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ABSTRACT Recent developments in computer and
communication technologies are leading to an increas-
ingly networked and wireless world. This raises new
challenging questions in the context of networked con-
trol systems, especially when the computation, commu-
nication, and energy resources of the system are limited.
To efficiently use the available resources, it is desirable
to limit the control actions to instances when the sys-
tem really needs attention. Unfortunately, the classical
time-triggered control paradigm is based on perform-
ing sensing and actuation actions periodically in time
(irrespective of the state of the system) rather than when
the system needs attention. Therefore, it is of interest to
consider event-triggered control (ETC) as an alternative
paradigm as it is more natural to trigger control actions
based on the system state, output, or other available
information. ETC can thus be seen as the introduction of
feedback in the sensing, communication, and actuation
processes. To facilitate an easy implementation of ETC,
we propose to combine the principles and particularly
the benefits of ETC and classical periodic time-triggered
control. The idea is to periodically evaluate the trigger-
ing condition and to decide, at every sampling instant,
whether the feedback loop needs to be closed. This leads
to the periodic event-triggered control (PETC) systems.
In this chapter, we discuss PETC strategies, their bene-
fits, and two analysis and design frameworks for linear
and nonlinear plants, respectively.

6.1 Introduction

In many digital control applications, the control task
consists of sampling the outputs of the plant and com-
puting and implementing new actuator signals. Typi-
cally, the control task is executed periodically, since this
allows the closed-loop system to be analyzed and the
controller to be designed using the well-developed the-
ory on sampled-data systems. Although periodic sam-
pling is preferred from an analysis and design point of
view, it is sometimes less appropriate from a resource
utilization point of view. Namely, executing the control
task at times when no disturbances are acting on the sys-
tem and the system is operating desirably is clearly a
waste of resources. This is especially disadvantageous
in applications where the measured outputs and/or the
actuator signals have to be transmitted over a shared
(and possibly wireless) network with limited bandwidth
and energy-constrained wireless links. To mitigate the
unnecessary waste of communication resources, it is
of interest to consider an alternative control paradigm,
namely, event-triggered control (ETC), which was pro-
posed in the late 1990s, see [1–5] and [6] for a recent
overview. Various ETC strategies have been proposed

since then, see, for example, [7–18]. In ETC, the con-
trol task is executed after the occurrence of an event,
generated by some well-designed event-triggering con-
dition, rather than the elapse of a certain fixed period
of time, as in conventional periodic sampled-data con-
trol. This can be seen as bringing feedback to the sensing,
communication, and actuation processes, as opposed to
“open-loop” sensing and actuation as in time-triggered
periodic control. By using feedback principles, ETC is
capable of significantly reducing the number of control
task executions, while retaining a satisfactory closed-
loop performance.

The main difference between the aforecited papers
[1–5,7–18] and the ETC strategy that will be discussed
in this chapter is that in the former, the event-triggering
condition has to be monitored continuously, while in
the latter, the event-triggering condition is evaluated
only periodically, and at every sampling instant it is
decided whether or not to transmit new measurements
and control signals. The resulting control strategy aims
at striking a balance between periodic time-triggered
control on the one hand and event-triggered control
on the other hand; therefore, we coined the term peri-
odic event-triggered control (PETC) in [19,20] for this
class of ETC. For the existing approaches that require
monitoring of the event-triggering conditions continu-
ously, we will use the term continuous event-triggered
control (CETC). By mixing ideas from ETC and periodic
sampled-data control, the benefits of reduced resource
utilization are preserved in PETC as transmissions
and controller computations are not performed peri-
odically, even though the event-triggering conditions
are evaluated only periodically. The latter aspect leads
to several benefits, including a guaranteed minimum
interevent time of (at least) the sampling interval of
the event-triggering condition. Furthermore, as already
mentioned, the event-triggering condition has to be ver-
ified only at periodic sampling instants, making PETC
better suited for practical implementations as it can be
implemented in more standard time-sliced embedded
software architectures. In fact, in many cases CETC will
typically be implemented using a discretized version
based on a sufficiently high sampling period resulting
in a PETC strategy (the results of [21] may be applied in
this case to analyze stability of the resulting closed-loop
system). This fact provides further motivation for a more
direct analysis and design of PETC instead of obtain-
ing them in a final implementation stage as a discretized
approximation of a CETC strategy.

Initial work in the direction of PETC was taken
in [2,7,8,22], which focused on restricted classes of
systems, controllers, and/or (different) event-triggering
conditions without providing a general analysis
framework. Recently, the interest in what we call
here PETC is growing, see, for example, [20,23–26]
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and [27, Sec. 4.5], although these approaches start from
a discrete-time plant model instead of a continuous-time
plant, as we do here. In this chapter, the focus is on
approaches to PETC that include a formal analysis
framework, which, moreover, apply for continuous-
time plants and incorporate intersample behavior in the
analysis. We first address the case of plants modeled by
linear continuous-time systems. Afterward, we present
preliminary results in the case where the plant dynamics
is nonlinear. The presented results are a summary of our
works in [19] and in [28], in which the interested reader
will find all the proofs as well as further developments.

The chapter is organized as follows. We first introduce
the PETC paradigm in Section 6.2. We then model PETC
systems as impulsive systems in Section 6.3. Results for
linear plants are presented in Section 6.4, and the case of
nonlinear systems is addressed in Section 6.5. Section 6.6
concludes the chapter with a summary as well as a list
of open problems.

Nomenclature

Let R := (−∞, ∞), R+ := [0, ∞), N := {1, 2, . . .}, and
N0 := {0, 1, 2, . . .}. For a vector x ∈ Rn, we denote by
‖x‖ :=

√
x�x its 2-norm. The distance of a vector x to a

setA ⊂ Rn is denoted by ‖x‖A := inf{‖x− y‖ | y ∈ A}.
For a real symmetric matrix A ∈ Rn×n, λmax(A) denotes
the maximum eigenvalue of A. For a matrix A ∈ Rn×m,
we denote by A� ∈ Rm×n the transpose of A, and
by ‖A‖ :=

√
λmax(A�A) its induced 2-norm. For the

sake of brevity, we sometimes write symmetric matri-

ces of the form
[

A B
B� C

]
as

[
A B
� C

]
. We call a matrix

P ∈ Rn×n positive definite, and write P � 0, if P is sym-
metric and x�Px > 0 for all x �= 0. Similarly, we use
P � 0, P ≺ 0, and P � 0 to denote that P is positive
semidefinite, negative definite, and negative semidef-
inite, respectively. The notations I and 0 respectively
stand for the identity matrix and the null matrix, whose
dimensions depend on the context. For a locally inte-
grable signal w : R+ → Rn, we denote by ‖w‖L2 :=
(
∫ ∞

0 ‖w(t)‖2dt)1/2 its L2-norm, provided the integral is
finite. Furthermore, we define the set of all locally inte-
grable signals with a finite L2-norm as L2. For a signal
w : R+ → Rn, we denote the limit from below at time
t ∈ R+ by w+(t) := lims↑t w(s). The solution z of a time-
invariant dynamical system at time t � 0 starting with
the initial condition z(0) = z0 will be denoted z(t, z0)
or simply z(t) when the initial state is clear from the
context. The notation �·� stands for the floor function.

