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Periodic event-triggered control for nonlinear
networked control systems

W. Wang, R. Postoyan, D. Nešić and W.P.M.H. Heemels

Abstract—Periodic event-triggered control (PETC) is an ap-
pealing paradigm for the implementation of controllers on plat-
forms with limited communication resources, a typical example
being networked control systems. In PETC, transmissions over
the communication channel are triggered by an event generator,
which depends solely on the available plant and controller data,
and is only evaluated at given sampling instants to enable its
digital implementation. In this paper, we consider the general
scenario where the controller communicates with the plant via
multiple decoupled networks. Each network may contain multiple
nodes, in which case a dedicated protocol is used to schedule
transmissions among these nodes. The transmission instants over
the networks are asynchronous and generated by local event
generators. At given sampling instants, the local event generator
evaluates a rule, which only involves the measurements and the
control inputs available locally, to decide whether a transmission
is needed over the considered network. Following the emulation
approach, we show how to design the local triggering generators
to ensure input-to-state stability and Lp-stability for the overall
system based on a continuous-time output feedback controller
that robustly stabilizes the network-free system. The method is
applied to a class of Lipschitz nonlinear systems, for which we
formulate the design conditions as linear matrix inequalities. The
effectiveness of the scheme is illustrated via simulations of a
nonlinear example.

I. INTRODUCTION

NEtworked control systems (NCS) refer to systems in
which the plant and the controller communicate via

networks. Integrating networks into control systems, compared
with the traditional dedicated point-to-point (wired) links, has
major advantages like lower cost, reduced weight and power,
simpler installation and maintenance, and higher reliability [1].
Moreover, the NCS configuration is essential when the plant
consists of many subsystems, which are physically distributed
and interconnected to coordinate their tasks and achieve an
overall objective, see their applications in smart grids, wide-
area systems or for systems with distributed sensors, actuators
and controllers. A major challenge in NCS is to design control
strategies which do not “overuse” the network, to limit the
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transmission delays and the occurrence of packet losses, which
may destroy the desired closed-loop system properties. An
attractive approach in this context is event-triggered control,
which adapts the transmission instants based on the current
state, input and/or output measurement of the plant, see [2]
and the references therein. The idea of ETC is to use the
network only when this is needed by generating transmissions
whenever a state or output-dependent condition is satisfied.
Most literature on ETC focuses on continuous event-triggered
control (CETC), in the sense that the triggering condition is
evaluated at all times, see, for instance, [3]–[7]. Although
CETC may significantly reduce the number of transmissions
compared with traditional periodic sampling, the continuous
evaluation of the triggering condition causes issues when sen-
sors are battery powered for mobility and/or flexibility reasons.
Moreover, it is not even possible to evaluate triggering rules
continuously when the implementation platform is digital. In
this case, it is more natural to evaluate the triggering criterion
at some discrete sampling instants, leading to periodic event-
triggered control (PETC), see [8], [9].

Hybrid systems are commonly used to model CETC systems
(e.g. [4], [7], [10], [11]), as the plant and the controller are
often described by continuous-time systems and transmissions
are discrete events, which can be modeled by jumps. The
generic results in [12] about the sampled-and-hold imple-
mentations of hybrid controllers ensure that the emulation of
a continuous event-triggered controller as a periodic event-
triggered controller still “works”, if the sampling period is
sufficiently small. To be more precise, the uniform global
asymptotic stability of a compact set ensured by CETC is
semiglobally and practically preserved for fast sampling by
PETC. Unfortunately, these results do not provide exploitable
explicit bounds on the sampling period. Furthermore, it is
of interest to preserve global asymptotic stability properties
in PETC, instead of semiglobal practical asymptotic stability.
Works addressing these points have mostly been developed
for systems with linear dynamics, see [8], [13]–[16]. On the
other hand, PETC results for nonlinear systems are scarce.
In [9, Chapter 6.5] and [17], it is explained how to convert
general continuous state-feedback event-triggered controllers
to periodic event-triggered ones, while (approximately) pre-
serving the properties of the former. The work in [18] develops
observer-based output-feedback controllers for a class of non-
linear Lipschitz systems and a practical stability property is en-
sured at the end. Another work is [19], where output-feedback
PETC scheme is studied to ensure global asymptotic stability
for a class of polynomial nonlinear systems. Obviously, PETC
for nonlinear systems is at its early stage and a lot remains to
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be done. In particular, there is a need for systematic design
frameworks, which are flexible enough to cope with output
feedbacks as well as exogenous disturbances. The primary aim
of this paper is to address this challenge.

