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Most high-frequency asset returns exhibit seasonal volatility patterns. This article proposes a new 
class of models featuring periodicity in conditional heteroscedasticity explicitly designed to cap- 
ture the repetitive seasonal time variation in the second-order moments. This new class of peri- 
odic autoregressive conditional heteroscedasticity, or P-ARCH, models is directly related to the 
class of periodic autoregressive moving average (ARMA) models for the mean. The implicit re- 
lation between periodic generalized ARCH (P-GARCH) structures and time-invariant seasonal 
weak GARCH processes documents how neglected autoregressive conditional heteroscedastic pe- 
riodicity may give rise to a loss in forecast efficiency. The importance and magnitude of this 
informational loss are quantified for a variety of loss functions through the use of Monte Carlo 
simulation methods. Two empirical examples with daily bilateral Deutschemark/British pound and 
intraday Deutschemark/U.S. dollar spot exchange rates highlight the practical relevance of the 
new P-GARCH class of models. Extensions to discrete-time periodic representations of stochastic 
volatility models subject to time deformation are briefly discussed. 
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Seasonality in financial-market volatility is pervasive. For 
instance, Gallant, Rossi, and Tauchen (1992) reported that 
the historical variance of the Standard and Poor's com- 
posite stock-price index in October is almost ten times 
the variance for March; see also Schwert (1990) and 
Glosten, Jagannathan, and Runkle (1993). Similarly, Boller- 
slev and Hodrick (in press) found evidence for significant 
seasonal patterns in the conditional heteroscedasticity of 
monthly stock-market dividend yields. At the daily fre- 
quency, French and Roll (1986) and Baillie and Bollerslev 
(1989) demonstrated that daily stock-return and foreign- 
exchange-rate volatility tend to be higher following non- 
trading days, although proportionally less than during the 
time period of the market closure. At the intraday level, 
Wood, McInish, and Ord (1985) documented the existence 
of a distinct U-shaped pattern in the variances of stock re- 
turns over the course of the trading day. Equally pronounced 
patterns in the volatility of intraday foreign-exchange rates 
were characterized by Baillie and Bollerslev (1991), Harvey 
and Huang (1991), and Dacorogna, Miiller, Nagler, Olsen, 
and Pictet (1993). 

Although these pronounced daily and intraday seasonal 
patterns are arguably irrelevant for the analysis of data 
recorded at lower frequencies, the increased availability of 
high-frequency financial time series has stimulated a large 
recent interest in a variety of new modeling issues explic- 
itly related to such data. For instance, several authors have 
investigated the interrelation between returns in geograph- 
ically separated financial markets that trade sequentially 
with little, if any, overlap in their trading hours. The fo- 
cus of these studies has typically been on the transmission 

of information as measured by the degree of spillover in 
the mean returns and/or volatility from one market to the 
next. Important contributions include those of Engle, Ito, 
and Lin (1990), who utilized foreign-exchange rates ob- 
served at four points during the 24-hour trading day, and 
Hamao, Masulis, and Ng (1990), who relied on daily open 
and close prices for the stock indexes in three countries. 
A second strand of the intraday time-series-oriented liter- 
ature has been concerned with the lead-lag relations be- 
tween two or more markets that trade simultaneously. Ex- 
amples include Baillie and Bollerslev (1991), who utilized 
hourly observations on five exchange rates, and Chan, Chan, 
and Karolyi (1991) who investigated five-minute returns 
from stock-index and stock-index-futures markets. Finally, 
a third group of works explored the role of information 
flow and other microstructure variables as determinants of 
intraday-return volatility. This literature is exemplified by 
Bollerslev and Domowitz (1993), who analyzed five-minute 
foreign-exchange returns, Locke and Sayers (1995), who 
modeled one-minute stock-index-futures returns, Laux and 
Ng (1993) and Foster and Viswanathan (1995), who re- 
lied on half-hourly foreign-exchange and equity returns, re- 
spectively, and Goodhart, Hall, Henry, and Pesaran (1993), 
who investigated quote-by-quote returns from the interbank 
foreign-exchange market. Although many new and interest- 
ing results have been uncovered in the just-mentioned stud- 
ies, on closer inspection the conflicting evidence regarding 
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the volatility dynamics obtained across the different sam- 
pling frequencies also raises new important questions con- 
cerning the most judicious choice of model structure and the 
proper treatment of the important intraday seasonal volatil- 
ity patterns; see Andersen and Bollerslev (in press) for fur- 
ther discussion along these lines. 

The purpose of this article is to introduce a new class of 
parametric time series models for better characterizing the 
repetitive, or seasonal, patterns in financial-market volatil- 
ity. To frame the discussion, it is helpful to recall some com- 
monly used time series models for dealing with seasonality 
in the mean. The framework generally adopted in that con- 
text is that of seasonal autoregressive integrated moving av- 
erage (ARIMA) models, possibly involving an unobserved 
component structure, as discussed by Nerlove, Grether, and 
Carvalho (1979), Bell and Hillmer (1984), Hylleberg (1986), 
and Ghysels (1994), among others. The basic idea of a linear 
time-invariant autoregressive structure involving seasonal 
lags can easily be adopted as a possible parameterization for 
the conditional variance. Such would lead to a seasonal au- 
toregressive conditional heteroscedasticity (ARCH) model, 
as used for instance by Bollerslev and Hodrick (in press). 
An alternative approach to analyzing the mean behavior of 
seasonal time series is to employ ARIMA models whose 
parameters change seasonally. Initially proposed by Glady- 
shev (1961), such models have gained considerable interest 
in recent years. These models, referred to as periodic mod- 
els because of the seasonal parameter variation, are now 
well documented both with respect to their theoretical prop- 
erties and to their empirical relevance. In particular, Tiao 
and Grupe (1980) established a formal link between the for- 
mer class of seasonal ARIMA models and periodic ARIMA 
models; empirical evidence supporting periodic linear struc- 
tures for a wide variety of macroeconomic time series may 
be found in the work of Osborn (1988), Osborn and Smith 
(1989), and Ghysels and Hall (1992), among others. 

The same periodic parameter variation originally pro- 
posed to capture the repetitive seasonal behavior in the con- 
ditional means of economic time series is readily extended 
to the formulation of conditional heteroscedasticity analogs 
of periodic ARIMA models. In its simplest form, it is natu- 
ral to consider a periodic generalized ARCH (GARCH), or 
P-GARCH, model in which the autoregressive conditional 
heteroscedasticity is characterized by seasonally varying 
autoregressive coefficients. In high-frequency financial time 
series, the repetitive patterns of openings and closures of 
markets, the number of active markets throughout the day, 
and so forth are all sources of such periodic variation that 
must be taken into account. Of course, unlike most cases 
considered with periodic autoregressive moving average 
(ARMA) models, the periodic cycles need not be purely 
repetitive. For instance, the regular nontrading-day cycles 
associated with weekends is sometimes interrupted by hol- 
idays. This necessitates a distinction between purely repet- 
itive cycles and cases in which the periodicity is known 
but is allowed to vary. For the former case, the results of 
Tiao and Grupe (1980) for periodic ARMA structures for 
the mean suggest a similar implicit relationship between the 

P-GARCH class of models and weak GARCH-type models 
with seasonal lags. By this relationship, a seasonal GARCH 
representation entails an informational loss in efficiency rel- 
ative to the true P-GARCH model. It is important to rec- 
ognize, however, that this analog between GARCH models 
and linear ARMA structures for the mean only goes through 
for the linear projections figuring in the weak GARCH 
class of models considered by Drost and Nijman (1993). 
A strong GARCH structure, which is often implicitly im- 
posed in maximum likelihood estimation, does not yield a 
direct correspondence between a representation with sea- 
sonality in the laws and one with seasonality in the lags. 
Consequently, the informational loss associated with any 
neglected periodicity in the parameters may be even more 
severe for GARCH models than for linear ARMA struc- 
tures. For the case of a nonrepetitive periodic cycle, some- 
what weaker though similar results hold true. 

