution function

of the 33 sub-burst fluences (N(> F ) ∝ F α+1 where N is the number of bursts detected

above a fluence of F ) is shown in Extended Data Figure 5. We determine the power-

law index, α, of the differential distribution (dN/dF ∝ F α) using maximum-likelihood

estimation methods36, 37. The turnover in the distribution at lower fluences could be due to

our telescope sensitivity limit or the intrinsic burst distribution. To remain agnostic about

the cause of the turnover, we pick a fluence threshold that minimizes the Kolmogorov-

Smirnov distance between an estimated power law and the underlying distribution. The

resulting 5.3 Jy ms threshold is shown in Extended Data Figure 5 as a black dashed

vertical line, while our 5.2 Jy ms active period 90% confidence completeness threshold

is shown as a blue dash-dotted line. Excluding bursts below the Kolmogorov-Smirnov

threshold, we complete a Monte Carlo simulation which resamples the fluences according

to their uncertainties to obtain a distribution of estimated power law indices determined

using a maximum-likelihood estimator at each resampling. The mean of the resulting
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distribution is α = −2.3 ± 0.3 ± 0.1, where the first error is the statistical uncertainty

from the maximum-likelihood estimator and the second error is the standard deviation of

the index distribution.

This value is consistent with previous results7, which found that the cumulative dis-

tribution of energies from FRB 121102 bursts detected at 1.4 GHz using Arecibo fol-

lowed a power law with γ = −1.8 ± 0.3 (equivalent to a differential distribution index

of α = γ − 1 = −2.8). Both of these values are steeper than the α ∼ −1.7 determined

using separate samples of FRB 121102 bursts detected by the Karl G. Jansky Very Large

Array at 3 GHz, the Green Bank Telescope at 2 GHz, and the 305-m William E. Gordon

Telescope at the Arecibo Observatory at 1.4 GHz38.

Although the comparison of these values is potentially interesting, we reiterate that

all are almost certainly contaminated by instrumental biases and likely do not faithfully

reflect the underlying source distributions. More robust conclusions about the intrinsic

source luminosity function must wait until our CHIME/FRB detection biases are properly

evaluated.

Statistical significance of the period To search for the period, we fold the burst arrival

times with different periods, and group the folded bursts into n phase bins 11. The folding

and grouping of the arrival times make the search relatively insensitive to randomly oc-

curring gaps in the data as long as the exposure is reasonably uniform across phase bins.

We then perform the classic Pearson χ2 test for deviation from uniformity:

χ2 =
n∑

i=1

(Ni − Ei)
2

Ei

, (1)

where n is the total number of phase bins, Ni is the observed number of bursts in bin i,
Ei = pTi is the expected number of bursts from a uniform distribution, Ti the exposure

time for bin i, and p =
∑

Ni/
∑

Ti the average burst rate per unit exposure time. In the

case of uniformity, the calculated χ2 statistic for different folding periods should follow a

chi-squared distribution with n− 1 degrees of freedom (DOF) in the limit as N → ∞. A

reduced χ2 ≫ 1 indicates a periodicity unlikely to arise by chance. In the study of FRBs,

due to the limited sample size, the large N limit may not hold. Then the likelihood of a

set of phase bin counts Ni will follow the discrete multinomial distribution.

P ({Ni}) =
N !∏n

i=1 Ni!

n∏

i=1

pi (2)

where N =
∑

Ni is the total number of bursts; pi = Ei/N is the expected chance to fall

into phase bin i; and n is again the total number of phase bins. The chance of coincidence

with a set of phase bin counts Ni observed corresponds to the sum of the likelihood of all

possible permutation Nk that has the same or less likelihood as P ({Ni}). We verify the

significance of any detected periodicity with the chance of coincidence from multinomial

distribution.
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We searched for periods from Pmin = 1.5 days to Pmax = 100 days in steps of 0.1/T in

frequency (i.e. inverse of the period) space, where T = 506 days is the longest separation

between burst arrival times. We currently only search for periods of days, as opposed to

smaller time scales, to avoid the complexity introduced by the cadence of the source tran-

siting CHIME at a sidereal day and CHIME’s beam response during the daily exposure.