We study plants modeled by a continuous-time nonlinear
system affected by exogenous disturbances and for which only
some output is available for control. We proceed by emulation
to design the periodic event-triggered controller. Thus, we first
assume that we know an output feedback controller, which
robustly stabilizes the plant in absence of communication
constraints, in the sense that it either ensures an input-to-state
stability or a Lp stability property for the closed-loop system
with respect to the exogenous disturbances as well as output
and input noises. At this stage, any continuous-time design
technique can be applied. We then implement the controller
over networks. We investigate the scenario where multiple
asynchronously operating networks are used to connect the
controller to the plant: this is an additional novelty of this
work. This setup is relevant, for instance, when one network
ensures the communication from the sensors to the controller,
and another one is used to connect the controller to the
actuators. The sensors and the actuators are grouped into
nodes, which are connected to a given network. The trans-
missions over each network are generated by a local triggering
generator. The latter collects measurements and control inputs,
which are locally available, at some sampling instants specific
to the considered network (and not necessarily periodic), it
evaluates a criterion and then decides whether a node needs
to transmit its packet over this network. The transmitting node
is selected according to the local scheduling rule, such as the
Round-Robin (RR) or Try-Once-Discard (TOD) protocol con-
sidered in [1], [20]. To design the local triggering generators,
we therefore have to define three elements: (i) the criterion;
(ii) the sampling instants at which the criterion is evaluated;
(iii) the scheduling rule. Regarding the scheduling rules, we
require that they are uniformly globally asymptotically stable
as characterized in [20], which cover the RR, TOD and
the sampled-data protocols. We also make assumptions on
the robust stability of the original closed-loop system in the
absence of network, which can be checked a priori. Note
that imposing robust stability properties is required for any
nonlinear control systems to be implementable in practice.
Based on these assumptions, we provide the expression of
the local triggering conditions as well as an explicit bound on
the maximum allowable sampling periods (MASP), which are
used to characterize the sampling instants. We actually show
that there is a tradeoff between the MASP of each triggering
generator and a parameter used to define the corresponding
triggering condition.

The overall system is modeled as a hybrid system using
the formalism of [21], [22], for which a jump corresponds to
a sampling instant of one local triggering generator. We then
ensure an input-to-state stability or a Lp-stability with respect
to the exogenous disturbances, depending on the assumptions.
These results lead to a uniform global asymptotic stability
property in the absence of disturbances. The analysis relies on
a novel hybrid Lyapunov function. We apply the results to a
class of globally Lipschitz nonlinear systems and formulate

the assumptions as linear matrix inequalites (LMIs). The
obtained LMIs are always verified in the special cases when
the nonlinearity only involves the measured output or for
any stabilizable and detectable LTI systems. The latter case
appears to be a contribution in its own right as it extends the
centralized and state-feedback PETC for linear systems in [8],
[13] and the output-feedback PETC in [14] to decentralized
implementations. Simulation results on a nonlinear system,
which is not globally Lipschitz, are also provided.

The decentralized setup we investigate is similar to the
one in [4] where continuous event-triggered controllers are
synthesized. The fact that we consider PETC, as opposed to
CETC, benefits for digital implementations, which leads to
additional difficulties. Because the triggering rules are contin-
uously evaluated in CETC, properties, which are essential to
guarantee stability, are ensured at all times. This is no longer
the case in PETC, as the triggering criteria are only checked at
some sampling instants and may therefore be violated between
two successive sampling instants. As a result, our approach
requires a new hybrid model, a different set of assumptions
as well as a novel hybrid Lyapunov function compared to
[4]. Note that CETC as proposed in [4] relies on time-
regularization, as the triggering criterion is evaluated continu-
ously after a fixed waiting time has elapsed since the previous
event. This is different from PETC as done in the paper, as the
triggering conditions here are evaluated only at some sampling
instants, which facilitates digital implementations. Compared
to [9, Chapter 6.5] and [17], the results are applicable for
decentralized output-feedback control, tolerate the presence of
exogenous disturbances and explicitly reveal a link between
the triggering conditions and the sampling instants. Compared
to [18], we consider exogenous disturbances, a decentralized
scenario, we do not restrict our attention to nonlinear systems
with a specific structure, and we ensure asymptotic stability in
the absence of perturbations. Conference versions of this work
can be found in [23] and [24]. In particular, a centralized full-
state feedback PETC is provided for disturbance-free systems
in [23], and a centralized output-feedback control for systems
implemented on a single network is studied in [24] where only
input-to-state stability results are provided.

To summarize, our work leads to the following contributions
on PETC: (i) a generic design framework of the triggering
generators for nonlinear systems, which is applicable for out-
put feedback control as well as in the presence of exogenous
disturbances; (ii) decentralized PETC strategies over multiple
asynchronously operating networks, for the first time to the
best of our knowledge; (iii) a novel hybrid Lyapunov function
is constructed to investigate stability properties of the system;
(iv) even in the particular case of linear systems, the results
extend those in [8], [13], [14] to decentralized output-feedback
control.

The rest of the paper is organized as follows. The notation
and preliminaries on hybrid systems are given in Section II.
We state the problem and present the hybrid model in Section
III. The main results are provided in Section IV and applied to
a class of globally Lipschitz nonlinear systems in Section V.
Simulation results for a nonlinear system are given in Section
VI and conclusions are provided in Section VII. The proofs
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are postponed to the appendix, where technical lemmas are
also provided.

II. PRELIMINARIES

Let Z>0 := {1, 2, . . .}, Z≥0 := {0, 1, 2, . . .}, R :=
(−∞,∞) and R≥0 := [0,∞). For k0 ∈ Z≥0 and Γ ⊂ Z≥0,
k0 + Γ := {k0 + k : k ∈ Γ}. For sets A and B in a
universe U , A \ B := {x ∈ U : x ∈ A and x 6∈ B}. Let
0n and 1n, n ∈ Z>0, be the n-dimensional vector for which
elements are all zeros and ones, respectively. Let 0n×n and
In×n be the square zero matrix and the identity matrix of
dimension n, respectively. Let |x| denote the Euclidean norm
of the vector x ∈ Rn. Let λmin(P ) and λmax(P ) stand for
the minimum and maximum eigenvalues of real symmetric
matrix P , respectively. For x ∈ Rn and y ∈ Rm, (x, y) stands
for [xT , yT ]T . Given a set A ⊂ Rn and x ∈ Rn, we define
the distance of x to A as |x|A := inf