The plan of the rest of the article is as follows. Section 1 
is devoted to the definition of the new class of P-GARCH 
models, along with a brief discussion of their theoretical 
properties. In Section 2 the actual estimation of P-GARCH 
models and the finite-sample loss in efficiency from not 
modeling the periodic autoregressive structure is assessed, 
through a small-scale Monte Carlo simulation experiment. 
The estimation results in Section 3 for a daily time series of 
Deutschemark/British pound exchange rates and an intra- 
day Deutschemark/U.S. dollar exchange-rate series illus- 
trate the practical relevance of periodic ARCH models for 
characterizing the seasonal volatility patterns in asset re- 
turns. Section 4 concludes. Details regarding the mapping 
between a P-GARCH model and its time-invariant weak 
GARCH representation are given in the Appendix. 

1. PERIODIC GARCH MODELS 

Following the seminal article by Engle (1982), the ARCH 
class of models for time-varying conditional heteroscedas- 
ticity has become very widely applied. Bollerslev, Chou, 
and Kroner (1992) provided a survey of empirical applica- 
tions in finance, and the important theoretical developments 
were surveyed recently by Bera and Higgins (1993) and 
Bollerslev, Engle, and Nelson (1994). The GARCH(p, q) 
model, introduced by Bollerslev (1986), often provides a 
parsimonious representation of the volatility dynamics in 
financial time series. Specifically, this model postulates that 
the discrete-time real-valued stochastic process {et} satis- 
fies 

E[etlt-_] = 0, (1) 

and 

q p 

E[e CIt-1] o = 
+ Z 

Ctt_i • ••yj, (2) 

i=1 j=1 

where 2t_1 denotes the Borel a-field filtration based on 
the realization of the {Et} process up to time t - 1. Equiva- 
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lently, Equation (2) may be written as 

max(p,q) p 
2 (+2 t =w E (a+ i + At - _ E jytj, (3) 

i=1 j=1 

where vt E 2 - 0a2 and ai = O,3j - 0 for i > q and 
j > p, respectively. Note that by definition Et-1 (vt) = 0 so 
that, if the fourth moment of et is finite, the { vt} process 
is serially uncorrelated. Hence, the representation of the 
GARCH(p, q) process in Equation (3) may be interpreted 
as an ARMA(max{p, q}, p) model for {e•}. 

Now, instead of having a fixed parameter structure for the 
conditional-variance equation, it is possible to draw on the 
similarity of the ARMA(p, q) model and periodic ARMA 
processes, and consider a time-varying coefficient model 
for conditional heteroscedasticity. To define such structures, 
consider a modified Borel a-field filtration in which the 
usual t_-1 is augmented by a process defining the stage of 
the periodic cycle at each point in time, say Qs_-. A more 
detailed discussion of such a filtrations underlying periodic 
models for the conditional mean was given by Hansen and 
Sargent (1990). The class of P-GARCH processes may now 
be defined as 

E[gtlIQ_l] = 0 (4) 

and 
q p 

E[5Q ] =T2 1 
s 

= Ws(t) + 5 ais(t)E 2_i + E/3js(t)a2 
i=1 j=1 

(5) 
where s(t) refers to the stage of the periodic cycle at time 
t. Note that Q2_1 appears both in the conditional mean and 
variance equations. Consequently, Et may differ from et de- 
fined in Equation (1). For instance, et may be the residual 
from a fixed parameter seasonal ARMA model, whereas gt 
refers to the residuals from a P-ARMA model for the con- 
ditional mean. Equation (5) provides the same direct analog 
of Equation (2) allowing for periodic varying coefficients in 
the variance equation. Although the lag lengths p and q do 
not depend on s(t), this entails no loss in generality because 
p and q may be set to their maximal orders across all stages 
of the periodic cycle. Of course, for the P-GARCH(p, q) 
model to be well defined, the conditional variance, &2, must 
be positive almost surely. Necessary and sufficient condi- 
tions on the W8(t), ais(t), and j3s(t) parameters for this to 
hold true in general are elusive but may be easily verified 
on a case-by-case basis following the approach of Nelson 
and Cao (1992). 

The most straightforward P-GARCH model is obtained 
when the periodic cycle is purely repetitive; that is, s(t) = t 
modulus S, where S is the length of the cycle. An example 
of such a repetitive cycle would be the intraday pattern in 
market activity associated with the regular opening and clo- 
sure of financial markets. In many empirical applications to 
financial time series, however, s(t) may be governed by a 
variable predetermined cycle with an upperbound S. For ex- 
ample, with daily data nontrading days usually occur every 
fifth observation, but some weeks have holidays that inter- 

rupt this regular weekly pattern. In this situation S = 5, but 
not all return cycles actually attain five consecutive trading 
days. 

In the existing ARCH literature, the modeling of 
nontrading-day effects have typically been limited to w,(t). 
The representation in Equation (5), however, allows for a 
much richer dynamic structure in that the innovations that 
occur over different time periods may have their own dis- 
tinct impact on the volatility process through the ais(t) and 
Pjs(t) coefficients. In further interpreting these coefficients, 
the ais(t)'s may be viewed as a measure of the immediate, 
or direct, impact of any news arrivals, but the smooth long- 
term evolution in the volatility process is captured by the 

js(t) coefficients. In many practical applications the peri- 
odic variation is therefore naturally constrained to the ai,(t) 
coefficients, keeping fj,(t) = j3 constant across all stages 
of the cycle. From Equation (6), this results in a P-GARCH 
process with periodicity in the autoregressive part of the 
model only. 

Analogous to the ARMA representation for the 
GARCH(p, q) model in Equation (3), it is possible to in- 
terpret the P-GARCH(p, q) model defined in Equation (5) 
as a periodic ARMA process for {f 2} with a time-varying 
but periodic correlation structure, 

max(p,q) 

t W s(t) 5 +/is 3i(t)) t-i 

P 

- E js(t)Vtj + 1/t, (6) 
j=1 

where ?t --E2 -E[ I212_] -t2 it2. For periodic ARMA 

models with a purely repetitive cycle of length S, Tiao and 
Grupe (1980) established a characterization of the mapping 
between the P-ARMA representation and a time-invariant 
seasonal ARMA model with a cycle of length S. Equa- 
tion (6) suggests the existence of a similar mapping for 
the P-GARCH class of models with fixed cycles S. The 
similarities between periodic ARMA and periodic GARCH 
processes do not carry through straightforwardly, however. 
Because of the nonlinearities, the GARCH class of pro- 
cesses defined in terms of conditional expectations is not 
closed under temporal and/or cross-sectional aggregation; 
see Drost and Nijman (1993) and Nijman and Sentana (in 
press). These difficulties may be circumvented by consid- 
ering the wider class of weak GARCH processes. In par- 
ticular, following Drost and Nijman (1993), {?t } is defined 
to follow a weak P-GARCH process when 2 in (5) corre- 
sponds to the best linear projection of E on ,1J', the space 
spanned by {1, et-1, 6t-2,. ' -1, 2 2,t.. .} augmented by 
s(t); that is, 

E[ - 
&21il] 

= E[( •- t)t__-i 1] 

= 
E[(ft ] - t i2J)'-(-l] = 0, (7) 

for i = 1, 2, .... The corresponding ARMA representation 
for the weak P-GARCH model then takes the form 