Moreover, the number of independent periods that need to be searched is proportional

to 1/P , so the “look elsewhere” effect would be orders of magnitude larger for searches

with short periodicity, leading to periodicities arising by chance. Pmin is chosen to be

sufficiently larger than a sidereal day such that the modulation of the Fourier spectrum

from the sidereal day fades away. Pmax is chosen so that the extent of the observation

time consists of enough cycles. We limit our search to a period of Pmax = 100 days, to

ensure at least 5 cycles during the time extent. This is because “phantom periodicity”

could arise in non-Poisson stochastic process, but typically only for fewer than 3 cycles39.

There is a strong instrumental periodicity at a sidereal day due the cadence of the source

transiting CHIME, so we avoid searching periods close to the first five subharmonics of

a sidereal day PN
sid = N Psid, with Psid = 0.99727 day and N is an integer. Given the

longest separation between burst arrival times T , periods with |1/P − 1/PN
sid| < 0.2/T

are ignored in the search for N between 1 and 5.

After calculating the χ2 against folding period, we noticed a distinct peak at P =
16.35 ± 0.15 days, and the peak persists with the search using the number of phase bins

of 4, 8 and 16. We estimate the significance with 5 phase bins, so that the bin size

corresponds to the FWHM of the profile folded at 16.35 day. The reduced χ2 = 31.7
with 5 phase bins (4 DOFs). This corresponds to a probability of chance coincidence of

∼ 10−23 (equivalent to 10σ) after taking into consideration the number of independent

trials searched Nind = (1/Pmin − 1/Pmax)T ∼ 332. The chance of coincidence from the

multinomial distribution is 10−20, 9.2σ, after multiplying the number of independent tri-

als searched. The period uncertainty is conservatively estimated by σP = P Wactive/Tspan,

where P is the period, Wactive is the active days in the period, and Tspan is the longest time

separation between burst arrival times. This corresponds to a change in period that would

allow the folded pulse to drift across the active cycle over the observed time span. The

calculated error also corresponds to the FWHM of the peak in the periodogram. The

period and error are reported at an accuracy of 0.05 day. Within this accuracy, all the

following approaches return consistent results.

The above analysis shows that there is a significant 16.35-day periodicity in the arrival

times of FRB 180916.J0158+65 assuming all the bursts are independent events (Poisson

statistics). However, for the first repeater, FRB 121102, in which no periodicity has yet

been found, the bursts are observed to be clustered8. This triggers the concern that the

arrival times of nearby bursts in FRB 180916.J0158+65 may not be independent. Corre-

lated processes have been shown to contaminate the significance of apparent periodicities

in certain contexts39. To mitigate this effect, we apply the search assuming different cor-

relation lengths. The CHIME daily exposure is only tens of minutes; stochastic processes

with correlation timescale smaller than 10 minutes should not introduce a periodicity at
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tens of days. Also, stochastic processes with correlation timescale longer than 16 days

cannot account for 50% of the bursts appearing in a 0.6-day window. Therefore, two cru-

cial correlation timescales to consider are 0.6 day, the size of the peak active window, and

5 days, the size of the active phase.

First, we assume a correlation timescale of 0.6-day for the detected bursts. Then all

the bursts detected in the tens of minutes exposure of one sidereal day are correlated

events. We assign a total weight of unity to bursts that arrived on the same sidereal day.

After weighting, there are 23 active dates, for the 38 bursts detected by CHIME/FRB. In

this way, we also reduce the influence from inaccurate mapping of beam response within

the exposure of a sidereal day.

After weighting the events, the distinct peak at 16.35 days persists in the χ2 against

folding periods, followed by a peak at its harmonic of ∼ 32.7 days. The reduced χ2 versus

period with 5 phase bins is shown in Figure 1a. The corresponding chances of the highest

peak from chi-square distribution is ∼ 10−11, equivalent to 6.8σ. And the significance

from the multinomial distribution is 6.1 σ. Both approaches have taken into consideration

the number of independent trials searched.