y∈A
|x − y|. A set-valued

mapping M : Rm ⇒ Rn is outer semi-continuous when its
graph {(y, z) ∈ Rm×Rn : z ∈M(y)} is closed, see Lemma
5.10 in [22]. A function γ : R≥0 → R≥0 is of class-K, if
it is continuous, zero at zero and strictly increasing and it
is of class-K∞ if, in addition, it is unbounded. A function
γ : R≥0 × R≥0 → R≥0 is of class-KL, if it is continuous,
γ(·, r) is of class-K for each r ∈ R≥0, and, for each s ∈ R≥0,
γ(s, ·) is decreasing to zero. The notation (t′, j′) ≤ (t, j) refers
to t′ ≤ t and j′ ≤ j with t, t′ ∈ R≥0 and j, j′ ∈ Z≥0. For
x, v ∈ Rn and locally Lipschitz U : Rn → R, U◦(x; v) is the
Clarke derivative of the function U at x in the direction v, i.e.

U◦(x; v) := lim sup
y→x,λ↓0

U(y + λv)− U(y)

λ
. This notion will be

useful as we will be working with locally Lipschitz Lyapunov
functions, which are not differentiable everywhere. We omit
the definitions on hybrid systems and refer the reader to [21],
[22].

III. PETC SETUP AND HYBRID MODEL

In this section, we introduce the setup and model the overall
system as a hybrid system. We then formally state the problem.

A. PETC setup

We consider the plant model

ẋp = fp(xp, u, w)

y = gp(xp),
(1)

where xp ∈ Rnp is the state, w ∈ Rnw is the exogenous
disturbance, u ∈ Rnu is the control input, and y ∈ Rny is the
plant output. As already mentioned in the introduction, we use
an emulation-based design approach. We therefore assume that
we know an output-feedback controller

ẋc = fc(xc, y)

u = gc(xc)
(2)

with state xc ∈ Rnc , which robustly stabilizes the origin of
(1) in a sense made precise in Section IV-A. The functions
fp and fc are assumed to be continuous, and gp and gc are
assumed to be continuously differentiable and zero at zero.

Any controller design method can be used to obtain controller
(2), such as backstepping, forwarding, feedback linearization,
high-gain techniques etc.

Plant Controller
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Fig. 1: Block diagram of the setup

We consider the scenario where plant (1) and controller
(2) communicate with each other via multiple networks, as
illustrated in Figure 1. In particular, sensors and actuators are
connected by N ∈ Z>0 independently and asynchronously
operating networks N1, . . . ,NN . Let N := {1, 2, . . . , N}
and v := (y, u) ∈ Rny+nu . For simplicity of exposition,
we assume v = (v1, . . . , vN ) (after reordering, if necessary),
where vi, i ∈ N , corresponds to the sensors and the actuators
whose signals are transmitted through network Ni.

A local event-triggering generator generates the sequence
of transmission instants for each network Ni, i ∈ N , in the
following manner. A triggering condition is evaluated at each
sampling instant sij , i ∈ N , j ∈ Z≥0, where

εi ≤ sij+1 − sij ≤ Ti (3)

with Ti > 0 the upper bound on the inter-sampling times
and εi ∈ (0, Ti] the minimum time between two successive
evaluations of the triggering condition. Note that each network
has its own sequence of sampling instants, which is not
necessarily periodic or synchronized with the other networks.
Consequently, the sequence of transmission instants of net-
work Ni, which we denote {tiκi}κi∈Z≥0

, is a subsequence of
{sij}j∈Z≥0

, and two successive transmissions are spaced by at
least εi units of time in view of (3), thereby avoiding the Zeno
phenomenon. Parameter εi reflects the minimum achievable
transmission interval given by the hardware constraints. Note
that εi can be chosen arbitrarily in the set (0, Ti]. In fact,
the stability and performance results below apply for any
εi ∈ (0, Ti]. In practical, εi > 0 is determined by the hardware
constraint. We assume that transmission delays and quan-
tization effects are negligible. Each transmission generator
consists of a triggering law and a scheduling rule. We need to
introduce some variables before presenting those.

We denote by û the networked version of u available to plant
(1). Similarly, controller (2) has access to ŷ, the networked
version of y. We let v̂ be the networked version of v and we
partition it as (v̂1, . . . , v̂N ) in the same way as v is. Thus, v̂i,
i ∈ N , is related to the network Ni. Between two successive
transmission instants, v̂i is governed by
˙̂vi = f̂vi(v̂, gp(xp), gc(xc)), t ∈

(
sij , s

i
j+1

)
, j ∈ Z≥0, i ∈ N,

(4)
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where f̂vi is the holding function corresponding to network Ni
and we define f̂v :=

(
f̂v1 , . . . , f̂vN

)
. Zero-order-hold devices

correspond to f̂v = 0 for instance. Other holding functions can
also be envisioned, like model-based ones, see, for example,
[5]. Before modeling the dynamics of v̂i, i ∈ N , at each
sampling instant sij , we introduce the vector of network-
induced errors ei := v̂i−vi ∈ Rnei , where nei ∈ Z>0 satisfies
N∑
i=1

nei = ny+nu. Hence, nei is the number of sensor/actuator

signals associated with network Ni.
At each sampling instant sij , j ∈ Z≥0 and i ∈ N , a function

Υi : Rnei ×Rnei ×Z≥0 → R is evaluated, which depends on
vi, v̂i and an auxiliary variable κi, which counts the number of
transmissions over network Ni. The expression of Υi will be
given in Section IV-B. A transmission is triggered depending
on the sign of Υi, which leads to the update law for v̂i given
by

v̂i(s
i
j

+
) ∈



{
vi(s

i
j) + χi(ei(s

i
j), κi(s

i
j))
}

when Υi(ei(s
i
j), vi(s

i
j), κi(s

i
j))) > 0{

v̂i(s
i
j)
}

when Υi(ei(s
i
j), vi(s

i
j), κi(s

i
j)) < 0{

v̂(sij), vi(s
i
j) + χi(ei(s

i
j), κi(s

i
j))
}

when Υi(ei(s
i
j), vi(s

i
j), κi(s

i
j)) = 0,

(5)

where χi models the scheduling protocol corresponding to
network Ni, such as the RR1, or TOD protocol2, or the so-
called sampled-data protocol for which χi = 0 when the
network is composed of a single node. Expressions of χi for
various protocols are available in [20], [25] and the cases of
RR and TOD are provided next for completeness.