W2 = ws(t) + [a,(t)(L) + 3s(t)(L)]g2 + [1 - /3s(t)(L)]i@t, (8) 
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with as(t)(L) E3=1...qais(t)L',f s(t)(L) p Ej=I.... , 

f3js(t)L3, and it = E2_ - P(2 I -_l), where P(.I•_l1) de- 
notes the corresponding linear projection. Note that the pro- 
jections in (8) still involve seasonal conditioning so that 
the autocorrelation structure remains periodic. The speci- 
fication of a weak P-GARCH model obviously entails an 
informational loss when compared to the P-GARCH for- 
mulation in Equation (5), where &2 is defined as the con- 
ditional expectation of e2 based on the full information set 
implied by the Borel a-field filtration Q-_l. By considering 
the wider class of weak GARCH processes defined previ- 
ously, however, it is possible to carry out the mechanics of 
the Tiao and Grupe (1980) formula. This formula essen- 
tially amounts to the removal of the seasonal conditioning 
in (8) by averaging out the autocorrelation structure across 
all seasons, thus resulting in a time-invariant seasonal weak 
GARCH process. Further details of this averaging proce- 
dure, along with an illustrative example, is provided in the 
Appendix. 

As previously noted, in many financial applications the 
periodic cycle is not necessarily repetitive with fixed length 
but rather repetitive with some upperbound S. Even though 
the mechanics of the Tiao and Grupe (1980) formula are 
no longer directly applicable in this situation, the same ba- 
sic principle still works. Most importantly, the nonrepeti- 
tiveness leads to an average of observations at differently 
spaced time intervals. A summary discussion of the result- 
ing technical difficulties appears again in the Appendix; for 
a more thorough discussion of the same issues within the 
context of time series models for the conditional mean, we 
refer to Hansen and Sargent (1990). 

Of course, the idea of using periodic structures in formu- 
lating time series models for conditional heteroscedasticity 
is not limited to the GARCH class of models. In particu- 
lar, although the GARCH(p, q) model in Equation (2) cap- 
tures the tendency for large absolute returns to be followed 
by other large absolute returns, the model does not allow 
for any asymmetric response in the conditional variance 
function. This may be a reasonable assumption for the two 
exchange-rate series analyzed in Section 3, but the volatil- 
ity response function is not symmetric for all financial re- 
turns. Notably, stock-market volatility tends to increase less 
following large positive, compared to negative, return in- 
novations of the same absolute magnitude; for example, 
see Engle and Ng (1993). To parsimoniously capture this 
so-called leverage effect, Nelson (1991) proposed the ex- 
ponential GARCH, or EGARCH, model. In the EGARCH 
model {In(t2 )} follows an ARMA process in which posi- 
tive and negative shocks have their own distinct effect on 
the future conditional variances. Extending this formula- 
tion to allow for seasonal conditioning, the corresponding 
P-EGARCH(p, q) model becomes apparent: 

ln(&2) = Ws(t) + aQ(t)(L)/8(t)(L)- 

X [Os(t)tt-1 + ys(t)(IZt-iI - EIit-1i)], (9) 

where t E etat 1 has conditional mean 0 and unit vari- 
ance. Obviously, the process in (9) is easily overparame- 
terized. For instance, with a variable, though perfectly pre- 

dictable, periodic pattern due to nontrading-day effects only, 
even the simple P-EGARCH(1, 1) model involves a total of 
10 parameters. For higher-order models and more compli- 
cated periodic cycles, the number of parameters increases 
rapidly at the rate S[(p + q) + 3] so that some simplifying 
assumptions will have to be imposed. The case in which 
as(t)(L) = a(L) and 13s(t)(L) = P(L) for all s(t) cor- 
responds to a process with periodic asymmetries. Hence, 
a negative shock after, say, a nontrading day may have a 
different impact than on any other day of the week. Con- 
versely, with 08(t) = 0 and %s(t) = y for all s(t), but periodic 
ARMA polynomials, the seasonal dynamic is similar to the 
P-GARCH(p, q) model in Equation (5). In the remainder 
of the article, we shall concentrate exclusively on the P- 
GARCH representation. 

2. ESTIMATION AND INFERENCE 

A variety of estimation and testing procedures have been 
suggested for conducting inference in ARCH-type models; 
for a more extensive discussion of these procedures, we 
refer to the survey articles by Bera and Higgins (1993) and 
Bollerslev et al. (1994). The scope of this section is not to 
contribute to the basic theory of estimation and hypothesis 
testing in ARCH models as such. Instead, our aim is merely 
to comment on some of the specific issues that arise in the 
estimation and testing of periodic ARCH structures. 

To illustrate, let 0 denote the vector of unknown pa- 
rameters for all S seasons; that is, 0= (Oi, 2, .. ), 
where for the P-GARCH(p, q) model in Equation (5) Os8 
(ws, ais,..., ,qs, si0s, ..., I3ps) for s = 1,..., S. The condi- 
tional log-likelihood function for a strong P-GARCH model 
may then be conveniently written as the sum of the corre- 
sponding conditional log-likelihoods for each of the S sea- 
sonal cycles, 

T 

LT(OIQ-) = Zlt(9(t)). (10) 
t=1 

In particular, assuming the one-step-ahead prediction errors 
to be conditionally normally distributed, 

lt(Os(t)) = -.5[ln(27r) + ln(&t(Os(t))) 

+ t (0ss(t))2) 2(s(t))--]. (11) 

Under appropriate regularity conditions the maximum like- 
lihood estimates (MLE's) for the true parameters 0o, say 
9T, obtained by maximizing Equations (10) and (11) then 
satisfy 

T1/2(OT - 90) -* N(O, A(Oo)-I), (12) 

where A(Oo) denotes the Hessian evaluated at 0o. In many 
applications with high-frequency financial data, the assump- 
tion of conditional normality underlying Equation (11) may 
be violated, however. Fortunately, OT remains consistent 
under quite general conditions and may be given a quasi 
MLE (QMLE) interpretation. Because the outer product of 
the gradients and the inverse of the Hessian do not can- 
cel out in this situation, the asymptotic covariance ma- 
trix for the QMLE takes the form A(Oo)-1B(Oo)A(Oo)1 , 
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where B(Oo) denotes the outer product of the gradients; 
for further discussion along these lines and a formal proof 
for the GARCH(1, 1) model, see Weiss (1986), Bollerslev 
and Wooldridge (1992), Lumsdaine (in press), and Lee and 
Hansen (1994). Moreover, the Monte Carlo evidence of 
Bollerslev and Wooldridge (1992) and Baillie, Bollerslev, 
and Mikkelsen (in press) indicates that for moderately large 
sample sizes the accuracy of the QMLE-based inference 
procedures with conditionally leptokurtic errors is compa- 
rable to that of exact MLE. Even though no formal ana- 
lytical results are available for the weak GARCH case, the 
simulations of Drost and Nijman (1992) suggest that for 
large sample sizes the QMLE procedure is generally very 
reliable for the estimation of weak GARCH models also. 