Given that the 16.35-day periodicity is not an integer number of sidereal days, the

influence of the exposure map on the significance is small. To further exclude the possi-

bility of instrumental periodicity, we applied bootstrap tests to the mock burst arrival times

randomly sampled according to the daily exposure to FRB 180916.J0158+65 within the

FWHM of the telescopes synthesized beams at 600 MHz, as well as to a random selec-

tion of single bursts from Galactic radio pulsars at similar declinations and detected by

CHIME/FRB. The mock exposure samples are chosen from the exposure between Au-

gust 28th, 2018 to September 30th, 2019 (∼ 80% of the total time span), since several

upgrades were made to the CHIME/FRB detection pipeline after October 2019 making

characterization of the exposure and sensitivity variation difficult. 26 out of the total 38

bursts (occurring on 17 of 23 active days and during 10 of 14 active cycles) are detected

during this time span and the 16.35-day periodicity is already manifest with this frac-

tion of data. Therefore, if there are instrumental effects leading to the periodicity, we

expect it to appear in this mock samples as well. An example of the reduced χ2 ver-

sus period from two sets of the random samples with the same number of active days as

FRB 180916.J0158+65 is shown in Figure 1b (random sample selected according to the

exposure map) and Figure 1c (random samples from the detection of PSR B2319+60).

With 106 sets of random samples from the exposure map, and 106 sets each from PSR

B2319+60, B0138+59, B2224+65, we have not found any period, unrelated to sidereal

day, as significant as the 16.35-day period for FRB 180916.J0158+65.

In a conservative approach, we assume all the bursts arriving in the active phase of the

same cycle are clustered due to mechanisms irrelevant to the periodicity. We assigning a

total weight of unity for bursts with separation less than 5 days and searching for periods.

The 16.35-day periodicity is still the most prominent peak with a significance of 4.5σ
from chi-square distribution, and 4.2σ from multinomial distribution, after taking into

account of the number of trials searched. (Notice that the multinomial distribution deals
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with discrete events only, so we deal with clustered pulses by repeatedly drawing one

random pulse from each clustered group, and we report the average probability of many

trials.)

For any other correlation timescale assumed, its influence on the significance would

be less strong than this one. Therefore, we conclude that the periodicity is significant even

after taking into account potential clustering.

We also performed the H-test12 summing over N harmonics with N varying from 1

to 10, and Discrete Fourier Transform searches with incoherent harmonic summing 13

on the arrival times of FRB 180916.J0158+65. With all the approaches, with or without

subtracting the exposure map, with different weighting, the ∼ 16.35 ± 0.15 day period

remains prominent, and the significance varies between 5−13 σ. No other statistically

significant periods (other than those harmonically related to this ∼ 16 day-period) appear

in the searched range.

Although the definite value of the significance of the observed periodicity is unde-

termined due to our incomplete knowledge of the underlying burst distribution, the pe-

riodicity is obvious with all the approaches we have tried, and does not exist in any of

the control samples. There is no phase evolution against time noticed. Therefore, we

conclude that the periodicity of FRB 180916.J0158+65 is significant and astrophysical in

origin.

Aliasing due to limited daily exposure The short regular daily exposure of CHIME

could lead to a degeneracy between frequency f0 = (P0)
−1 = (16.35 day)−1 and an alias

fN = N fsid ± f0, where N is an integer, fsid = (0.99727 day)−1 is the frequency of a

sidereal day. An upper limit on N can be estimated using observed duty cycle (D) over

exposure time i.e. the duty cycle of the intrinsic period should be longer than the exposure

time. With the observed 16.35-day period, all bursts arrive in 5-day phase window. With