Example 1 (TOD protocol): Let i ∈ N and `i ∈ Z>0

denote the number of nodes of Ni network. TOD protocol
is modelled as χi(ei) :=

(
I − Ψ̃i(ei)

)
ei, where Ψ̃i(ei) :=

diag
{
ψ̃i1(ei)Ini1×ni1 , ψ̃

i
2(ei)Ini2×ni2 , . . . , ψ̃

i
`i(ei)Ini`i×n

i
`i

}
.

The functions ψ̃is satisfy ψ̃is(ei) = 1 when
s = min(arg max

j∈{1,...,`i}
|eij |) and ψ̃s(ei) = 0 otherwise,

for s ∈ {1, 2, . . . , `i}. �
Example 2 (RR protocol): RR protocol has the form

of χi(ei, κi) := (I − ∆i(κi))ei, where ∆i(κi) =

diag
{
δi1(κi)Ini1×ni1 , δ

i
2(κi)Ini2×ni2 , . . . , δ

i
`i(κi)Ini`i×n

i
`i

}
,

δis(κi) = 1 for s ∈ {1, 2, . . . , `i} when s − 1 = κi mod `i
and δis(κi) = 0 otherwise. �

Let `i ∈ Z>0 be the number of nodes of network Ni,
and vi and v̂i are, respectively, partitioned as (vi,1, . . . , vi,`i),
and (v̂i,1, . . . , v̂i,`i) (after reordering these, if needed), where
vi,j and v̂i,j , j ∈ {1, · · · , `i}, denote a group of sensors
or/and actuators associated to the same node on Ni. In view
of (5), when Υi

(
ei(s

i
j), vi(s

i
j), κi(s

i
j)
)
> 0, a transmission

occurs over network Ni at time sij and the scheduling protocol
grants access to the network to a single node, say the k-th

1RR protocol assigns access to network in a predetermined and cyclic
manner.

2TOD protocol gives access to the node with the largest mismatch between
the current signal value and the last transmitted one.

node with k ∈ {1, 2, . . . , `i}. Then, v̂i,k(sij
+

) = vi,k(sij)

and v̂i,m(sij
+

) = v̂i,m(sij) for all m ∈ {1, 2, . . . , `i}\{k}.
When Υi

(
ei(s

i
j), vi(s

i
j), κi(s

i
j)
)
< 0, no transmission occurs,

κi and the complete vector v̂i remain unchanged. When
Υi

(
ei(s

i
j), vi(s

i
j), κi(s

i
j)
)

= 0, the model allows two possi-
bilities: either a transmission occurs or not. This construction
ensures that the jump map in (5) is outer semi-continuous,
which is essential for the hybrid model presented below to
be (nominally) well-posed, see Chapter 6 in [22] for more
details. Note that the transmissions over the N networks are
independently generated, as a result, several transmissions can
occur at the same time, but over distinct networks.

We are almost ready to model the overall system. Before
that, we need to write the dynamics of the network-induced
errors. Let x := (xp, xc) ∈ Rnx and nx := np+nc. We deduce
from (5) that the variable ei has the following dynamics at
jumps

ei(s
i
j

+
) ∈ hi

(
x(sij), ei(s

i
j), κi(s

i
j)
)
, (6)

where

hi(x, ei, κi) :=
(
1− Γi(ei, vi, κi)

)
ei + Γi(ei, vi, κi)χi(ei, κi),

(7)

and Γi : Rnei × Rnei × Z≥0 ⇒ {0, 1} in (7) indicates
whether a transmission occurs. Based on the discussion above
(5), Γi(ei, vi, κi) = {1} when Υi(ei, vi, κi) > 0, which
corresponds to a transmission and hi(x, ei, κi) = χi(ei, κi)
in this case. When Υi(ei, vi, κi) < 0, Γi(ei, vi, κi) = {0} and
this corresponds to no transmission and hi(x, ei, κi) = ei.
When Υi(ei, vi, κi) = 0, Γi(ei, vi, κi) = {0, 1} covers the
above two possibilities. In agreement with [20], we call (6)
the protocol map. We see from the right hand-side of (7) that
hi depends on vi and not on the complete vector of x. Writing

vi = gvi(x), (8)

since vi is composed of components of y and u, which depend
on x in view of (1) and (2), we make hi depend on x and not vi
in (7), for the sake of convenience. We note that hi depends
on the state x contrary to [20], [26], [27], which will have
important consequences on the stability property and analysis
of the protocols compared to the latter references, see Remark
3 in Section IV-B.