6.2 Periodic ETC Systems

In this section, we introduce the PETC paradigm. To
do so, let us consider a plant whose dynamics is

given by
d
dt x = f (x, u, w), (6.1)

where x ∈ Rnx denotes the state of the plant, u ∈ Rnu

is the input applied to the plant, and w ∈ Rnw is an
unknown disturbance.

In a conventional sampled-data state-feedback set-
ting, the input u is given by

u(t) = K(x(tk)), for t ∈ (tk, tk+1], (6.2)

where tk, k ∈ N, are the sampling instants, which are
periodic in the sense that tk = kh, k ∈ N, for some prop-
erly chosen sampling interval h > 0. Hence, at each
sampling instant, the state measurement is sent to the
controller, which computes a new control input that is
immediately applied to the plant.

The setup is different in PETC. In PETC, the sampled
state measurement x(tk) is used to evaluate a criterion at
each tk = kh, k ∈ N for some h > 0, based on which it is
decided (typically at the smart sensor) whether the feed-
back loop needs to be closed. In that way, a new control
input is not necessarily periodically applied to the plant
as in traditional sampled-data settings, even though
the state is sampled at every tk, k ∈ N. This has the
advantage of reducing the usage of the communication
channel and of the controller computation resources, as
well as the number of control input updates. The lat-
ter allows limiting the actuators, wear, and reducing the
actuators, energy consumption, in some applications. As
a consequence, the controller in PETC is given by

u(t) = K(x̂(t)), for t ∈ R+, (6.3)

where x̂ is a left-continuous signal∗ given for t ∈
(tk, tk+1], k ∈ N, by

x̂(t) =

{
x(tk), when C(x(tk), x̂(tk)) > 0
x̂(tk), when C(x(tk), x̂(tk)) � 0

, (6.4)

and some initial value for x̂(0). Considering the config-
uration in Figure 6.1, the value x̂(t) can be interpreted
as the most recently transmitted measurement of the
state x to the controller at time t. Whether or not new
state measurements are transmitted to the controller is
based on the event-triggering criterion C : Rnξ → R

with nξ := 2nx. In particular, if at time tk it holds that
C(x(tk), x̂(tk)) > 0, the state x(tk) is transmitted over the
network to the controller, and x̂ and the control value
u are updated accordingly. In case C(x(tk), x̂(tk)) � 0,
no new state information is sent to the controller, in
which case the input u is not updated and kept the
same for (at least) another sampling interval, imply-
ing that no control computations are needed and no

∗A signal x : R+ → Rn is called left-continuous, if for all t > 0,
lims↑t x(s) = x(t).
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new state measurements and control values have to be
transmitted.

Contrary to CETC, we see that the triggering condi-
tion is evaluated only every h units of time (and not
continuously for all time t ∈ R+). Intuitively, we might
want to design the criterion C as in CETC and to select
the sampling period h sufficiently small to obtain a PETC
strategy which (approximately) preserves the properties
ensured in CETC. Indeed, we know from [21] that if
a disturbance-free CETC system is such that its origin
(or, more generally, a compact set) is uniformly glob-
ally asymptotically stable, then the corresponding emu-
lated PETC system preserves this property semiglobally
and practically with fast sampling, under mild condi-
tions as we will recall in Section 6.5.2. This way of
addressing PETC may exhibit some limitations, as it may
require very fast sampling of the state, which may not
be possible to achieve because of the limited hardware
capacities. Furthermore, we might want to work with
“non-small” sampling periods in order to reduce the
usage of the computation and communication resources.
As such, there is a strong need for systematic methods
to construct PETC strategies that appropriately take into
account the features of the paradigm. The objective of
this chapter is to address this challenge. We present in
the next sections analysis and design results for systems
(6.1), (6.3), and (6.4) such that desired stability or per-
formance guarantees are satisfied, while the number of
transmissions between the plant and the controller is
kept small.

6.3 Impulsive System Formulation

The system described in the previous section com-
bines continuous-time dynamics (6.1) with discrete-time
phenomena (6.3) and (6.4). It is therefore natural to
model PETC systems as impulsive systems (see [29]). An
impulsive system is a system that combines the “flow”
of the continuous dynamics with the discrete “jumps”
occurring at each sampling instant.

We define ξ := [x� x̂�]� ∈ Rnξ , with nξ = 2nx, and

g(ξ, w) :=
[

f (x, K(x̂), w)
0

]
, J1 :=

[
I 0
I 0

]
, J2 :=

[
I 0
0 I

]
,

(6.5)

to arrive at an impulsive system given by

d
dt

[
ξ

τ

]
=

[
g(ξ, w)

1

]
, when τ ∈ [0, h], (6.6)

Plant

Controller

Event-triggering
condition

u x

x̂

FIGURE 6.1

Periodic event-triggered control schematic.

[
ξ+

τ+

]
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
J1ξ

0

]
, when C(ξ) > 0, τ = h[

J2ξ

0

]
, when C(ξ) � 0, τ = h

(6.7)

where the state τ keeps track of the time elapsed since
the last sampling instant. Between two successive sam-
pling instants, ξ and τ are given by the (standard) solu-
tions to the ordinary differential equation (6.6), and these
experience a jump dictated by (6.7) at every sampling
instant. When the event-based condition is not satisfied,
only τ is reset to 0, while x and x̂ are unchanged. In the
other case, x̂ and τ are, respectively, reset to x and 0,
which corresponds to a new control input being applied
to the plant.

In what follows, we use the impulsive model to ana-
lyze the PETC system for both the case that the plant and
controller are linear (Section 6.4), or the case that they are
nonlinear (Section 6.5).

6.4 Analysis for Linear Systems

In this section, we analyze stability and performance
of the PETC systems with linear dynamics. Hence,
the plant model is given by (6.1) with f (x, u, w) =
Apx + Bpu + Bww and the feedback law by (6.2) with
K(x) = Kx, where Ap, Bp, Bw, and K are matrices of
appropriate dimensions. This leads to the PETC (6.6)–
(6.7) with

g(ξ, w) = Āξ+ B̄w,

with Ā :=
[

Ap BpK
0 0

]
, B̄ :=

[
Bw

0

]
. (6.8)

Moreover, we focus on quadratic event-triggering condi-
tions, i.e., C in (6.4) and (6.7), which is defined as

C(ξ(tk)) = ξ�(tk)Qξ(tk), (6.9)

for some symmetric matrix Q ∈ Rnξ×nξ . This choice is
justified by the fact that various existing event-triggering
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conditions, including the ones in [11,12,16,30–33], that
have been applied in the context of CETC, can be written
as quadratic event-triggering conditions for PETC as in
(6.9) (see [19] for more details).