12 min, i.e. 0.008 sidereal day, daily exposure, the upper limit on N is 5/16.35/0.008 =
37. However, 50% of the CHIME bursts are detected in a 0.6-day phase window, with the

event rate dropping rapidly towards the edges of the active phase. If 0.6 day is the width

of the active phase, the duty cycle is 0.04, and N > 5 would be disfavoured. We slightly

favour N = 0 for several reasons: (i) if there is aliasing, the observed frequency f0 should

be randomly distributed between 0 and 0.5 day−1. However, f0 = (16.35 day)−1 =
0.06 day−1 is on the low side of that range, which seems slightly fine-tuned (chances to

have f0 6 0.06, i.e. p-value is 0.06/0.5 = 0.12); (ii) if we define the duty cycle D to be the

fractional phase that contains half of the events, then N = 0 has the smallest D = 0.036,

followed by N = 1, D = 0.044, with larger D for higher N ; (iii) for most physical

models, we expect the bursts detected in the 1.7 GHz EVN observations to have the same

periodicity, with alignment of epochs of activity. Only period 16.35 day (N = 0), 0.20

day (N = 5) and 0.14 day (N = 7) satisfy the condition. But the duty cycles of the

latter two periods are twice as wide as the 16.35-day period. Despite those arguments

to favour N = 0, or a periodicity of 16.35-day, we cannot unambiguously rule out other

values of N with current data. Nevertheless, a significant astrophysical periodicity must
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exist for aliasing to happen. The exposure of CHIME, as a transit telescope, is fixed by

design, therefore, we cannot rule out aliased periods with CHIME/FRB detections alone.

However, a modest amount of exposure in the same band using other telescopes, with

bursts detected outside the CHIME observing windows may be able to determine the true

period.

Exposure & Fluence Completeness Determination The exposure to the EVN position10

for the source was calculated by adding up the duration of daily transits across the FWHM

region of the synthesized beams of the CHIME/FRB system at 600 MHz. After exclud-

ing transits for which the observations were interrupted by pipeline upgrades and testing,

we estimate the total exposure to be 64 hours in the interval from August 28th, 2018 to

September 30th, 2019. We report exposure up to September 30th 2019 since several up-

grades were made to the CHIME/FRB detection pipeline through October 2019 making

characterization of the exposure and sensitivity variation difficult. The increased exposure

time for several days in February 2019 is due to occurrence of two transits in the same

UTC day caused by the differing lengths of a solar and a sidereal day (see Figure 2).

Since the burst activity is not constant within the active phase (see Figure 3c), we

divide the active phase into three sub-intervals to derive estimates of the exposure and

detection rate. The first of these sub-intervals is a ±0.9-day span (standard deviation in

the phases derived by folding burst arrival times) centred on the epoch of peak activity.

The detection rate estimated for this sub-interval is 1.8+1.3
−0.8 bursts per hour above a fluence

threshold of 5.2 Jy ms, based on 13 of the 38 detections. The second sub-interval is

defined as the duration between 1σ and 2σ (i.e. between 0.9 and 1.8 days) of the epoch of

peak activity with the third sub-interval starting at 2σ and covering the remaining active

phase. The detection rate in the former sub-interval is 0.8+1.0
−0.5 bursts per hour while that in

the latter is 0.1+0.6
−0.1 bursts per hour, with five and one detections in the two sub-intervals,

respectively. The rate in the first sub-interval is inconsistent with that in the third hinting

at a variation of burst rate within the active phase. Poissonian uncertainties associated

with all rate measurements are at the 95% confidence level with the fluence thresholds

being complete to the 90% confidence level.

The variability of the event rate within the active phase can influence the chance of

detection in different cycles. 50% of the bursts are detected in a narrow 0.6 day phase

window. CHIME only has tens of minutes exposure per sidereal day. Therefore, for

40% of the observed cycle, the 0.6-day peak activity window lies outside of the CHIME

exposure window, which reduces the chance of detection. This effect will be better studied

when more bursts are collected and the event rate versus phase can be better modelled.