B. Hybrid model

We model the overall system as a hybrid system using
the formalism of [21], [22] so that we can resort to the
analytical tools of [21], [22] to study the stability properties
of the system. We introduce for this purpose clock variables
τi ∈ R≥0 for i ∈ N to keep track of the time elapsed since
the last evaluation of the triggering criterion of network Ni.
Thus, τi and κi, the transmission counter of network Ni, have
the dynamics{

τ̇i = 1
κ̇i = 0

when τi ∈ [0, Ti]{
τ+i = 0
κ+i ∈ κi + Γi(ei, vi, κi)

when τi ∈ [εi, Ti],
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where Γi is introduced after (7). Let τ := (τ1, . . . , τN ) and
κ := (κ1, . . . , κN ). We model the overall closed-loop system
as

q̇ = F (q, w) q ∈ C
q+ ∈ G(q) q ∈ D, (9)

where q := (x, e, κ, τ) ∈ X := Rnx × Rne × ZN × RN ,

C :=Rnx × Rne × ZN≥0 × T1 × . . .× TN

D :=

N⋃
i=1

Di

Di :=Rnx × Rne × ZN≥0 × T1 × . . .× Ti−1 × [εi, Ti]

× Ti+1 × . . .× TN ,

(10)

and Ti := [0, Ti]. The mapping F in (9) is defined as, for
q ∈ C, F (q, w) := (f(x, e, w), g(x, e, w),0N ,1N ), where
f(x, e, w) := (fp(xp, gc(xc) + eu, w), fc(xc, gp(xp) + ey)),
g(x, e, w) := (g1(x, e, w), . . . , gN (x, e, w)), and for i ∈ N ,

gi(x, e, w) := f̂vi(gvi(x) + ei, gvi(x))− fvi(x, e, w)

fvi(x, e, q) :=
∂gvi
∂x

f(x, e, w),
(11)

with fp, gp, fc, gc, f̂vi , gvi coming from (1), (2), (4) and (8),
respectively. The set-valued mapping G is defined, for q ∈ X ,

as G(q) :=

N⋃
i=1

Gi(q) with

Gi(q) := (12)




x
Hi(x, e, κ)

κ+ Γi(ei, x, κi)Λi
Λiτ


 when q ∈ Di

∅ when q /∈ Di,

where Λi ∈ RN×N and Λi ∈ RN×N are diagonal matrices,
for the former the diagonal elements are 1 except the i-th
one which is 0, and for the latter the diagonal elements are 0
except the i-th one which is 1. Hence, Λi + Λi = IN×N .
Function Hi : Rnx × Rne × ZN≥0 → Rne is defined as
Hi(x, e, κ) := (e1, e2, . . . , ei−1, hi(x, ei, κi), ei+1, . . . , eN ),
where hi comes from (7). The map Gi describes how e jumps
when a transmission occurs over network Ni: ei is updated
to hi(x, ei, κi), κi is incremented to κi + 1 when the local
generator triggers a transmission, otherwise it keeps the same
value, and τi is always reset to 0 after a jump. The function
Gi keeps x, ej , κj , τj unchanged for all j ∈ N \{i}. In model
(9), simultaneous transmissions over different networks are
modeled by successive jumps with no flow in between.

C. Problem statement

Our objective is to design the local triggering generators,
namely Υi and Ti, i ∈ N , to ensure either input-to-state (ISS)
or Lp stability properties for system (9), as defined next.

Definition 1: Set S ⊂ X is input-to-state stable (ISS) for
system (9) if there exist β ∈ KL and ψ ∈ K∞ such that any
solution pair (ϕ,w) satisfies3 |ϕ(t, j)|S ≤ β(|ϕ(0, 0)|S , t +

3See the definition of ||w||∞ in [21].

j) + ψ(||w||∞) for all (t, j) ∈ dom ϕ. We say that S
is exponentially-ISS with a linear gain when β(s1, s2) =
ks1 exp(−cs2) and ψ(s) = γs for some k, c, γ > 0 and for
s1, s2, s ≥ 0. �

We define Lp-stability with respect to output z := η(x,w),
which may correspond to y or not.

Definition 2: System (9) is Lp-stable from w to z with
respect to set S ⊂ X with gain less than or equal to θ, if there
exists γ̃ ∈ K∞ such that any solution pair (ϕ,w) satisfies4

||z||Lp ≤ γ̃(|ϕ(0, 0)|S) + θ||w||Lp . �

IV. MAIN RESULTS

In this section, we first state the assumption we make on the
closed-loop system (1)-(2) and the scheduling rule, based on
which we construct the triggering condition Υi and the bound
on Ti, for i ∈ N . We then present the stability guarantees.

A. Assumptions

We assume that each ei-system in (9) satisfies the following
properties.

Assumption 1: For each i ∈ N , there exist a locally
Lipschitz function Wi : Rnei × Z≥0 → R≥0, a continuous
function H̃i : Rnx × Rne × Rnw → R≥0, αWi

, αWi ∈ K∞,
ρi ∈ [0, 1) and LWi ≥ 0 such that the following hold.

(i) For any ei ∈ Rnei and κi ∈ Z≥0, αWi
(|ei|) ≤

Wi(ei, κi) ≤ αWi
(|ei|).

(ii) For any (ei, x, κi) ∈ Rnei × Rnx × Z≥0,
Wi(χi(ei, κi), κi + 1) ≤ ρiWi(ei, κi).