We now make precise what we mean by stability and
performance. Subsequently, we present two different
approaches: (1) direct analysis of the impulsive system
and (2) indirect analysis of the impulsive system using a
discretization.

6.4.1 Problem Statement

Let us define the notion of global exponential stabil-
ity and L2-performance, where the latter definition is
adopted from [34].

DEFINITION 6.1 The PETC system, given by (6.1),
(6.2), and (6.3) is said to be globally exponentially sta-
ble (GES), if there exist c > 0 and ρ > 0 such that for
any initial condition ξ(0) = ξ0 ∈ Rnξ , all corresponding
solutions to (6.6)–(6.7) with τ(0) ∈ [0, h] and w = 0 sat-
isfy ‖ξ(t)‖ � ce−ρt‖ξ0‖ for all t ∈ R+ and some (lower
bound on the) decay rate ρ.

Let us now define the L2-gain of a system, for which
we introduce a performance variable z ∈ Rnz given by

z = C̄ξ+ D̄w, (6.10)

where C̄ and D̄ are appropriately chosen matrices
given by the considered problem. For instance, when
C̄ = [Inx 0nx×nx ] and D̄ is equal to 0nx×nw , we simply
have that z = x.

DEFINITION 6.2 The PETC system, given by (6.1),
(6.2), (6.3), and (6.10) is said to have an L2-gain from w
to z smaller than or equal to γ, where γ ∈ R+, if there
is a function δ : Rnξ → R+ such that for any w ∈ L2,
any initial state ξ(0) = ξ0 ∈ Rnξ and τ(0) ∈ [0, h], the
corresponding solution to (6.6), (6.7), and (6.10) satisfies

‖z‖L2 � δ(ξ0) + γ‖w‖L2 . (6.11)

Equation 6.11 is a robustness property, and the gain γ

serves as a measure of the system’s ability to attenuate
the effect of the disturbance w on z. Loosely speaking,
small γ indicates small impact of w on z.

6.4.2 Stability and Performance of the Linear
Impulsive System

We analyze the stability and the L2-gain of the impul-
sive system model (6.6)–(6.7) using techniques from
Lyapunov stability analysis [34]. In short, the theory
states that if an energy function (a so-called Lyapunov

or storage function) can be found that satisfies certain
properties, stability and a certain L2-gain can be guar-
anteed. In particular, we consider a Lyapunov function
of the form

V(ξ, τ) := ξ�P(τ)ξ, (6.12)

for ξ ∈ Rnξ and τ ∈ [0, h], where P : [0, h]→ Rnξ×nξ with
P(τ) � 0, for τ ∈ [0, h]. This function proves stability and
a certain L2-gain from w to z if it satisfies

d
dt V � −2ρV − γ−2‖z‖2 + ‖w‖2, (6.13)

during the flow (6.6) and

V(J1ξ, 0) � V(ξ, h), for all ξ with ξ�Qξ > 0, (6.14)

V(J2ξ, 0) � V(ξ, h), for all ξ with ξ�Qξ � 0, (6.15)

during the jumps (6.7) of the impulsive system (6.6)–
(6.7). Equation 6.13 indicates that along the solutions, the
energy of the system decreases up to the perturbating
term ‖w‖ during the flow, and (6.14) indicates that the
energy in the system does not increase during the jumps.

The main result presented below will provide a
computable condition in the form of a linear matrix
inequality (LMI) to verify if a function (6.12) exists
that satisfies (6.13) and (6.14). Note that LMIs can
be efficiently tested using optimization software, such
as Yalmip [35]. We introduce the Hamiltonian matrix,
given by

H :=
[

Ā + ρI + B̄D̄�LC̄ γ2B̄(γ2 I − D̄�D̄)−1B̄�
−C̄�LC̄ −(Ā + ρI + B̄D̄�LC̄)�

]
,

(6.16)

with L := (γ2 I − D̄D̄�)−1. The matrix L has to be
positive definite, which can be guaranteed by taking
γ >

√
λmax(D̄�D̄). In addition, we introduce the matrix

exponential

F(τ) := e−Hτ =

[
F11(τ) F12(τ)
F21(τ) F22(τ)

]
, (6.17)

Besides this, we need the following technical
assumption.

ASSUMPTION 6.1 F11(τ) is invertible for all τ ∈ [0, h].

Assumption 6.1 is always satisfied for a sufficiently
small sampling period h. Namely, F(τ) = e−Hτ is a con-
tinuous function, and we have that F11(0) = I. Let us
also introduce the notation F̄11 := F11(h), F̄12 := F12(h),
F̄21 := F21(h), and F̄22 := F22(h), and a matrix S̄ that
satisfies S̄S̄� := −F̄−1

11 F̄12. Such a matrix S̄ exists under
Assumption 6.1 because this assumption ensures that
the matrix −F̄−1

11 F̄12 is positive semidefinite.
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Theorem 6.1

Consider the impulsive system (6.6)–(6.7) and let ρ > 0,
γ >

√
λmax(D̄�D̄), and Assumption 6.1 hold. Suppose

that there exist a matrix P � 0, and scalars μi � 0,
i ∈ {1, 2}, such that for i ∈ {1, 2},⎡⎣P + (−1)iμiQ J�i F̄−�11 PS̄ J�i (F̄−�11 PF̄−1

11 + F̄21 F̄−1
11 )

� I − S̄�PS̄ 0
� � F̄−�11 PF̄−1

11 + F̄21F̄−1
11

⎤⎦
� 0. (6.18)

Then, the PETC system (6.6)–(6.7) is GES with decay rate
ρ (when w = 0) and has an L2-gain from w to z smaller
than or equal to γ.

The results of Theorem 6.1 guarantee both GES (for
w = 0) and an upper bound on the L2-gain.

REMARK 6.1 Recently, extensions to the above
results were provided in [36]. Instead of adopt-
ing timer-dependent quadratic storage functions
V(ξ, τ) = ξ�P(τ)ξ, in [36] more versatile storage
functions were used of the piecewise quadratic form
V(ξ, τ,ω) = ξ�Pi(τ)ξ, i ∈ {1, . . . , N}, where i is deter-
mined by the region Ωi, i ∈ {1, . . . , N}, in which the
state ξ is after h − τ time units (i.e., at the next jump
time) that depends on the disturbance signal ω. The
regions Ω1, . . . ,ΩN form a partition of the state-space
Rnξ . As such, the value of the storage function depends
on future disturbance values, see [36] for more details.
This approach leads to less conservative LMI conditions
than the ones presented above.