The CHIME/FRB system was operating nominally for a total of 21 hours in the active

phases defined as a ±2.7-day interval around each epoch of source activity. Nineteen of

the 38 detections occurred during intervals included in this exposure time. A total of 7

hours of the exposure was within a ±0.9-day interval of estimated epochs of peak source

activity, with 13 out of the 38reported bursts detected in this period. The other 25 bursts

were not included in the calculation of the detection rate for various reasons. Six of these
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bursts were emitted outside the fiducial definition of the active phase, 12 of these bursts

were detected after the interval used for the evaluation of the exposure, six were detected

when the source location was not within the FWHM region of the synthesized beams at

600 MHz and one was detected on September 16th, 2018 when system metrics were not

being recorded by the detection pipeline. The other two sub-intervals had an exposure

of seven hours each. The exposure in the inactive phase (outside the ±2.7-day intervals

around the estimated epochs of activity for the source) was a total of 43 hours.

In order to characterize the variation in sensitivity (due to changes in gain calibration,

the detection pipeline and RFI environment) for each day included in the exposure, we use

a method described previously15. We analyze the distribution of S/Ns of pulsars detected

with the CHIME/FRB system within 10◦ of the source declination. In contrast to the

approach used previously 15, we use pulsars which were detected on each sidereal day

for which the telescope was operating with the same gain calibration, instead of within

a UTC day. For each pulsar, the rms noise is measured relative to the median over all

days the pulsar was detected. A weighted average of these measurements for all pulsars

provides an estimate of the overall variation in rms noise on each sidereal day.

Fluence completeness was determined following previously reported methods4, 15. These

methods consider sensitivity variation due to observing epoch, position along transit, and

burst spectral shape. In a Monte Carlo simulation with 106 realizations, fluence detection

thresholds for different scenarios are generated for a given period of exposure. These

simulations produce a set of relative sensitivities, which are tied to a flux scale using

bandpass-calibrated observations. Due to the structured nature of both bandpass and tran-

sit sensitivity, the final distribution of fluence thresholds is non-Gaussian. Therefore, we

take percentiles of the distribution to quote completeness at a given confidence level. We

use the bursts reported in Extended Data Table 1 as reference observations to simulate

fluence thresholds for both the active and inactive periods, finding completeness at the

90% confidence interval of 5.2 Jy ms and 5.1 Jy ms, respectively.

Effelsberg observations and analysis Motivated by the detection of the 16.35-day pe-

riod, we observed FRB 180916.J0158+65 at 1.4 GHz using the 100-m Effelsberg radio

telescope and PSRIX data recorder40 for 17.6 hr during a predicted active period (Octo-

ber 29th 2019 and October 30th 2019). Details of the scan start times and durations are

shown in Extended Data Table 2. We observed with a total bandwidth of 250 MHz, from

1234 MHz to 1484 MHz, divided into 2048 channels. The data were recorded with a time

and frequency resolution of 131.072µs and 0.122 MHz, respectively.

The high-time resolution data were analyzed in the search for millisecond-duration

radio bursts, using tools from the PRESTO suite of pulsar software41. The data were first

searched for radio frequency interference (RFI), and the contaminated frequency chan-

nels and time intervals were masked using the tool rfifind. Dedispersed time series

were generated for the DM range 300–400 pc cm−3 in DM steps of 0.3 pc cm−3 using

the tool prepdata. We searched each dedispersed time series for single pulses using

single pulse search.py. The single pulses identified were filtered for RFI in the
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search for astrophysical bursts, above a 7σ threshold, using an automated classifier42, 43.

Given the frequency resolution of the PSRIX data, the intra-channel smearing is ∼ 0.15 ms

at the DM of FRB 180916.J0158+65. This is comparable to the time resolution of the

data. Our search was sensitive up to burst widths of 39.3 ms. Bursts from FRB 180916.J0158+65

have been observed with components as narrow as ∼ 60µs 10. Therefore, it is possible

that FRB 180916.J0158+65 is producing weak, narrow bursts that we were not sensitive

to in this search.

In this search we did not detect any bursts from FRB 180916.J0158+65 above a 7σ
threshold. By taking typical values of the system temperature and gain for Effelsberg

(Tsys ≈ 20 K, G ≈ 1.54 K Jy−1), estimating a background temperature of 5 K using the

408 MHz all-sky map 44 and extrapolating to 1.4 GHz using a spectral index45 of −2.7,

we use the radiometer equation to derive the fluence limit of our search (following 46).