(iii) For almost all ei ∈ Rnei , all κi ∈ Z≥0 and

(x,w) ∈ Rnx × Rnw ,
〈
∂Wi(ei, κi)

∂ei
, gi(x, e, w)

〉
≤

LWiWi(ei, κi) + H̃i(x, e, w) with gi coming from (11).
�

Items (i) and (ii) are exclusively related to the scheduling
protocol implemented on networkNi. Indeed, these items state
that the protocol is uniformly globally asymptotically stable,
see Definition 1 in [25]. These conditions are always satisfied
for the sampled-data case, RR and TOD protocols for which
expressions of Wi are available, see [20]. Then given Wi, item
(iii) of Assumption 1 essentially requires that Wi exponentially
grows on flows. Such a property is natural, as the ei-system
is typically unstable between two transmission instants. Item
(iii) of Assumption 1 is always feasible when Wi is globally
Lipschitz in ei uniformly in κi, and gi satisfies a linear growth
condition for instance, see Remark 11 in [20].

We assume that controller (2) has been designed to robustly
stabilize system (1) in the following sense.

Assumption 2: There exist a locally Lipschitz function V :
Rnx → R≥0, αV , αV , αW ∈ K∞, locally Lipschitz functions
δi : Rnei → R≥0 satisfying δi(0) = 0, continuous functions
α̃V : Rnx×Rne×Rnw → R and Ji : Rnx×Rne×Rnw → R≥0,
γi > 0, Lδi ∈ R, i ∈ N , such that the following hold.

(i) For all x ∈ Rnx , αV (|x|) ≤ V (x) ≤ αV (|x|).
(ii) For almost all x ∈ Rnx and all (e, w) ∈

Rne × Rnw , 〈∇V (x), f(x, e, w)〉 ≤ −α̃V (x, e, w) +

4See the definition of ||w||Lp in [4].
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N∑
i=1

(
γ2iW

2
i (ei, κi) −H̃2

i (x, e, w)−Ji(x, e, w)− δi(vi)
)
,

where Wi and H̃i come from Assumption 1.
(iii) For almost all x ∈ Rnx and all (e, w) ∈ Rne × Rnw ,
〈∇δi(vi), fvi(x, e, w)〉 ≤ Lδiδi(vi) + H̃2

i (x, e, w) +
Ji(x, e, w) with fvi coming from (11). �

Assumption 2 states properties of the closed-loop system
(1)-(2) and it neither requires any knowledge on the network,
nor it implies the stability of (9). Indeed, variable e is here
understood as a generic perturbation affecting (y, u). To verify
whether Assumption 2 holds, we simply have to take the
Lyapunov function V used to ensure the stability of (1)-(2)
in the absence of network, and study whether the required
conditions are verified.

Function α̃V in Assumption 2 will be taken in the following

as α̃V (x, e, w) = αV (|x|) +αW (|e|)−
N∑
i=1

%V,i(|w|) for some

αV , αW , %V,i ∈ K∞, i ∈ N , when investigating ISS, and as
α̃V (x, e, w) = −µ(θp|w|p − |z|p) with µ > 0, θ ≥ 0, when
studying Lp-stability. Item (ii) of Assumption 2 means that
either the origin of (1)-(2) is ISS with respect to input (e, w)
or (1)-(2) is Lp-stable from w to z. That type of conditions are
natural as we approach the problem by emulation, that is, the
original closed-loop system needs to satisfy some robustness
properties to cope with the errors induced by the network,
as does any nonlinear controller, which is implemented in
practice. But again, this does not mean that (9) satisfies desired
stability properties because the e-system is typically unstable.
Similar assumptions as item (ii) of Assumption 2 are often
made in the literature on NCS, see, e.g., [4], [10], [28], where
examples of systems satisfying these conditions are provided.
The functions δi in Assumption 2 will be used to define the
local event triggering condition. Item (iii) is an exponential
growth condition of δi on flows, where the function Ji is used
to collect the redundant terms when we bound the norm of
the derivative of δi(vi) with Lδiδi(vi) + H̃2

i (x, e, w).
We show in Section V how to satisfy Assumptions 1 and 2

for a class of globally Lipschitz systems. A nonlinear example,
which is not globally Lipschitz and satisfies all the required
conditions, is provided in Section VI.

Remark 1: Assumptions 1-2 may be verified by systems
subject to model uncertainties. Indeed, these Lyapunov-like
conditions do not necessarily require a precise model of the
plant to checked, as will be illustrated in Section VI. �

Remark 2: Assumptions 1-2 impose conditions on the class
of systems to which the results apply. It is possible to relax
these assumptions to only hold in a given compact set. In this
case, the forthcoming results can be adapted to derive local
stability properties, at the price of more technicalities, which
we do not present in order not to blur the main message of
the paper. �

B. Local triggering generators

We exploit Assumptions 1-2 to design the triggering gener-
ators and Ti, i ∈ N . We define Υi in (5) as, for vi, ei ∈ Rnei

and κi ∈ Z≥0,

Υi(ei, vi, κi) = γiW
2
i (ei, κi)− λiρiδi(vi), (13)

where ρi := max

{
ρi,

γiλi
1− λiLδi

}
≥ 0 with ρi and Wi

coming from Assumption 1, Lδi ∈ R, γi > 0, δi coming
from Assumption 2, and λi ≥ 0 is a design parameter. The
triggering condition (13) is similar to those proposed in [3],
[4], [10], [11] for CETC in different contexts. Note that ρi
in (13) depends on ρi and thus on the scheduling protocol.
The mapping Υi only depends on the local variables ei, vi
and κi, and not the whole state q, which is essential for the
envisioned setup and for the decentralized implementation of
the triggering rule.

We select λi in (13) such that λi < λ∗i , where λ∗i is defined
as

λ∗i :=

 1 when Lδi ≤ −γi
min

{
1,

1

Lδi + γi

}
when Lδi > −γi.