We now turn to the results from a small-scale simula- 
tion study designed to gauge an idea about the reliabil- 
ity of the MLE procedure applied to the estimation of 
P-GARCH structures. To assess the potential importance 
of allowing for seasonal conditioning in ARCH modeling, 
we also report the results for the QMLE of various time- 
invariant weak GARCH formulations. The estimations are 
based on a sample size of T = 2,000, which is compa- 
rable to the number of observations that are available for 
the daily exchange-rate series analyzed in Section 3.1. The 
data-generation process (DGP) is a P-GARCH(1, 1) model 
with a periodic cycle of length 2. The true model parameters 
are indicated in the note to Table 1. Although all + Pl > 1, 
it follows from the Appendix that the model is covari- 
ance stationarity because (al1 + 01)(al2 + i1) < 1. Fur- 
thermore, the two unconditional seasonal variances equal 
a = [w2(a + 011 ) + W1][1 

- (a11 + /1)(a12 + /1)-1 
1.1 and a• = [wl (a12 + 31) + W21[1 - (a11 + !31)(a12 + 

31)]-1 = .9, respectively, whereas the nonseasonal uncon- 
ditional variance equals unity, a2 = 1 (U + 2) = 1.0. All 
of the reported statistics are based on N = 1,000 replica- 
tions. To avoid start-up problems, the first 2,000 observa- 
tions were discarded for each of the replications. Moreover, 
to start up the recursions for &2A(0,(t)), the initial values 
for 2(Os(o)) and  (0S(o)) were both fixed at their uncondi- 
tional seasonal sample analog. The normal random variables 
were generated by the RNDNS subroutine in the GAUSS 
computer language. Additional simulation results for other 
P-GARCH and nonperiodic GARCH models with seasonal 
dummies in the conditional-variance equation are available 
on request. 

It is immediately clear from Panel A of Table 1 that the 
MLE procedure does a remarkably good job of uncover- 
ing the true unknown parameters for the correctly speci- 
fied P-GARCH(1, 1) models in columns 6 and 7. The mean 
of the parameter estimates, 0TT N-1.i=l,.....NT,i, where 

OT,i denote the estimate for 0o from the ith replication, are 
all very close to their true values. Note that by a central 
limit theorem argument the Monte Carlo standard error for 

0r may be consistently estimated by N-1/2 .032 times 
the sample standard error across the 1,000 estimates given 
in parentheses. Note also that these sample standard errors 
are in close accordance with the average standard-error es- 
timates based on the robustified covariance-matrix estima- 

tor reported in brackets. Conventional inference procedures 
for the P-GARCH model based on the asymptotic distribu- 
tion in (12) with A(OT)-1B(OT)A(OT)-1 in the place of 

A(80)-1 should therefore work well in practice. This is 
also in accordance with the recent simulation evidence of 
Lumsdaine (1995) for the MLE estimation of GARCH(1, 
1) and IGARCH(1, 1) models that documents good finite- 
sample behavior of the robustified t statistics based on only 
T = 500 observations. It may be particularly noteworthy, 
however, that the Monte Carlo standard errors and the av- 
erage QMLE standard-error estimates are similarly close 
for the estimated nonperiodic weak GARCH models. Al- 
though no closed-form expression is available for character- 
izing the true weak GARCH parameters, it is interesting to 
note that the average estimates for al approximately equal 
1 (all + a12) .270 for all three weak GARCH models. 
Moreover, the corresponding implied unconditional vari- 
ances based on the average parameter estimates for the three 
weak GARCH models equal .966, .982, and .958, respec- 
tively, whereas the two unconditional seasonal variances for 
the GARCH model with w1 A w2 equal .979 and .936, re- 
spectively. 

The first two sets of rows in panel B of Table 1 report 
the average values of the Akaike (1973) information cri- 
terion (AIC) and the Schwarz (1978) information criterion 
(SIC); that is, AIC = N-'Ei=l....N2 LT(OT,l 1i) - 2k 
and SIC N-1Ei=1,....N2 LT(OT,i ',i) 

- 
In(T)-. k, where 

k - dim(OT) refers to the number of estimated model pa- 
rameters. The fractions reported in parentheses give the pro- 
portion of times for which a particular model was favored 
by one of the two information criteria. It is evident that 
both selection criteria are very effective in discriminating 
between the true P-GARCH models and the corresponding 
nonperiodic weak GARCH models. The AIC favors the P- 
GARCH model with wl :2 w for 16.7% of the replications 
compared to the more parsimonious SIC, which correctly 
identifies that wl - w2 for 99.3% of the replications. 

The second group of numbers in Panel B reports the 
average simulated values for various loss functions de- 
signed to measure the difference between the true and 
the estimated conditional variances. The mean squared er- 
ror criterion MSEA N-1T-1Zi=l,Nt=l.....T [&2ti(O0)- 

,2i (Ti)]21 is always minimized for one of the two P- 
GARCH formulations, with a slight advantage for the 
true DGP that restricts wi = W2. The increase in the 
value of the MSEA criterion for the three nonperiodic 
weak GARCH models is quite dramatic. Although the 
MSE loss criterion may be a natural choice in evaluat- 
ing competing estimates for the mean, it is less obvious 
in a heteroscedasticity environment; see Bollerslev et al. 
(1994), Lopez (1994), and West, Edison, and Cho (1993) 
for further discussion along these lines. A natural alter- 
native is* to consider the heteroscedasticity-adjusted MSE, 
or the relative squared error loss, defined by HMSEA 
N-1T-1Ei=I,....N t=1 ...[t2,i(O0)J(OT,iTi)-l 1]2. This 
criterion favors the P-GARCH model with wi = w2 for 
93.0% of the simulations. The average simulated value 
for HMSEA from this model equals only .013, compared 
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Table 1. Finite-Sample Distributions for P-GARCH(1, 1) Data-Generating Process 

Const. Const. GARCH GARCH GARCH P-GARCH P-GARCH 

Panel A 

1 .001 .001 .001 .001 .001 .001 .001 
(.023) (.022) (.016) (.016) (.015) (.015) (.015) 
[.022] [.022] [.015] [.015] [.015] [.014] [.014] 

w 1.004 - .056 .056 - .052 - 
(.839) (.012) (.020) (.010) 
[.076] [.011] [.019] [.009] 

wl - 1.101 - - .098 - .050 
(.866) (.029) (.027) 
[.120] [.028] [.026] 

w2 - .906 - - .015 - .053 
(.840) (.029) (.026) 
[.091] [.027] [.026] 

a1 - - .265 .271 .260 - 
(.030) (.041) (.031) 
[.031] [.042] [.031] 

a2 - - - -.010 - - 

(.056) 
[.056] 

a3 -.003 - - 

(.046) 
[.048] 

a4 - - - .004 - - 

(.040) 
[.042] 

S1 .469 .469 
(.052) (.053) 
[.051] [.052] 

af12 .071 .071 

(.025) (.025) 
[.024] [.024] 

31- - .677 .681 .681 .697 .697 
(.033) (.085) (.033) (.029) (.029) 
[.033] [.082] [.032] [.028] [.028] 

Panel B 

AIC -5,543.9 -5,532.1 -4,801.7 -4,804.3 -4,799.7 -4,738.1 -4,739.0 
(.000) (.000) (.000) (.000) (.000) (.833) (.167) 

SIC -5,553.7 -5,546.8 -4,821.3 -4,838.6 -4,828.2 -4,762.6 -4,768.5 
(.000) (.000) (.000) (.000) (.000) (.993) (.007) 

MSEA 37.54 37.56 4.780 5.021 4.817 .942 .933 
(.000) (.000) (.000) (.000) (.000) (.582) (.418) 

HMSEA 5.467 5.561 .100 .106 .096 .013 .014 
(.000) (.000) (.000) (.000) (.000) (.930) (.070) 

LLA .805 .797 .071 .074 .069 .006 .007 
(.000) (.000) (.000) (.000) (.000) (.944) (.056) 

MSEB 84.86 84.83 51.19 50.17 51.17 48.65 48.68 
(.000) (.000) (.014) (.098) (.109) (.379) (.400) 

HMSEB 9.524 8.995 2.176 2.162 2.164 1.988 1.984 
(.000) (.000) (.000) (.002) (.000) (.365) (.633) 