6.4.3 A Piecewise Linear System Approach to
Stability Analysis

In case disturbances are absent (i.e., w = 0), less con-
servative conditions for GES can be obtained than by
using Theorem 6.1. These conditions can be obtained by
discretizing the impulsive system (6.6)–(6.7) at the sam-
pling instants tk = kh, k ∈ N, where we take∗ τ(0) = h
and w = 0, resulting in a discrete-time piecewise-linear
(PWL) model. By defining the state variable ξk := ξ(tk)
(and assuming ξ to be left-continuous), the discretization
leads to the bimodal PWL model

ξk+1 =

{
eĀh J1ξk, when ξ�k Qξk > 0
eĀh J2ξk, when ξ�k Qξk � 0

. (6.19)

∗Note that τ(0) is allowed to take any value in [0, h] in the stability
definition (Definition 6.1), while in the discretization we take τ(0) = h.
Due to the linearity of the flow dynamics (6.6) and the fact that τ(0)
lies in a bounded set, it is straightforward to see that GES for initial
conditions with τ(0) = h implies GES for all initial conditions with
τ(0) ∈ [0, h].

Using the PWL model (6.19) and a piecewise quadratic
(PWQ) Lyapunov function of the form

V(ξ) =

{
ξ�P1ξ, when ξ�Qξ > 0
ξ�P2ξ, when ξ�Qξ � 0

, (6.20)

we can guarantee GES of the PETC system given by (6.1),
(6.3), (6.4), and (6.8) under the conditions given next.

Theorem 6.2

The PETC system (6.6)–(6.7) is GES with decay rate ρ,
if there exist matrices P1, P2, and scalars αij � 0, βij � 0,
and κi � 0, i, j ∈ {1, 2}, satisfying

e−2ρhPi − (eĀh Ji)
�Pje

Āh Ji + (−1)iαijQ

+ (−1)jβij(e
Āh Ji)

�QeĀh Ji � 0,
(6.21)

for all i, j ∈ {1, 2}, and

Pi + (−1)iκiQ � 0, (6.22)

for all i ∈ {1, 2}.

When comparing the two different analysis
approaches, two observations can be made. The first
observation is that the direct analysis of the impulsive
system allows us to analyze the L2-gain from w to z,
contrary to the indirect analysis using the PWL system.
Second, the indirect analysis approach using the PWL
system is relevant since, when comparing it to the direct
analysis of the impulsive system, we can show that
for stability analysis (when w = 0), the PWL system
approach never yields more conservative results than
the impulsive system approach, as is formally proven
in [19].

REMARK 6.2 This section is devoted to the analy-
sis of the stability and the performance of linear PETC
systems. The results can also be used to design the
controllers as well as the triggering condition and the
sampling period. The interested reader can consult
Section IV in [19] for detailed explanations.

REMARK 6.3 In [7], PETC closed-loop systems were
analyzed with C(x(tk), x̂(tk)) = ‖x(tk)‖ − δ with δ > 0
some absolute threshold. Hence, the control value u
is updated to Kx(tk) only when ‖x(tk)‖ > δ, while in
a region close to the origin, i.e., when ‖x(tk)‖ � δ, no
updates of the control value take place at the sampling
instants tk = kh, k ∈ N. For linear systems with bounded
disturbances, techniques were presented in [7] to prove
ultimate boundedness/practical stability, and calculate

D
ow

nl
oa

de
d 

by
 [

m
au

ri
ce

 h
ee

m
el

s]
 a

t 1
1:

07
 0

8 
D

ec
em

be
r 

20
15

 



T&F Cat #K24071 — K24071 C006 — page 111 — 10/28/2015 — 16:04

Periodic Event-Triggered Control 111

the ultimate boundΠ to which eventually all state trajec-
tories converge (irrespective of the disturbance signal).

REMARK 6.4 Extensions of the above analysis frame-
work to output-based PETC with decentralized event
triggering (instead of state-based PETC with central-
ized triggering conditions) can be found in [20]. Model-
based (state-based and output-based) PETC controllers
are considered in [19]. Model-based PETC controllers
exploit model knowledge to obtain better predictions x̂
of the true state x in between sensor-to-controller com-
munication than just holding the previous value as in
(6.4). This can further enhance communication savings
between the sensor and the controller. Similar tech-
niques can also be applied to reduce the number of com-
munications between the controller and the actuator.

REMARK 6.5 For some networked control systems
(NCSs), it is natural to periodically switch between time-
triggered sampling and PETC. Examples include NCS
with FlexRay (see [37]). FlexRay is a communication pro-
tocol developed by the automotive industry, which has
the feature to switch between static and dynamic seg-
ments, during which the transmissions are, respectively,
time triggered or event triggered. While the implemen-
tation and therefore the model differ in this case, the
results of this section can be applied to analyze stability.

6.4.4 Numerical Example

We illustrate the presented theory using a numerical
example. Let us consider the example from [12] with
plant dynamics (6.1) given by

d
dt x =

[
0 1
−2 3

]
x +

[
0
1

]
u +

[
1
0

]
w, (6.23)

and state-feedback controller (6.3), where we take
K(x) = [1 − 4] x and tk = kh, k ∈ N, with sampling
interval h = 0.05. We consider the event-triggering con-
ditions given by

C(x, x̂) = ‖Kx̂ − Kx‖ − σ‖Kx‖, (6.24)

for some value σ > 0. This can be equivalently written in
the form of (6.9), by choosing

Q =

[
(1− σ2)K�K −K�K
−K�K K�K

]
. (6.25)

For this PETC system, we will apply both approaches
for stability analysis (for w = 0), and the impulsive
system approach for performance analysis. We aim at
constructing the largest value of σ in (6.24) such that
GES or a certain L2-gain can be guaranteed. The reason

for striving for large values of σ is that then large
(minimum) interevent times are obtained, due to the
form of (6.24).

For the event-triggering condition (6.24), the PWL
system approach yields a maximum value for σ of
σPWL = 0.2550 (using Theorem 6.2), while still guaran-
teeing GES of the PETC system. The impulsive sys-
tem approach gives a maximum value of σIS = 0.2532.
Hence, as expected based on the discussion at the end of
Section 6.4.3 indicating that the PWL system approach is
less conservative than the impulsive system approach,
see [19], we see that σIS � σPWL, although the values are
rather close.

When analyzing theL2-gain from the disturbance w to
the output variable z as in (6.10) where z = [0 1 0 0]ξ, we
obtain Figure 6.2a, in which the smallest upper bound
on the L2-gain that can be guaranteed on the basis
of Theorem 6.1 is given as a function of σ. This fig-
ure clearly demonstrates that better guarantees on the
control performance (i.e., smaller γ) necessitate more
updates (i.e., smaller σ), allowing us to make trade-offs
between these two competing objectives, see also the
discussion regarding Figure 6.2d. An important design
observation is related to the fact that for σ→ 0, we
recover the L2-gain for the periodic sampled-data sys-
tem, given by (6.1) of the controller (6.2) with sampling
interval h = 0.05 and tk = kh, k ∈ N. Hence, this indi-
cates that an emulation-based design can be obtained by
synthesizing first a state-feedback gain K in a periodic
time-triggered implementation of the feedback control
given by u(tk) = Kx(tk), k ∈ N (related to σ = 0), result-
ing in a small L2-gain of the closed-loop sampled-data
control loop (using the techniques in, e.g., [38]). Next
the PETC controller values of σ > 0 can be selected to
reduce the number of communications and updates of
control input, while still guaranteeing a small value of
the guaranteed L2-gain according to Figure 6.2a and d.