(14)

Given λi ∈ [0, λ∗i ), we select Ti defined after (9) such
that Ti < TMASP,i(λi), where TMASP,i(λi) is the maximum
allowable sampling period (MASP) of network Ni and is
defined as

TMASP,i(λi) :=



1

LWi
ri

arctan(ϑi), when γi > LWi

1

LWi

1− ρi
1 + ρi

, when γi = LWi

1

LWi
ri

arctanh(ϑi), when γi < LWi

(15)

where ρi is defined above, ri :=

√√√√∣∣∣∣∣
(

γi
LWi

)2

− 1

∣∣∣∣∣, ϑi :=

ri(1− ρi)

2 ρi
1+ρi

(
γi
LWi
− 1
)

+ 1 + ρi

, LWi ≥ 0 and γi > 0 come

respectively from Assumptions 1 and 2.
The bound in (15) depends on the triggering parameter λi.

More precisely, the bound is decreasing in λi. In other words,
the larger the λi, the smaller TMASP,i(λi) and vice versa.

Remark 3: The local event-triggering condition in (13)
ensures that the protocol equation (6) is input-to-state stable
(ISS) with respect to vi, see Definition 5.3 in [29]. In partic-
ular, in view of the definition of Υi in (13) and item (ii) of
Assumption 1, a transmission is triggered when Wi(ei, κi) ≥√
λiρiδi(vi)/γi, which ensures that Wi(χi(ei, κi), κi + 1) ≤

ρiWi(ei, κi), where ρi ∈ [0, 1), for any vi, ei ∈ Rnei . Al-
though the actual protocol equation (6), which is implemented,
is ISS, the scheduling rule itself, which is modeled by χi and
decides which nodes gets access to the network is uniformly
globally asymptotically stable (UGAS) in view of items (i) and
(ii) of Assumption 1, see the definition of UGAS protocols in
Remark 7 of [20]. �

Remark 4: When λi = 0, i ∈ N , the triggering function Υi

is always non-negative. Consequently, transmissions occur at
every sampling instant according to (5). We then recover the
time-triggered results of [28], in particular the bound on the
maximal allowable transmission interval (MATI) is the same
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when a single network is used and there are no disturbances,
i.e. w = 0, as well as those in [27] when the network consists
of a single node. �

C. Input-to-state stability

We are ready to state the next result about the input-to-state
stability of system (9).

Theorem 1: Consider system (9) and suppose the following
hold.

1) Assumption 1 holds with H̃i(x, e, w) = Hi(x, e) +
%Wi

(|w|) for some continuous functions Hi : Rnx ×
Rne → R≥0 and %Wi

∈ K∞, i ∈ N .
2) Assumption 2 holds with α̃V (x, e, w) = αV (|x|) +

αW (|e|) −
N∑
i=1

%V,i(|w|) for some αV , αW , %V,i ∈ K∞,

i ∈ N .
3) For each i ∈ N , let λi ∈ [0, λ∗i ) and Ti ∈

[εi, TMASP,i(λi)), where λ∗i and TMASP,i(λi) are defined
in (14) and (15), respectively.

Then, the set A := {q ∈ C ∪D : x = 0, e = 0, κi ∈ Z≥0, τi ∈
[0, Ti], i ∈ N} is ISS for system (9). �

Theorem 1, whose proof is given in Appendix A, shows
that set A is ISS for system (9). This implies that (i) x and
e globally converge to a neighborhood of the origin, whose
“size” depends on the norm of the disturbance w; (ii) the set
A is uniformly globally asymptotically stable [22, Definition
3.6] when w = 0.

Remark 5: Theorem 1 relies on small-gain techniques. The
general idea is that the x-system is assumed to satisfy an ISS
property with respect to (w,W1(e1, κ1), . . . ,WN (eN , κN )) on
flows according to items (i)-(ii) of Assumption 2, and remains
constant at jumps. On the other hand, Assumption 1 leads to an
ISS property of the e-system with respect to (x,w) as well, as
shown in Proposition 6 in [20], thanks to the definition of the
event generators. Then, by carefully selecting the triggering
conditions and Ti, the small gain condition apply and the
desired result is obtained. While the connection with small-
gain techniques is easier to see in the case where the controller
is a state-feedback law and there is only one network as in
[24], the fact that output-feedback control is addressed and
the decentralized scenario we investigate prevent us to directly
apply existing hybrid small-gain results. That is the reason why
we propose a completely novel hybrid Lyapunov construction
in the proof of Theorem 1. �

Tailored results can be derived from Theorem 1 either under
stronger conditions or for more specific implementation setups.
Thus, an exponential-ISS property is obtained by strengthening
the conditions of Theorem 1 as stated next, whose proof
follows directly from the proof of Theorem 1 and is therefore
omitted.

Corollary 1: Consider system (9). Suppose that items
1) and 2) of Theorem 1 are satisfied and there exist
aWi

, aWi
, aV , aV , aV , aW > 0, i ∈ N , such that Assumptions

1 and 2, respectively, hold with αWi
(s) = aWi

s, αWi
(s) =

aWis, αV (s) = aV s
2, αV (s) = aV s

2, αV (s) = aV s
2 and

αW (s) = aW s
2 for s ≥ 0. Then, the set A defined in Theorem

1 is exponentially-ISS with a linear gain. �

When a single network is used and the state of plant xp
is available for control, i.e. y = xp in (1), we can relax
Assumption 2 and modify the triggering condition. Since we
consider only one network here, only one triggering generator
is needed. We therefore use the notation Υ to define the
triggering condition, and χ to denote the scheduling rule. As
we need to specify the expressions of H̃i, Ji in Assumptions
1 and 2 for this special case, we rewrite those conditions here
as follows.