LLB 8.378 8.351 6.700 6.693 6.691 6.548 6.546 
(.000) (.000) (.000) (.000) (.000) (.252) (.748) 

NOTE: The true DGP is Yt = + Et, etls  N(0, a2), s = 1, 2, T= 1, 2, ..., 2,000, &2 = s( + S 2(t) + 1 + a4t2_4 + a•ls(t)•21 +1t21,L 
= .0, w = .05, w1 = w2 = 

.0, = = 1 4 =0, 011 = .4666, a12 = .0727, P1 = .7. Panel A reports the mean of the MLE's and the QMLE across the N = 1,000 Monte Carlo replications under the P-GARCH(1, 
1) DGP The sample standard deviations for the 1,000 estimates are reported in parentheses, with the mean of the corresponding robust standard error estimates in square brackets. Panel B 
gives the average value of the Akaike information criterion (AIC) and Schwartz information criterion (SIC) for each of the different model specifications. MSEA and MSEB denote the average 
mean squared error for the true conditional variance and squared innovations; that is, N-1 T-Fi=1,NEt=-1,T[ 1i( O) - ti(. T.i)2 and N-1 T-1 Ei-=1,NEt=1, T[ (o) - ai(Ti)]2, respectively, 

where i indicates the order of the replication. HMSEA and HMSEB refer to the corresponding heteroscedasticity-adjusted MSE; that is, N-1 T-1 i=1,NEt-1,TI2i(0)& i(OT, i)- 
- 

1]2 and 

N-1T-7-1i-1,NEt-l1,T[2i(eO0) ati(T,)-1- 1]2. The logarithmic loss functions LLA and LLB are calculated as N-1 T-1 i=1,NE t-=1,TIn [&2, i(eo)ai(T,) 
2 and N-1 •1,Nt1,TIn 

[g2tii(T0)i Ti)--112, respectively. The proportion of times that a specification was favored by one of the information criteria or a particular loss function are reported in parentheses. 

to .096 for the nonperiodic GARCH model with a sea- tially larger average loss of HMSEA = 5.561. Similar 
sonal dummy in the conditional-variance equation. Ignor- findings are obtained for the logarithmic loss function, 
ing the conditional heteroscedasticity results in a substan- LLA = NN-1 - i=[,....2,N t=,..,T n[2,i (0),2i (0T,)-12, 
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which assigns proportionally higher weights to wrong pre- 
dictions in low-variance regimes. 

In practice the true conditional variance is unknown, 
so none of the three loss functions discussed pre- 
viously is directly applicable. By replacing the true 
conditional variance with the realized squared resid- 
uals, however, the MSE analog becomes MSEB = 

N-1T-1Ei=1 N t=1 T i(0)-2i(T,i)]2. This is the 
criterion used by West and Cho (1995) in their evalu- 
ation of alternative conditional-variance models for ex- 
change rates, whereas Pagan and Schwert (1990) employed 
the same MSEB along with the LLB loss function de- 
fined later in their analysis of competing specifications 
for stock-market volatility. Interestingly, judged by the 
MSEB criterion the three nonperiodic weak GARCH mod- 
els and the true P-GARCH models all result in fairly 
similar average squared error losses, although the two P- 
GARCH models yield the smallest loss among the dif- 
ferent specifications for 37.9% and 40.0% of the repli- 
cations, respectively. As noted previously, the use of an 
MSE-type loss function in a heteroscedastic environment 
is somewhat problematic, however. In particular, by the 
MSEB criterion a nonlinear least squares regression of the 
squared residuals on all the variables in the time t - 1 
information set will always produce the lowest possible 
in-sample loss. With this in mind, it is interesting to 
note that the heteroscedasticity-adjusted MSE, HMSEB = 

N-IT-1Ei=1I.....N t=1....T[T2,i(OO),i(OT,i)-- 1]2, al- 
most unambiguously favors the P-GARCH specifications. 
The average HMSEB for the estimated P-GARCH models 
is just slightly below its implied value of 2, whereas the 
smallest average value for the three weak GARCH mod- 
els is 2.162. The findings for the logarithmic loss function, 
LLB = N-1T-1 Ei=1...,Nt-=1.... ITln[Et2,i(OO))t2i (OT,i)-1]2 
are again comparable. 

Summing up, the simulation evidence for the P- 
GARCH(1, 1) DGP reported in Table 1 and similar results 
for other DGP's, available on request, confirm the reliability 
of the MLE-based inference procedures in the P-GARCH 
context. Although it is difficult to explicitly quantify in 
terms of a single measure, the simulations also illustrate 
that the informational loss associated with the QMLE of a 
nonperiodic GARCH specification may be quite substantial. 

3. EMPIRICAL EXAMPLES 

To illustrate the empirical relevance of the new P- 
GARCH class of models, this section presents estimation 
results for two different foreign-exchange-rate series. The 
first application involves an investigation of the nontrading- 
day effect based on an eight-year-long time series of daily 
Deutschemark/British pound exchange rates, whereas the 
second example provides an analysis of the purely repeti- 
tive seasonal pattern in a one-year time series consisting of 
two Deutschemark/U.S. dollar returns per day. 

3.1 Daily Deutschemark/British Pound Exchange-Rate 
Volatility 

Several recent studies have found that the volatility of 
daily U.S. dollar exchange rates tends to be highly per- 
sistent and well approximated by an integrated or long- 
memory-type GARCH process; for example, see Engle and 
Bollerslev (1986), McCurdy and Morgan (1988), Baillie and 
Bollerslev (1989), Hsieh (1989), Baillie et al. (in press), 
and Taylor (1994). At the same time, Bollerslev and En- 
gle (1993) argued that, even though the volatility processes 
for the daily Deutschemark/U.S. dollar and the British 
pound/U.S. dollar exchange rates are both highly persistent, 
it appears that the nonstationarity is common across the two 
rates so that the volatility of the corresponding bilateral 
Deutschemark/British pound rate shows less persistence. 
Thus, to circumvent issues related to the appropriate mod- 
eling of the long-run volatility persistence, we shall here 
concentrate on the dynamics of the Deutschemark/British 
pound exchange rate. The data are constructed from the 
corresponding daily U.S. dollar rates recorded by the Inter- 
national Monetary Fund in International Financial Statis- 
tics and cover the period from January 3, 1984, through 
December 31, 1991, for a total of 1,974 observations. 

Following standard practice, define the daily percentage 
nominal returns, 

yt - 100 - [ln(Pt) - ln(Pt_-)] = i + 9t, (13) 

where Pt denotes the bilateral spot exchange rate for t = 
0, 1,..., 1,974. The first-order sample autocorrelation co- 
efficient for the returns equals only .009. The insignificant 
Ljung and Box (1978) portmanteau test for up to twentieth- 
order serial correlation in ?t(OT) reported in the first col- 
umn of Table 2, Q(20), also does not reject that {yt} is 
an approximate martingale process. Note that the standard 
portmanteau tests for serial correlation in the mean tend to 
be very conservative in the presence of ARCH effects; see 
Diebold (1988) and Bollerslev and Mikkelsen (in press). To 
investigate the influence of market closure, the next two 
columns of the table report the estimates from two sim- 
ple periodic mean and variance formulations, p + ?,(t) and 
w + WS(t), in which the stage of the periodic cycle equals 
1 on Mondays and other days following no trading in the 
Deutschemark or British pound/U.S. dollar market during 
regular European trading hours and 0 otherwise. The sam- 
ple consists of 456 such nontrading periods, which corre- 
sponds to roughly 23% of the observations. For ease of 
interpretation we restrict 0o = 0 and wo = 0. Whereas 
no systematic mean effect is forthcoming, the estimate for 
the periodic nontrading-day effect in the variance, wl, is 
highly significant, and suggests an average increase in the 
volatility of about 50%. At the same time, the large value 
of the Q2(20) portmanteau test for the squared standardized 
residuals, 2 ( T) _\ (OT)-1, indicates that very pronounced 
volatility clustering remains. The last three rows of the ta- 
ble therefore report the QMLE for a simple GARCH(1, 1) 
model, a GARCH(1, 1) model that includes the seasonal 
nontrading-day dummy in the conditional-variance equa- 
tion, and a P-GARCH(1, 1) model. Following the analysis 
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Table 2. P-GARCH Models for Daily Deutschemark/British Pound Exchange Rate 