Figure 6.2b shows the response of the performance
output z of the PETC system with σ = 0.2, initial condi-
tion ξ0 = [1 0 0 0]� and a disturbance w as also depicted
in Figure 6.2b. For the same situation, Figure 6.2c shows
the evolution of the interevent times. We see interevent
times ranging from h = 0.05 up to 0.85 (17 times the sam-
pling interval h), indicating a significant reduction in the
number of transmissions. To more clearly illustrate this
reduction, Figure 6.2d depicts the number of transmis-
sions for this given initial condition and disturbance, as
a function of σ. Using this figure and Figure 6.2a, it can
be shown that the increase of the guaranteed L2-gain,
through an increased σ, leads to fewer transmissions,
which demonstrates the trade-off between the closed-
loop performance and the number of transmissions that
have to be made. Conclusively, using the PETC instead
of the periodic sampled-data controller for this example
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FIGURE 6.2

Figures corresponding to the numerical example of Section 6.4.4. (a) Upper-bound L2-gain as a function of σ. (b) The evolution of the distur-
bances w and the output z as a function of time for σ = 0.2. (c) The interevent times as a function of time for σ = 0.2. (d) Number of events as
a function of σ.

yields a significant reduction in the number of trans-
missions/controller computations, while still preserving
closed-loop stability and performance to some degree.

6.5 Design and Analysis for Nonlinear Systems

Let us now address the case where the plant dynamics is
described by a nonlinear ordinary differential equation,
and we ignore the possible presence of external distur-
bance w for simplicity. As a consequence, (6.1) becomes

d
dt x = f (x, u, 0), (6.26)

where u is given by (6.3)–(6.4).

6.5.1 Problem Statement

The generalization of the results of Section 6.4 to non-
linear systems is a difficult task, and we will a pri-
ori not be able to derive similar easily computable
criteria to verify the stability properties of the cor-
responding PETC systems. We therefore address the
design of the sampling interval h and of the trigger-
ing condition C from a different angle compared to
Section 6.4.

We start by assuming that we already designed a con-
tinuous event-triggered controller and our objective is to
design h and C to preserve the properties of CETC. We
thus assume that we know a mapping K : Rnx → Rnu

and a criterion C̃ : R2nx → R, which are used to gener-
ate the control input. The corresponding transmission
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instants are denoted by t̃k, k ∈ N0, and are defined by

t̃k+1 = inf
{

t > t̃k | C̃(x(t), x(t̃k)) � 0
}

, t̃0 = 0.
(6.27)

The control input is thus given by

u(t) = K(x̃(t)), for t ∈ R+, (6.28)

where∗ x̃(t) = x(t̃k) for t ∈ (t̃k, t̃k+1]. Note that C̃ is eval-
uated at any t ∈ R+ in (6.27) contrary to (6.4). The con-
tinuous event-triggered controller guarantees that, for
all time† t � 0,

C̃(ξ̃(t)) � 0, (6.29)

where ξ̃ := [x� x̃�]�.
In the following, we first apply the results of [21] to

show that, if (6.29) implies the global asymptotic stabil-
ity of a given compact set, then this property is semiglob-
ally and practically preserved in the context of PETC
where the adjustable parameter is the sampling period
h, under mild regularity conditions. We then present
an alternative approach, which consists in redesigning
the continuous event-triggering condition C̃ for PETC
in order to recover the same properties as for CETC. In
this case, we provide an explicit bound on the sampling
period h.

6.5.2 Emulation

We model the overall CETC system as an impulsive
system (like in Section 6.3)

d
dt ξ̃ = g(ξ̃) when C̃(ξ̃) � 0
ξ̃+ = J1ξ̃ when C̃(ξ̃) � 0

, (6.30)

where g(ξ̃) = [ f (x, K(x̃), 0)�, 0�]� (with some abuse
of notation with respect to (6.5)) and J1 is defined in
Section 6.3. We do not use strict inequalities in (6.30) to
define the regions of the state space where the system
flows and jumps, contrary to (6.6)–(6.7). This is justi-
fied by the fact that we want to work with a flow set,
{ξ̃ | C̃(ξ̃) � 0}, and a jump set, {ξ̃ | C̃(ξ̃) � 0}, which are
closed in order to apply the results of [21]. (We assume
below that C̃ is continuous for this purpose.) When the
state is in the intersection of the flow set and the jump
set, the corresponding solution can either jump or flow,
if flowing keeps the solution in the flow set. We make
the following assumptions on the system (6.30).

ASSUMPTION 6.2 The solutions to (6.30) do not
undergo two consecutive jumps, i.e., t̃k < t̃k+1 for any
k ∈ N0, and are defined for all positive time.

∗We use the notation x̃ instead of x̂ to avoid any confusion with the
PETC setup.

†We assume that the solutions to the corresponding system are
defined for all positive time, for any initial condition.

Assumption 6.2 can be relaxed by allowing two con-
secutive jumps, even Zeno phenomenon for the CETC
system. In this case, a different concept of solutions is
required as defined in [29], see for more detail [21].

ASSUMPTION 6.3 The vector field g and the scalar
field C̃ are continuous.

We suppose that (6.29) ensures the global asymptotic
stability of a given compact set A ⊂ R2nx , as formalized
below.

ASSUMPTION 6.4 The following holds for the CETC
system.

(1) For each ε > 0, there exists δ > 0 such that
each solution ξ̃ starting at ξ̃0 ∈ A + δB,
where B is the unit ball of R2nx , satisfies
‖ξ̃(t)‖A � ε for all t � 0.

(2) There exists μ > 0 such that any solution
starting in A + μB satisfies ‖ξ̃(t)‖A → 0 as
t→ ∞.

Set stability extends the classical notion of stability of
an equilibrium point to a set. Essentially, a set is sta-
ble if a solution which starts close to it (in terms of the
distance to this set) remains close to it [see item (1) of
Assumption 6.4]; it is attractive if any solution converges
toward this set [see item (1) of Assumption 6.4]. A set is
asymptotically stable if it satisfies both properties. Set
stability is fundamental in many control theoretic prob-
lems, see, for example, Chapter 3.1 in [29], or [39,40].
Many existing continuous event-triggered controllers
satisfy Assumption 6.4 as shown in [18]. Examples
include the techniques in [1,2,12–14] to mention a few.