Assuming a burst width of 1 ms and a minimum signal-to-noise ratio of 7, we were

sensitive to bursts from FRB 180916.J0158+65 above a fluence threshold of 0.17 Jy ms.

Interestingly, during this predicted active epoch of FRB 180916.J0158+65, two bursts,

with a fluence exceeding 2 Jy ms, were detected by CHIME/FRB (Extended Data Ta-

ble 1). The time of arrival of both bursts are within the same Effelsberg scan indicated in

Extended Data Table 2. Given our detection threshold of 0.17 Jy ms, if these bursts were

equally bright at 1.4 GHz, our search was sufficiently sensitive to detect them. The spec-

tra of the two CHIME/FRB bursts peak in the lower half of the 400–800 MHz band. The

detection of bursts with CHIME/FRB and contemporaneous non-detection with Effels-

berg suggests that observed activity from FRB 180916.J0158+65 depends on frequency.

In addition, the previously detected bursts from FRB 180916.J0158+65 with the EVN at

1.7 GHz are found at the leading edge of the activity cycle observed at 400–800 MHz (Fig-

ure 3). Future multi-frequency observations of FRB 180916.J0158+65 during predicted

active periods are crucial in order to quantify this behaviour.
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Extended Data Figure 1: Dynamic spectra of the newly reported bursts (bursts 12-28

in the Extended Data Table 1) Bursts with separations of less than 0.1 s are shown in

joint spectra (bursts 24 and 25). All bursts are dedispersed to 348.82 pc cm3. The se-

quence number of the bursts and arrival date (in MJD) are given in the top left coner. The

arrival phase of the bursts within the 16.35-d cycle is given in the top left corner of each

spectrum. Each plot also gives the 0.98304-ms time-resolution dedispersed intensity data

with the integrated burst profile on top and the on-pulse spectrum on the right. Intensity

values are saturated at the 5th and 95th percentiles. Pulse widthsdefined as the width of

the boxcar with the highest S/N after convolution with the burst profileare given in the

top-right corner. The shaded region in each profile (four times the pulse width) was used

for the extraction of the on-pulse spectrum. The shaded region in the on-pulse spectrum

shows the full width at tenth maximum of a Gaussian fit. In each burst profile, the black

line is the integration over the full width at tenth maximum of the spectrum and the grey

line is the integration over the full bandwidth. For better visualization, we downsampled

the full-resolution data (16,384 channels) to 64 sub-bands, each with a bandwidth of 6.25

MHz. Horizontal white bands represent missing or masked data. There are underlying

missing or masked channels at full resolution, resulting in an average effective bandwidth

of 224 MHz.

20



Extended Data Figure 2: Dynamic spectra of the newly reported bursts (bursts 29-38

in the Extended Data Table 1). As in Extended Data Fig. 1. Bursts 31 and 32 are shown

in joint spectra.
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Extended Data Figure 3: Dynamic spectra of bursts with available baseband data.

The 181225 (a), 181226 (b), 190604 (c) and 190605 (d) bursts, dedispersed to the per-

burst optimal DMs that are listed in the top right corner of each panel. The sampling

time after downsampling is listed in the top left corner of each panel. Intensity values are

saturated at the 1st and 99th percentiles. 64 frequency subbands with a 6.25 MHz subband

bandwidth are shown for all bursts. Horizontal white bands represent missing or masked

data.
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Extended Data Figure 4: Dynamic spectra of bursts with available baseband data.

Burst 9 (a), 10 (b), 18 (c) and 20 (d), dedispersed to the per-burst optimal DMs that are

listed in the top right corner of each panel. The sampling time after downsampling is

listed in the top left corner of each panel. Intensity values are saturated at the 1st and 99th

percentiles. 64 frequency subbands with a 6.25 MHz subband bandwidth are shown for

all bursts. Horizontal white bands represent missing or masked data.
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Extended Data Figure 5: Cumulative distribution of burst fluences. The distribution

is composed of both new bursts and those previously detected4. Excluding bursts de-

tected beyond the 600 MHz FWHM of any CHIME/FRB synthesized beam, this includes

25 bursts split into sub-bursts, yielding 33 fluence measurements. The black solid line

represents the maximum-likelihood estimated power law with differential distribution in-

dex α = −2.3 ± 0.3 ± 0.1, where the first error is the statistical uncertainty from the

maximum-likelihood estimator and the second error is the standard deviation of the dis-

tribution of power-law indices obtained from a Monte Carlo simulation that resamples

the fluences according to their uncertainties. The black dashed vertical line denotes the