Const. Const. Const. GARCH GARCH P-GARCH 

/ -.016 -.013 -.015 -.006 -.009 -.006 
(.011) (.011) (.010) (.009) (.008) (.008) 

/1 • -.017 - - - - 

(.028) 
w .221 .200 .200 .264 .259 .341 

(.012) (.011) (.011) (.075) (.086) (.169) 
w1 - .092 .092 - .054 .043 

(.036) (.036) (.022) (.026) 
ai - - - .153 .137 .178 

(.054) (.035) (.043) 
1 - - - - - -.111 

(.044) 
P1- - - .806 .832 .822 

(.073) (.044) (.042) 

AIC -2,626.2 -2,602.7 -2,601.1 -2,221.2 -2,191.0 -2,179.3 
SIC -2,652.5 -2,625.1 -2,617.9 -2,243.5 -2,219.0 -2,212.9 
b3 -.25 -.25 -.25 -.40 -.44 -.46 
b4 6.63 6.18 6.18 6.56 5.89 5.87 
Q(20) 27.8 27.2 26.9 19.3 18.8 19.1 
Q 2 (20) 507.6 593.0 599.4 17.5 21.7 23.9 
MSE .275 .273 .273 .253 .252 .257 
HMSE 5.63 5.18 5.18 5.52 4.88 4.67 
LL 9.67 9.87 9.52 8.79 8.21 8.66 

NOTE: The table reports the QMLE's for the daily percentage returns on the Deutschemark/British pound exchange rate from January 3, 
1984, through December 31, 1991, for a total of 1,974 observations. Robust standard errors are reported in parentheses. The estimated 
models are yt = 100 "[In(Pt) - In(Pt-1)] = M + Ms(t) + Et, Etps_, 1 N(o, '2), s = 0, 1, T= 1, 2, ..., 1974, 2= + s(t) 

(W + Ws(t-1))(CY + p'i + ais(t)) + (Oi + als(t))E12 - + 0312 The value of the corresponding Akaike and Schwartz information 

criteria are given in the AIC and SIC rows. The sample skewness and kurtosis for the standardized residuals, Et(OT)t(OT)-1/2, are 
denoted by b3 and b4, respectively. 0(20) and Q2(20) refer to the Ljung-Box portmanteau tests for up to twentieth-order serial correlation 
in the standardized and the squared standardized residuals, respectively. The different loss criteria are calculated as MSE = 

T-1Et=l,T 
[Et2(T) --&(OT)]2, HMSE = 

T-1Xt=1,T [lt(0T) O2(OT)-1 -1]2, 
and LL = T-1Ft=I,T In[E2 (T)•' (T)-1]2 

of Baillie and Bollerslev (1989), the seasonal dummy vari- 
able is entered in the conditional-variance equation to allow 
for an impulse effect, 

2 = W + s(t) - (w + w,(t-1))(a + p + als(t)) 

+ (a? + als(t))t-1 ?+ t 12_1, (14) 

where by definition wo0 = 0 and 1ao - 0. Although the 
GARCH(1, 1) model parsimoniously captures the own tem- 
poral dependence in the second-order moments of the re- 
turns, the nontrading-day effect remains very significant. 
Both the AIC and the SIC strongly favor the inclusion of the 
seasonal dummy variable, wl, in the conditional-variance 
equation. The same information criteria, however, as well 
as the robust t statistic for the all parameter estimate from 
the P-GARCH(1, 1) model, suggest the importance of al- 
lowing for a richer dynamic periodic structure in character- 
izing the nontrading-day effects. Interestingly, the sum of 
the estimated autoregressive coefficients for the P-GARCH 
model when s(t) = 0 equals &1 + ,1 = 1.000, whereas 
on days following market closures &•1 + &11 + pr = .889. 
Thus, shocks to the conditional variance that occur when 
the market is closed appear to be less informative about 
the future volatility and tend to die out at a faster rate than 
shocks that occur during normal trading days. As discussed 
in Section 2, the gain obtained by allowing for the richer 
P-GARCH structure will ultimately depend on the particu- 

lar application of the model. It is noteworthy, however, that 
the heteroscedasticity-adjusted MSE criterion advocated in 
Section 2 is also minimized for the P-GARCH specification. 

3.2 Intraday Deutschemark/U.S. Dollar Exchange-Rate 
Volatility 

The increased availability of high-frequency financial 
data has stimulated a growing research interest in the 
complex intraday-return dynamics. Recent examples from 
the foreign-exchange market include those of Baillie and 
Bollerslev (1991), Bollerslev and Domowitz (1993), Engle, 
Ito, and Lin (1990), Miiller et al. (1990), and Dacorogna et 
al. (1993) among others. The purpose of the present empir- 
ical example is not to add to this existing literature per se 
but merely to illustrate the potential benefits offered by the 
new P-GARCH class of models in this context. 

The foreign-exchange market operates on a continuous 
24-hours-a-day basis. We shall focus on a time series of 
returns observed only twice a day, however. Specifically, 
the first return for the day gives the logarithmic price 
change over the seven most active trading hours in the 
Deutschemark/U.S. dollar exchange-rate market from 8:00 
Greenwich Mean Time (GMT) through 15:00 GMT. The 
next return observation covers the 17-hour interval from 
15:00 GMT through 8:00 GMT the following day. This 
particular definition of the return intervals is motivated by 
the intraday volatility patterns documented by Baillie and 
Bollerslev (1991) and Miiller et al. (1990) and ensures that 
the two corresponding unconditional sample variances are 
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Table 3. P-GARCH Models for Intraday Deutschemark/U.S. Dollar Exchange Rate 

P-AR P-AR P-AR 
Const. AR const. P-AR P-AR GARCH P-GARCH P-GARCH 

.023 .014 - .023 .014 .015 .016 
(.022) (.022) (.024) (.022) (.024) (.023) 

1, - - .020 - - - - 

(.031) 
2 - - .026 - - - - 

(.032) 
1 - .107 - - - - - 

(.042) 
O11 - - -.010 

(.064) 
12 - - .194 .193 .196 .218 .209 

(.055) (.055) (.050) (.052) (.049) 
.255 .238 - .251 .268 .248 .249 

(.020) (.038) (.020) (.091) (.024) (.030) 
w1 - - .247 - - - - 

(.027) 
W2 - - .255 - - - - 

(.029) 
a1 - .030 - - .031 - - 

(.012) (.015) 
S - - - - - .128 .098 

(.044) (.046) 
a12 - - - - - -.045 

(.024) 
01 - .941 - - .944 .820 .866 

(.018) (.024) (.048) (.048) 

AIC -767.1 -751.3 -765.5 -759.6 -746.0 -738.0 -738.9 
SIC -775.6 -772.5 -791.0 -772.4 -767.2 -763.5 -760.1 
b3 .32 .19 .34 .34 .16 .16 .13 
b4 4.09 4.02 4.26 4.27 3.99 3.89 3.94 
Q(20) 27.5 24.0 22.6 22.6 23.4 24.5 24.6 