We need to slightly modify the impulsive model (6.6)–
(6.7) of the PETC system as follows, in order to apply the
results of [21]

d
dt

[
ξ

τ

]
=

[
g(ξ)

1

]
when τ ∈ [0, h]

[
ξ+

τ+

]
∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{[
J1ξ

0

]}
,

when C̃(ξ) > 0, τ = h{[
J2ξ

0

]}
,

when C̃(ξ) < 0, τ = h{[
J1ξ

0

]
,
[

J2ξ

0

]}
,

when C̃(ξ) = 0, τ = h.

(6.31)

The difference with (6.6)–(6.7) is that, when τ = h and
C̃(ξ) = 0, we can either have a transmission (i.e., ξ is
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reset to [x� x�]�) or not (i.e., ξ remains unchanged).
Hence, system (6.31) generates more solutions than
(6.6)–(6.7). However, the results presented in Section 6.4
also apply when (6.31) (with linear plant) is used instead
of (6.6)–(6.7). Furthermore, the jump map of (6.31) is
outer semicontinuous (see Definition 5.9 in [29]), which
is essential to apply [21]. Proposition 6.1 below follows
from Theorem 5.2 in [21].

Proposition 6.1

Consider the PETC system (6.31) and suppose Assump-
tions 6.2 through 6.4 hold. For any compact set Δ ⊂
R2nx and any ε > 0, there exists h∗ such that for any
h ∈ (0, h∗), any solution [ξ�, τ]� with ξ(0) ∈ Δ, there
exists T � 0 such that ξ(t) ∈ A+ εB for all t � T.

Proposition 6.1 shows that the global asymptotic sta-
bility of A in Assumption 6.4 is semiglobally and
practically preserved for the emulated PETC system,
by adjusting the sampling period. It is possible to
derive stronger stability guarantees for the PETC sys-
tem such as the (semi)global asymptotic stability of A,
for instance, under additional assumptions on the CETC
system.

6.5.3 Redesign

The results above are general, but they do not provide
an explicit bound on the sampling period h, which is
important in practice. Furthermore, in some cases, we
would like to exactly (and not approximately) preserve
the properties of CETC, which may not necessarily be
those stated in Assumption 6.2, but may be some perfor-
mance guarantees, for instance. We present an alterna-
tive approach to design PETC controllers for nonlinear
systems for this purpose. Contrary to Section 6.5.2, we
do not emulate the CETC controller, but we redesign
the triggering criterion (but not the feedback law), and
we provide an upper-bound on the sampling period h
to guarantee that C̃ remains nonpositive for the PETC
system.

We suppose that inequality (6.29) ensures the satis-
faction of a desired stability or performance property.
Consider the following example to be more concrete.
In [12], a continuous event-triggering law of the form
β(‖x − x̃‖) � σα(‖x‖) with∗ β, α ∈ K∞ and σ ∈ (0, 1) is
designed. We obtain C̃(x, x̃) = β(‖x − x̃‖) − σα(‖x‖) in
this case. This triggering law is shown to ensure the
global asymptotic stability of the origin of the nonlin-
ear systems (6.26), (6.27), and (6.28) in [12], under some

∗A function β : R+ → R+ is of class K∞ if it is continuous, zero at
zero, strictly increasing, and unbounded.

conditions on f , K, β, α. In other words, C̃ nonpositive
along the system solutions implies that the origin of
the closed-loop system is globally asymptotically stable.
Similarly, the conditions of the form ‖x − x̃‖ � ε used
in [1,2,13,14] and ‖x − x̃‖ � δ‖x‖ + ε in [16] to practi-
cally stabilize the origin of the corresponding CETC sys-
tem give C̃(x, x̃) = ‖x − x̃‖ − ε and C̃(x, x̃) = ‖x − x̃‖ −
δ‖x‖ − ε, respectively. By reducing the properties of
CETC to the satisfaction of (6.29), we cover a range of
situations in a unified way.

We make the following assumption on the CETC
system (which was not needed in Section 6.5.2).

ASSUMPTION 6.5 Consider the CETC system (6.30),
it holds that

T := inf{t > 0 | C̃(ξ̃(t, [x�0 x�0 ]�)) � 0,

[x�0 x�0 ]� ∈ Ω} > 0, (6.32)

where ξ̃(t, [x�0 x�0 ]�) is the solution to d
dt ξ̃ = g(ξ̃) at time

t initialized at [x�0 x�0 ]�, and Ω ⊆ Rnξ is bounded and
forward invariant† for the CETC system (6.30).

Assumption 6.5 means that there exists a uniform
minimum intertransmission time for the CETC system
in the set Ω. This condition is reasonable as most avail-
able event-triggering schemes of the literature ensure
the existence of a uniform minimum amount of time
between two transmissions over a given operating set Ω,
see [18]. The set Ω can be determined using the level
set of some Lyapunov function when investigating sta-
bilization problems, for example.

We have seen that under the PETC strategy, the input
can be updated only whenever the triggering condition
is evaluated—i.e., every h units of time. Hence, it is rea-
sonable to select the sampling interval to be less than
the minimum intertransmission time of the CETC sys-
tem (which does exist in view of Assumption 6.5). In that
way, after a jump, we know that C̃ will remain nonpos-
itive at least until the next sampling instant. Therefore,
we select h such that

0 < h < T, (6.33)

where T is defined in (6.32). Estimates of T are generally
given in the analysis of the CETC system to prove the
existence of a positive minimal interevent time.

We aim at guaranteeing that C̃ remains nonposi-
tive along the solutions to the CETC system. Hence,
we would like to verify at tk, k ∈ N0, whether the
condition C̃(ξ(t)) > 0 may be satisfied for t ∈ [tk, tk+1]

†The set Ω is forward invariant for the CETC system if ξ̃0 ∈ Ω
implies that the corresponding solution ξ̃, with ξ̃(t0) = ξ̃0 and t0 ∈ R+,
lies in Ω for all time larger than t0.
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(recall that ξ = [x� x̂�]�). May C̃(ξ(t)) be positive at
some t ∈ [tk, tk+1] (without updating the control action),
a jump must occur when t = tk in order to guarantee
C̃(ξ(t)) � 0 for all t ∈ [tk, tk+1]. To determine at time tk,
k ∈ N, whether the condition C̃(ξ(t)) � 0 may be vio-
lated for some t ∈ [tk, tk+1], the evolution of the trigger-
ing function C̃ along the solutions to d

dtξ = g(ξ) needs
to be analyzed. This point is addressed by resorting
to similar techniques as in [41]. We make the follow-
ing assumption for this purpose, which is stronger than
Assumption 6.3.