5.3 Jy ms threshold determined by minimizing the Kolmogorov-Smirnov distance be-

tween a power-law fit and the underlying data. The blue dash-dotted vertical line denotes

the 5.2 Jy ms active period 90% confidence completeness threshold.
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Extended Data Table 1: Burst Properties. Best-fit parameters for 38 bursts from FRB

180916.J0158+65 detected by CHIME/FRB. Uncertainties are reported at the 68.3% con-

fidence level. Bursts with multiple components have one arrival time and several widths,

fluences, and peak fluxes reported; the arrival time refers to the arrival of the first sub-

burst from the EVN position at the Solar System Barycentre after correcting to infinite

frequency (i.e., after removing the time delay from dispersion) using the listed DM. Flu-

ence and peak flux values for each sub-burst component are presented in order of arrival.

MJD DM Total Width Fluence Peak Flux
(pc cm−3) (ms) (Jy ms) (Jy)

Previously Published Bursts4

1 58377.42972096 349.2±0.2 1.40±0.07 >2.3±1.2 >1.4±0.6
2 58410.34656422∗ 349.0±0.6 4.1±0.3 >3.5±1.3 >0.6±0.3
3 58410.34656495∗ 349.0±0.6 4.4±0.9 >2.0±0.8 >0.3±0.2
4 58426.29413444 349.5±0.3 1.37±0.07 >2.8±0.9 >1.4±0.5

5 58426.30088378 349.6±0.2† 6.3±1.1 6.8±3.0 1.0±0.6
6 58442.25174905 349.9±0.6 1.10±0.09 8.0±2.2 2.9±1.1
7 58474.17007574 349.1±0.1 4.95±0.4 / 1.51±0.3 / 9.6±2.6 / 15±4 / 1.9±0.6 / 6.3±1.8 /

3.7±0.3 / 2.8±0.3 16.5±4.5 / 7.2±1.8 3.5±1.0 / 0.9±0.4
8 58475.16454902 349.7±0.7 1.67±0.05 / 6.3±0.4 10.4±2.9 / 3.6±1.5 1.9±0.6 / 0.5±0.3

9 58477.16557196 348.9±0.7‡ 3.8±0.3 3.1±2.4 1.4±0.8

10 58478.15889115 348.8±0.8‡ 0.87±0.3 / 3.6±0.4 2.9±0.8 / 1.6±0.5 1.9±0.6 / 0.7±0.3
11 58509.06654412 349.8±0.5 2.53±0.13 6.4±1.2 1.7±0.5

Bursts from This Work

12 58621.75641235 349.8±0.7† 2.5±0.6 1.0±0.3 0.4±0.2
13 58621.76154355 350.2±0.3 1.96±0.16 7.7±1.8 1.6±0.5
14 58622.74024356 348.9±0.1 0.58±0.08 / 0.9±0.1 >1.3±0.5 / >2.2±0.9 >0.8±0.4 / >0.8±0.5
15 58622.75315853 349.4±0.2 8.0±0.7 / 2.63±0.16 3.1±1.4 / 5.3±2.4 0.9±0.5 / 1.0±0.6
16 58622.75441645 349.3±0.4 3.6±0.4 4.4±2.0 1.1±0.7
17 58637.71187752 349.9±0.5 1.9±0.2 2.1±0.8 1.6±0.8

18 58638.71347350 348.82±0.05‡ 1.00±0.05 37±9 6.3±1.9
19 58639.70267121 349.7±0.2 2.34±0.08 >7.0±1.5 >1.3±0.4