Q2(20) 61.5 23.6 61.4 63.7 24.7 26.2 25.2 
MSE .202 .204 .205 .206 .201 .200 .199 
HMSE 3.09 3.23 3.26 3.27 2.82 2.91 2.92 
LL 8.25 8.27 9.53 8.93 8.83 7.95 8.13 

NOTE: The table reports the QMLE for intraday percentage returns on the Deutschemark/U.S. dollar exchange. The return series consists 
of two observations per day over the October 1, 1992, through September 29, 1993, period for a total sample size of 518. The estimated 
models are yt - 100.[In (Pt) - In (Pt-1)] = p + Ms(t) 

- ( + + s(t-1))(1l + k1s(t)) + (01 + 1s(t)) Yt-1 + Et, EtlsI N(0, &2), 

s = 1, 2, T= 1, 2, ..., 518, &2 = w + Ws(t) 
- (w+ s(t-1))(1 + 031 + als(t)) + ( + als(t)) 1 1 1. For a definition 

of the statistics reported in the table, see the note to Table 2. 

approximately the same. The continuously recorded bid- 
ask quotations used in the calculation of these returns were 
obtained from Olsen and Associates. The sample period ex- 
tends from October 1, 1992, through September 29, 1993, 
for a total of 518 intraday-return observations excluding 
weekends. For a more detailed description of the data set 
and method of data capture and outlier filtration, we refer 
to Andersen and Bollerslev (in press) and Dacorogna et al. 
(1993). 

Although the example in Section 3.1 illustrates the po- 
tential importance of allowing for weekend and nontrading- 
day effects, given the much shorter sample period available 
for the intraday data, we shall here concentrate on mod- 
eling the purely repetitive 24-hour trading-day cycle. The 
first row in Table 3 gives the unconditional sample mean 
and variance for the 518 intraday-return observations, along 
with the same set of summary statistics and information 
criteria reported in Table 2. In contrast to the results for 
the daily returns, the intraday returns appear to be serially 
correlated with a first-order sample autocorrelation coef- 
ficient of .088. Although the simple nonperiodic AR(1)- 

GARCH(1, 1) model reported in the second column of the 
table captures most of the serial correlation in the first- and 
second-order moments of the returns, the model makes no 
distinction between the returns for the most active European 
trading hours, s(t) = 1, and the returns for the remainder 
of the day, s(t) = 2. From the estimated P-AR(1) model in 
the third column of the table, however, 

Yt - 100 - [ln(Pt) - Iln(Pt-1)] 
= 1 + Is(t) - ( + ?sL(t-1))0ls(t) + 1ls(t)Yt-1 + ?t, 

(15) 

only 012 is significantly different from 0. News that oc- 
curs during European trading hours gets incorporated into 
the price with a lag during the rest of the day, whereas 
there is no evidence for any lagged dependence in the re- 
turns for the active European segment of the market. The 
estimates for wl and w2 and the results for the restricted 
P-AR(1) model in the fourth column with wl = w2 = c 
also confirm that, in spite of the different calendar length 
of the two return intervals, the particular segmentation of 
the 24-hour trading day employed here ensures that the two 
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corresponding intraday sample variances are approximately 
the same. Not surprisingly, there is no evidence for any sys- 
tematic U.S. dollar depreciation or appreciation during spe- 
cific times of the day as ^ 0 and 22 0. Whereas the 
Q2(20) statistic for the residuals from the P-AR(1) model 
remains highly significant, the portmanteau statistics for the 
P-AR(1)-GARCH(1, 1) model in the next column indicate 
that this model captures most of the own serial dependence 
in the returns. By allowing for a periodic structure in the 
conditional-variance equation, however, the P-GARCH(1, 
1) models reported in the last two columns of the table in- 
dicate that only shocks that originate during the less active 
time of the market significantly increase the overall volatil- 
ity; that is, only a,1 > 0. Note, that the richer P-GARCH(1, 
1) formulations are strongly preferred by both of the two 
model-selection criteria. It is certainly possible that by also 
incorporating the effect of market closure and other time- 
varying components an even better representation of the 
intraday-return dynamics could be obtained. The model es- 
timates reported in Table 3, however, suggest that any future 
research along these lines may successfully exploit periodic 
ARCH-type structures. 

4. CONCLUDING REMARKS 

The discrete-time periodic GARCH class of models pro- 
posed in this article provides a natural generalization of 
time-invariant seasonal GARCH models to allow for a 
greater degree of flexibility when modeling periodicity in 
the conditional variances of speculative prices. The reported 
simulation evidence and empirical examples illustrate the 
feasibility and practical relevance of allowing for vary- 
ing dynamic responses across the different stages of the 
periodic cycle. Of course, the idea of using periodic struc- 
tures in formulating time series models for conditional het- 
eroscedasticity is not limited to the GARCH class of mod- 
els. Of the many possible univariate and multivariate exten- 
sions, the asymmetric P-EGARCH model discussed briefly 
in Section 1 may prove particularly useful in the future esti- 
mation of more accurate models for high-frequency stock- 
market volatility. 

In conclusion, we would like to draw attention to a 
time-deformation interpretation of the P-ARCH class of 
models. The original idea of time deformation, or sub- 
ordinate stochastic processes, advanced by Clark (1973) 
and Tauchen and Pitts (1983), ties the asset price move- 
ments to the number of market transactions, trading vol- 
ume, or other measures of market activity; for a recent 
analysis along these lines, see Andersen (in press). Tak- 
ing the time deformation to be purely deterministic and 
only dependent on the periodic cycle, however, naturally 
leads to a P-ARCH-type model. In particular, suppose that 
the returns at some high-frequency operational, or mar- 
ket, time scale are generated by a GARCH(1, 1) model 
with parameters w, al, and i3. Then, from the aggrega- 
tion results of Drost and Nijman (1993), discussed in Sec- 
tion 1, it follows that, when aggregated over m periods, 
the parameters of the corresponding weak GARCH(1, 1) 
model are Wm= rmw[1 - (al + -3)m][1 - (a + -/1)]-1 and 

am = (al + 31)m - Om, where Om is a complicated func- 
tion of m, al, 31, and the conditional kurtosis of the high- 
frequency process. Now suppose that the observed process 
in calendar time is characterized by a deterministic periodic 
cycle of length S so that each stage of the cycle is associated 
with a different level of aggregation from the operational 
time scale to the regularly spaced calendar-time observa- 
tion interval; that is, to each s = 1, 2,..., S corresponds 
a different aggregation level m(s). The P-GARCH(1, 1) 
specification then becomes immediately apparent by setting 
Ws(t) = m(s), als(t) = am(s), and 1,s(t) = om(s). Thus, a 
periodic cycle corresponding to different levels of aggre- 
gation that reflects the cyclical behavior of market activity 
yields a simple interpretation of the P-GARCH model as a 
process subject to periodic time deformation. 