ASSUMPTION 6.6 The functions g and C̃ are p-times
continuously differentiable where p ∈ N and the real
numbers c, ςj for j ∈ {0, 1, . . . , p− 1} satisfy

Lp
g C̃(ξ) �

p−1

∑
j=0

ςjLj
gC̃(ξ) + c, (6.34)

for any ξ ∈ Ω, where we have denoted the jth Lie deriva-
tive of C̃ along the closed-loop dynamics g as Lj

gC̃ , with

L0
gC̃ = C̃ , (LgC̃)(ξ) = ∂C̃

∂ξ g(ξ), and Lj
gC̃ = Lg(Lj−1

g C̃) for
j � 1.

Inequality (6.34) always holds when g and C̃ are p-
times continuously differentiable, as it suffices to take
c = max

ξ∈Ω
Lp

g C̃(ξ) and ςj = 0 for j ∈ {0, 1, . . . , p − 1} to

ensure (6.34) (recall that Ω is bounded in view of
Assumption 6.5). However, this particular choice may
lead to conservative results as explained below.

Assumption 6.6 allows to bound the evolution of C̃
by a linear differential equation for which the analytical
solution can be computed as stated in the lemma below,
which directly follows from Lemma V.2 in [41].

Lemma 6.1

Under Assumption 6.6, for all solutions to d
dtξ = g(ξ)

with initial condition ξ0 ∈ Ω such that ξ(t, ξ0) ∈ Ω for
any t ∈ [0, h], it holds that C̃(ξ(t, ξ0)) � y1(t, y0) for any
t ∈ [0, h], where y1 is the first component of the solution
to the linear differential equation⎧⎪⎪⎨⎪⎪⎩

d
dt yj = yj+1, j ∈ {1, 2, . . . , p− 1}
d
dt yp = ∑

p−1
j=0 ςjyj+1 + yp+1

d
dt yp+1 = 0,

(6.35)

with y0 = (C̃(ξ0),LgC̃(ξ0), . . . ,Lp−1
g C̃(ξ0), c).

In that way, for a given state ξ0 ∈ Ω and t ∈ [0, h],
if y1(t, y0) is positive, then Lemma 6.1 implies that

C̃(ξ(t, ξ0)) may be positive. On the other hand, if y1(t, y0)

is nonpositive, Lemma 6.1 ensures that C̃(t, ξ0)) is non-
positive. We can therefore evaluate online y1(t, y0) for
t ∈ [0, h] and verify whether it takes a positive value, in
which case a transmission occurs at tk, otherwise that
is not necessary. The analytic expression of y1(t, y0) is
given by

y1(t, ξ0) := CpeApt

⎡⎢⎢⎢⎢⎢⎢⎣
C̃(ξ0)

LgC̃(ξ0)
...

Lp−1
g C̃(ξ0)

c

⎤⎥⎥⎥⎥⎥⎥⎦ , (6.36)

with

Cp :=
[
1 0 . . . 0

]

Ap :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0 0 0
0 0 1 . . . 0 0 0
...

. . .
...

...
0 0 0 . . . 1 0 0
0 0 0 . . . 0 1 0
ς0 ς1 ς2 . . . ςp−2 ςp−1 1
0 0 0 . . . 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(6.37)

Hence, we define C(ξ) for any ξ ∈ Ω as

C(ξ) := max
t∈[0,h]

y1(t, ξ). (6.38)

Every h units of time, the current state ξ is measured, and
we verify whether C(ξ) is positive, in which case the con-
trol input is updated. Conversely, if C(ξ) is nonpositive,
then the control input is not updated. It has to be noticed
that we do not need to verify the triggering condition
for the next � T

h � sampling instants following a control
input update according to Assumption 6.5, which allows
us to further reduce computations.

REMARK 6.6 The evaluation of y1(t, ξ) for any
t ∈ [0, h] in (6.38) involves an infinite number of con-
ditions, which may be computationally infeasible. This
shortcoming can be avoided by using convex overap-
proximation techniques, see [42]. The idea is to overap-
proximate y1(t, ξ) for t ∈ [0, h]. In that way, the control
input is updated whenever the derived upper-bound is
positive; otherwise, no update is needed. Note that these
bounds can get as close as we want to y1(t, ξ), at the price
of more computation at each sampling instant, see [42]
for more detail.

The proposition below states that to choose h such
that (6.33) holds and C as in (6.38) ensures that C̃ will be
nonpositive along the solutions to (6.6)–(6.7) as desired.
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Proposition 6.2

Consider system (6.6)–(6.7) with h which satisfies (6.33)
and C defined in (6.38) and suppose Assumptions 6.5
and 6.6 hold. Then for any solution [ξ�(t) τ�(t)]� for
which (ξ0, τ0) ∈ Ω×R+, C̃(ξ(t)) � 0 for any t ∈ R+.

6.5.4 Numerical Example

We consider the rigid body previously studied in [43].
The model is given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

d
dt x1 = u1

d
dt x2 = u2

d
dt x3 = x1x2

, (6.39)

and we consider the controller synthesized in [43] in
order to stabilize the origin, which is given by{

u1 = −x1x2 − 2x2x3 − x1 − x3

u2 = 2x1x2x3 + 3x2
3 − x2.

(6.40)

The implementation of the controller on a digital plat-
form leads to the following closed-loop system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

d
dt x1 = −x̂1 x̂2 − 2x̂2x̂3 − x̂1 − x̂3

d
dt x2 = 2x̂1x̂2 x̂3 + 3x̂2

3 − x̂2

d
dt x3 = x1x2.

(6.41)

In order to stabilize the origin of (6.41), we take the
triggering condition as in [41,44]

C̃(x, x̂) = ‖x̂− x‖2 − 0.792σ2‖x‖2 (6.42)

TABLE 6.1
Average Intertransmission Times for 100 Points

CETC PETC
h = 0.01 h = 0.02

0.3488 0.3440 0.3376

with σ = 0.8, which is obtained using the Lyapunov
function

V(x) = 1
2 (x1 + x3)

2 + 1
2 (x2 − x2

3)
2 + x2

3. (6.43)

We design the PETC strategy by following the procedure
in Section 6.5.3. Assumption 6.5 is satisfied with T =
0.08 (which has been determined numerically) for Ω =
{(x, x̂) | V(x) � 5}\{0}. Regarding Assumption 6.6, we
note that the system vector fields and the triggering
condition are smooth. In addition, (6.34) is verified
with∗ p = 3, ς0 = −748.4986, ς1 = −1.0008, ς2 = 4.3166,
and c = 0. We can thus apply the method presented in
Section 6.5.3 as all the conditions of Proposition 6.2 are
ensured. We have selected h < T. Table 6.1 provides
the average intertransmission times for 100 points in
Ω whose x-components are equally spaced along the
sphere centered at 0 and of radius 1 and x̂(0) = x(0).
PETC generates intertransmission times that are smaller
than in CETC as expected. Moreover, we expect the
average intertransmission time to increase when the
sampling interval h decreases as suggested by Table 6.1.