20 58639.70713864 348.86±0.5‡ 3.72±0.13 / 4.1±0.4 11.5±4.0 / 5.4±2.7 2.3±0.7 / 1.1±0.5
21 58704.53530987 349.6±0.3 3.43±0.14 7.3±1.2 1.2±0.3

22 58705.53461219 349.3±0.9† 4.3±1.6 >1.7±0.3 >0.4±0.2
23 58720.49302597 349.0±0.1 1.83±0.03 24±4 4.9±1.0
24 58720.49551788∗ 349.7±0.4 7.8±1.3 2.8±0.9 0.6±0.3
25 58720.49551860∗ 349.7±0.4 5.1±0.8 1.4±0.6 0.5±0.3
26 58720.49669723 349.5±0.5 1.3±0.3 >2.6±0.5 >0.9±0.3

27 58786.31947325 349.7±0.7† 3.1±0.7 2.3±0.8 0.9±0.8

28 58786.32497972 349.1±0.4† 3.6±0.4 >2.3±0.5 >0.5±0.2
29 58835.17721035 349.5±0.5 5.0±0.5 2.9±0.7 0.4±0.2
30 58836.17591788 350.1±0.4 4.2±0.4 1.3±0.3 0.3±0.2
31 58836.17845766∗ 349.5±0.2 1.55±0.13 2.9±0.9 0.9±0.3
32 58836.17845804∗ 349.5±0.2 2.9±0.2 3.8±1.0 0.9±0.3
33 58868.07829861 349.6±0.4 2.36±0.10 5.5±1.5 1.0±0.4
34 58882.04838586 349.4±0.3 1.14±0.12 >0.8±0.3 >0.5±0.2
35 58883.04146680 349.6±0.3 8.6±0.5 >4.3±1.6 >0.4±0.3
36 58883.04307123 349.81±0.05 1.157±0.011 16.3±5.0 6.1±2.0
37 58883.04556977 349.8±0.5 1.48±0.13 1.5±0.6 0.5±0.2
38 58883.05523556 348.7±0.6 0.76±0.07 >0.4±0.1 >0.5±0.3

∗ Considered to be separate bursts observed during the same CHIME/FRB event due to large time separation and no
clear emission between bursts. See Methods for a brief discussion.
† From S/N-optimization.
‡ From structure-optimization of CHIME/FRB baseband data.
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Extended Data Table 2: Effelsberg observations. Details of the observations of

FRB 180916.J0158+65 using the 100-m Effelsberg telescope on 29th October 2019 and

30th October 2019.

Scan time range (date time UTC) Scan time range∗ (MJD) Duration (s)

2019 Oct 29 22:16:20 – 2019 Oct 30 00:16:06 58785.93233 – 58786.01550 7186
2019 Oct 30 00:18:40 – 2019 Oct 30 02:18:23 58786.01728 – 58786.10043 7183
2019 Oct 30 02:20:50 – 2019 Oct 30 04:20:39 58786.10212 – 58786.18534 7190
2019 Oct 30 04:23:10 – 2019 Oct 30 06:22:58 58786.18708 – 58786.27027 7188

† 2019 Oct 30 06:25:30 – 2019 Oct 30 08:25:14 58786.27203 – 58786.35519 7184
2019 Oct 30 08:39:30 – 2019 Oct 30 10:39:18 58786.36509 – 58786.44829 7188
2019 Oct 30 10:41:50 – 2019 Oct 30 10:58:53 58786.45005 – 58786.46189 1023
2019 Oct 30 19:33:40 – 2019 Oct 30 21:33:27 58786.81938 – 58786.90257 7187
2019 Oct 30 21:36:00 – 2019 Oct 30 23:35:44 58786.90434 – 58786.98749 7184
2019 Oct 30 23:38:10 – 2019 Oct 31 01:00:04 58786.98918 – 58787.04606 4914

∗ Times quoted at the Solar System Barycentre after correcting to infinite frequency (i.e. after removing the time delay

from dispersion) using a DM10 of 348.76 pc cm−3.
† Two bursts were detected by CHIME/FRB during this scan.
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