This same idea can be rendered more sophisticated. In 
particular, although the discrete-time stochastic ARCH-type 
difference equations have found very wide empirical use, 
continuous-time stochastic differential equations have of- 
ten proven more convenient in the analysis of theoreti- 
cal pricing models. Similarly, notions of time deformation 
have traditionally been analyzed in a continuous-time set- 
ting. We shall not pursue this analysis at any great length 
here. We note, however, that the discrete time-aggregation 
arguments presented previously could be extended to con- 
tinuous time by using the diffusion approximation for the 
weak GARCH(1, 1) model developed by Drost and Werker 
(in press). Alternatively, Ghysels and Jasiak (1994) re- 
cently proposed a direct extension of the standard stochastic 
volatility model subject to time deformation. According to 
this specification, the returns process evolves in the regu- 
larly spaced calendar time, t, but the evolution of the instan- 
taneous volatility is determined by an Ornstein-Uhlenbeck 
process in operational time, T; that is, d[ln(Pt)] = pt dt 
+ catdWit and d[ln(a,)] = -p[ln(u2) - a]dT + dW2r, 
where Wit and W2t denote independent standard Wiener 
processes. Note that in the absence of any time deformation 
so that - t this model corresponds to the diffusion limit of 
the EGARCH model derived by Nelson (1990). Assuming, 
however, that the operational time scale is measurable with 
respect to the usual calendar-time filtration, T = g(t), and 
that the time deformation is purely deterministic and only 
dependent on the periodic cycle, it is possible to show that 
the corresponding discrete-time process for the conditional 
variance reduces to a P-ARCH-type model; see Ghysels, 
Gouribroux, and Jasiak (1995) for a review of the relevant 
stochastic process theory. We leave further theoretical de- 
velopments and empirical work along these lines for future 
research. 
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APPENDIX: TIME INVARIANT WEAK GARCH 
REPRESENTATION OF THE P-GARCH MODEL 

In this appendix we provide an illustration of the 
techniques that may be used to implicitly characterize 
the mapping between a P-GARCH model with a fixed 
periodic cycle of length S and its time-invariant weak 
GARCH representation. Formally this operation is most 
easily accomplished by constructing a skip-sampled vec- 
tor representation of the squared residuals that collects 
all the observations over a single periodic cycle; that is, 

E? (= E2r,2S(-_1)+S_-1, ..2, S( )+2 S(rI)+I), where 
7 refers to the time index for the {?, } process. For instance, 
in applications of periodic ARMA models to quarterly or 
monthly data, r could be an annual time index. In the ap- 
plication of periodic ARCH processes to daily or intraday 
sampling frequencies, r may correspond to a weekly time 
scale with a vector representation of daily series or to the 
daily sampling of a vector of hourly processes. Similarly, 
define i, as the S x 1 vector of innovations that appear in 
the weak P-GARCH(p, q) model in Equation (8). Because 
the vectors obtained in this way cover an entire periodic 
cycle, they encompass all possible parameter variations. 
Specifically, consider the simple case in which S = 2 with 
alternating periods, each of which obey a GARCH(1, 1) 
structure. Then from Equation (8), the following bivariate 
vector system becomes apparent: 

0 1 
E2r--1 

0 2,r-1 

+oz 

CA)1+ 
el 

-fill 0 2( --1)-1 (, 

or, more compactly, 

= (W2 
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+ P11)(12 

+ 

/•12) 

O 
+- 0rl + r1 0 

0( 0212 
- 

11( 
01 

2 

-A )12) 0 

(A.2) 

This equation defines a time-invariant representation for 
the {•} process. Thus, by straightforward arguments, if 

(all + 
0311)(Ot12 

+ 
312) 

< 1 so that the eigenvalues for the 
first-order autoregressive lag matrix are less than 1, the un- 
conditional variance of the process is finite. Note that, un- 
like the standard multivariate ARCH representations sur- 
veyed by Bollerslev et al. (1994), the vector ARCH process 
in (A.2) does not involve any conditional cross-covariances 
because each element of the {f } vector process represents 
the same underlying univariate process sampled at a differ- 
ent points in time. 

Of course, these arguments are not constrained to the P- 
GARCH(1, 1) model with S = 2. Under suitable regularity 
conditions ensuring that the roots of the characteristic au- 
toregressive polynomial for the corresponding vector sys- 
tem have modules greater than 1, any weak P-GARCH(p, q) 
process may be expressed in terms of its fundamental time- 
invariant Wold decomposition, 

00 

i = w + 1Aji),_j _ w + A(L) 7, (A.3) 
j=O 

where the elements of the w vector and Aj coefficient ma- 
trices are determined by the polynomials for the underlying 
model. From Equation (A.3), the multivariate covariance 
generating function and spectral representation may then 
be written as 

F(e-iz) = A(ei-'Z)QA(eiz)', (A.4) 

where -7r < z i 7r and Q denotes the unconditional co- 
variance matrix for the S-dimensional innovation process, 
{,r}. Now, following Tiao and Grupe (1980), it is possi- 
ble to show that there exist parameters a., ,. . . , l p and 

i31,..., PQ such that 

2 + (PQ)(( j +-Jj)e-ijz'j 1 

= R(e-iz)F(e-Si"z)R(e-iz), (A.5) 

where R(e-i'z) = S1/2(i, e-i'z,..., e-(S-1)-i-z). Equation 
(A.5) therefore establishes an indirect relationship between 
the parameters for the P-GARCH(p, q) model and the cor- 
responding weak GARCH(P, Q) process with parameters 
ai and pj for i = 1,...,P and j = 1,...,Q. Unfortu- 
nately, this relationship is only implicit and does not lend 
itself to any analytical characterization of the actual weak 
GARCH(P, Q) parameters. It is possible to show, however, 
that the autoregressive order of the time-invariant weak 
GARCH process necessarily exceeds the order of the pe- 
riodic cycle; that is, P > S whenever p Z 0. For further 
discussion along these lines within the context of periodic 
ARMA processes with a fixed repetitive cycle, see Osborn 
(1991). 

As previously noted, in many financial applications the 
periodic cycle is not purely repetitive, but it is rather repet- 
itive with some upperbound, S. For example, the upper- 
bound S = 5 associated with the nontrading-day cycle is 
not attained every week. In such cases, the simplicity af- 
forded by the skip-sampled vector representation illustrated 
in (A.1) is no longer available because the varying phase 
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of the cycle precludes the use of stacked data vectors of 
fixed length. Hence, the elegance of the multivariate rep- 
resentation appearing in (A.3) and its spectral counterpart 
cannot be exploited. The basic principles underlying the 
Tiao-Grupe formula operations remain applicable, however, 
although without the simplicity summarized by a simple 
formula. Most importantly, the mapping from a periodic 
ARMA, or weak GARCH, model to its corresponding sea- 
sonal fixed parameter representation is still based on fore- 
going the seasonal conditioning. In particular, the first and 
second unconditional moments of the process can always 
be computed from averaging the first and second moments 
conditional on the period if the averaging is done over all 
stages of the cycle. Likewise, the same idea applies to the 
entire autocorrelation structure. These operations are valid 
both with purely repetitive and predetermined nonrepetitive 
periodic cycles. Of course in the latter case the computa- 
tions are more involved because there is no longer a simple 
repetitive accounting rule for assigning each data point to 
a particular stage of the periodic cycle. 

The asymptotic distribution results in Section 2 obviously 
allow for the calculation of standard Wald, Lagrange mul- 
tiplier, and likelihood ratio tests in an MLE, or QMLE, 
context. In some applications, however, it may be of inter- 
est to test for periodicity without an explicit model speci- 
fication. When the source of the periodic variation is non- 
repetitive and not directly observable this can be quite in- 
volved. For periodic ARMA structures, Hansen and Sargent 
(1990, chapter 10, app. A.2) provided an elaborate discus- 
sion of the theoretical underpinnings that would justify the 
construction of such tests. A more detailed discussion of 
their framework would require a fairly technical elabora- 
tion of the stochastic-process theory of periodic structures 
because their representation is based on notions of ergod- 
icity and invariant sets associated with measure-preserving 
mappings defined on Borel o algebras. Suffice it to say that 
the Hansen-Sargent framework could in principle be con- 
sidered for the weak GARCH processes introduced in this 
article also. This, however, would require regularity condi- 
tions, such as the existence of higher-order moments, that 
may be harder to maintain in the ARCH context. 

[Received March 1994. Revised September 1994.] 
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