Assumption 6.4 is verified with A = {0} (in view
of [18]) and Assumption 6.3 is also guaranteed. We
can therefore also apply the emulation results of
Section 6.5.2. To compare the strategies obtained by
Sections 6.5.2 and 6.5.3, we plotted the evolution of
C̃ in both cases in Figure 6.3 with h = 0.079 and the

∗SOSTools [45] was used to compute ςi and χi for i ∈ {1, 2, 3}.

PETC with redesigned C
CETC

Ev
en

t-
tr

ig
ge

rin
g 

co
nd

iti
on

 C
 (ξ

)

Time t (s)
0 1 2 3 4 5

–2

–1.5

–1

–0.5

0

0.5

PETC with C = C ~

~

FIGURE 6.3

Evolution of C̃.
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same initial conditions. We see that C̃ remains nonpos-
itive all the time with the redesigned triggering con-
dition, which implies that the periodic event-triggered
controller ensures the same specification as the event-
triggered controller, while C̃ often reaches positive val-
ues with the emulated triggering law.

6.6 Conclusions, Open Problems, and Outlook

In this chapter, we discussed PETC as a class of
ETC strategies that combines the benefits of periodic
time-triggered control and event-triggered control. The
PETC strategy is based on the idea of having an
event-triggering condition that is verified only period-
ically, instead of continuously as in most existing ETC
schemes. The periodic verification allows for a straight-
forward implementation in standard time-sliced embed-
ded system architectures. Moreover, the strategy has
an inherently guaranteed minimum interevent time of
(at least) one sampling interval of the event-triggering
condition, which is easy to tune directly.

We presented an analysis and design framework for
linear systems and controllers, as well as preliminary
results for nonlinear systems. Although we focused in
the first case on static state-feedback controllers and cen-
tralized event-triggering conditions, extensions exist to
dynamic output-feedback controllers and decentralized
event generators, see [19]. Also model-based versions
that can further enhance communication savings are
available, see [20]. A distinctive difference between the
linear and nonlinear results is that an emulation-based
design for the former requires a well-designed time-
triggered periodic controller (with a small L2 gain, e.g.,
synthesized using the tools in [38]), while the nonlinear
part uses a well-designed continuous event-triggered
controller as a starting point.

Several problems are still open in the area of PETC.
First, obtaining tighter estimates for stability bound-
aries and performance guarantees (e.g., L2-gains), min-
imal interevent times, and average interevent times is
needed. These are hard problems in general as we
have shown in this chapter that PETC strategies result
in closed-loop systems that are inherently of a hybrid
nature, and it is hard to obtain nonconservative analy-
sis and design tools in this context. One recent example
providing improvements for the linear PETC frame-
work regarding the determination of L2-gains is [36],
see Remark 6.1. Moreover, in [46] a new lifting-based
perspective is taken on the characterization of the
L2-gain of the closed-loop PETC system, and, in fact, it
is shown that the L2-gain of (6.6)–(6.7) is smaller than
one (and the system is internally stable) if and only if

the �2-gain of a corresponding discrete-time piecewise
linear system is smaller than one (and the system is
internally stable). This new perspective on the PETC
analysis yields an exact characterization of the L2-gain
(and stability) that leads to significantly less conserva-
tive conditions.

Second, in the linear context, extensions to the case of
output-feedback and decentralized triggering exist, see
[19], and for the nonlinear context these extensions are
mostly open. Also the consideration of PETC strategies
for nonlinear systems with disturbances requires atten-
tion. Given these (and many other) open problems, it is
fair to say that the system theory for ETC is far from
being mature, certainly compared to the vast literature
on time-triggered (periodic) sampled-data control. This
calls for further theoretical research on ETC in general
and PETC in particular.

Given the potential of ETC in saving valuable system’s
resources (computational time, communication band-
width, battery power, etc.), while still preserving impor-
tant closed-loop properties, as demonstrated through
various numerical examples in the literature (including
the two in this chapter), it is rather striking that the num-
ber of experimental and industrial applications is still
rather small. To foster the further development of ETC
in the future, it is therefore important to validate these
strategies in practice. Getting feedback from industry
will certainly raise new important theoretical questions.
As such, many challenges are ahead of us both in theory
and practice in this fledgling field of research.
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A framework for the event-triggered stabilization
of nonlinear systems. IEEE Transactions on Auto-
matic Control, 60(4):982–996, 2015.

[19] W. P. M. H. Heemels, M. C. F. Donkers, and A. R.
Teel. Periodic event-triggered control for linear
systems. IEEE Transactions on Automatic Control,
58(4):847–861, 2013.

[20] W. P. M. H. Heemels and M. C. F. Donkers. Model-
based periodic event-triggered control for linear
systems. Automatica, 49(3):698–711, 2013.

[21] R. G. Sanfelice and A. R. Teel. Lyapunov analysis of
sampled-and-hold hybrid feedbacks. In IEEE Con-
ference on Decision and Control, pages 4879–4884,
San Diego, CA, 2006.

[22] J. K. Yook, D. M. Tilbury, and N. R. Soparkar. Trad-
ing computation for bandwidth: Reducing commu-
nication in distributed control systems using state
estimators. IEEE Transactions on Control Systems
Technology, 10(4):503–518, 2002.

[23] A. Eqtami, V. Dimarogonas, and K. J. Kyriakopou-
los. Event-triggered control for discrete-time sys-
tems. In Proceedings of the American Control Confer-
ence (ACC), pages 4719–4724, Baltimore, MD, 2010.

[24] R. Cogill. Event-based control using quadratic
approximate value functions. In Joint IEEE Con-
ference on Decision and Control and Chinese Con-
trol Conference, pages 5883–5888, Shanghai, China,
December 15–18, 2009.

D
ow

nl
oa

de
d 

by
 [

m
au

ri
ce

 h
ee

m
el

s]
 a

t 1
1:

07
 0

8 
D

ec
em

be
r 

20
15

 

http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.conengprac.2010.10.003
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.automatica.2008.03.026
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTAC.2007.904277
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTAC.2007.904277
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTCST.2002.1014671


T&F Cat #K24071 — K24071 C006 — page 119 — 10/28/2015 — 16:04

Periodic Event-Triggered Control 119

[25] L. Li and M. Lemmon. Weakly coupled event
triggered output feedback system in wireless
networked control systems. In Allerton Conference
on Communication, Control and Computing, Urbana,
IL, pages 572–579, 2011.

[26] A. Molin and S. Hirche. Structural characteriza-
tion of optimal event-based controllers for linear
stochastic systems. In Proceedings of the IEEE Confer-
ence Decision and Control, Atlanta, pages 3227–3233,
December 15–17, 2010.

[27] D. Lehmann. Event-Based State-Feedback Control.
Logos Verlag, Berlin, 2011.

[28] R. Postoyan, A. Anta, W. P. M. H. Heemels,
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