Assumption 3: There exist locally Lipschitz functions V :
Rnx → R≥0 and W : Rne × Z≥0 → R≥0 with V and W
positive definite, %W ∈ K∞, continuous function α̃V : Rnx ×
Rne × Rnw → R≥0, ρ ∈ [0, 1), aV , γ > 0, and LW , LV ≥ 0
such that the following hold.

(i) For any (e, x, κ) ∈ Rne × Rnx × Z≥0, W (χ(e, κ), κ +
1) ≤ ρW (e, κ).

(ii) For almost all e ∈ Rne , all κ ∈ Z≥0 and (x,w) ∈

Rnx × Rnw ,
〈
∂W (e, κ)

∂e
, g(x, e, w)

〉
≤ LWW (e, κ) +

LV
√
V (x) + %W (|w|).

(iii) For almost all x ∈ Rnx and all (e, w) ∈ Rne ×
Rnw , 〈∇V (x), f(x, e, w)〉 ≤ −aV V (x)− α̃V (x, e, w) +
γ2W 2(e, κ). �

We define the single triggering condition Υ, as for (x, e) ∈
Rnx × Rne and κ ∈ Z≥0,

Υ(e, x, κ) = γW 2(e, κ)− λρV (x), (16)

where ρ := max

{
ρ,
γλ

aV

}
. We select λ such that λ < λ∗ with

λ∗ := min

{
1,
aV
γ

}
. (17)

For each λ ∈ [0, λ∗), the MASP TMASP(λ) is defined as

TMASP(λ) :=



1

LW r
arctan(ϑ), when γLV > LW ,

1

LW

1− ρ
1 + ρ

, when γLV = LW ,

1

LW r
arctanh(ϑ), when γLV < LW ,

(18)

where ρ is defined below (16), r :=

√√√√∣∣∣∣∣
(

γLV
LW
√
aV

)2

− 1

∣∣∣∣∣,
ϑ :=

r(1− ρ)

2 ρ
1+ρ

(
γ
LW

L2
V +aV
2aV

− 1
)

+ 1 + ρ
, LW , LV ≥ 0, and

aV , γ > 0 come from Assumption 3. The MASP in (18) is
different to (15) since extra parameters LV ≥ 0 and aV > 0
are introduced in Assumption 3 and it is consistent with (15)
when L2

V /aV = 1.
We can state the next theorem.
Theorem 2: Consider system (9). Suppose that Assumption

3 holds with α̃V (x, e, w) = αW (|e|) − %V (|w|) for some
αW , %V ∈ K∞ from Assumption 3. Let λ ∈ [0, λ∗) and
T < TMASP(λ), where λ∗ and TMASP(λ) are defined in (17)
and (18), respectively. Then, set A defined in Theorem 1 is
ISS. �
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Theorem 2 extends the main result of [23] to scheduling and
allows considering exogenous disturbances acting on the plant
and [24] to scheduling. Note that the conditions in [24] which
are parallel to Assumption 3 are slightly different, where ρ = 0
and H̃i, Ji are not specified as in Assumption 3.

D. Lp-stability

We now consider the input-output stability of system (9)
from w to the output z = η(x,w).

Theorem 3: Consider system (9) and suppose the following
hold.

1) Assumptions 1 and 2 are verified with α̃V (x, e, w) =
−µ(θp|w|p − |η(x,w)|p) for some µ, θ > 0.

2) For each i ∈ N , let λi ∈ [0, λ∗i ) and Ti < TMASP,i(λi),
where λ∗i and TMASP,i(λi) are defined in (14) and (15),
respectively.

Then system (9) is Lp-stable from w and to z with respect to
the set A defined in Theorem 1 with gain less than or equal
to θ. �

Like in Section IV-C, we derive a tailored result for the case
where a single network is used and y = xp. Its proof follows
from the ones to Theorems 2 and 3, and is therefore again
omitted.

Theorem 4: Consider system (9). Suppose that Assumption
3 holds with α̃V (x, e, w) = −µ(θp|w|p−|η(x,w)|p) for some
µ, θ > 0. Let λ ∈ [0, λ∗) and T < TMASP(λ), where λ∗ and
TMASP(λ) are defined in (17) and (18), respectively. Then,
system (9) is Lp-stable from w and to z with respect to the
set A defined in Theorem 1 with gain less than or equal to θ.

�

V. CASE STUDY

A. Setup and hybrid model

We consider nonlinear systems of the form

ẋp = Apxp +Bpu+Dpψ(xp) + Epw

y = Cpxp,
(19)

where xp ∈ Rnp is the state, u ∈ Rnu is the control input,
w ∈ Rnw is the external disturbance, y ∈ Rny is the measured
output, Ap, Bp, Cp, Dp and Ep are matrices of appropriate
dimensions, (Ap, Bp) and (Ap, Cp) are assumed to be sta-
bilizable and detectable, respectively, and ψ : Rnp → Rnr ,
satisfies ψ(0) = 0 and |ψ(x1) − ψ(x2)| ≤ L|x1 − x2| for all
x1, x2 ∈ Rnp with constant L > 0, where nr ∈ Z>0.

We focus on observer-based controllers of the form

ẋc = Apxc +Bpu+Dpψ(xc)−M(Cpxc − y)

u = Kxc, (20)

where xc ∈ Rnp is the state estimate, M and K
are matrices of appropriate dimensions such that A1 :=[
Ap BpK
MCp Ap +BpK −MCp

]
is Hurwitz, which is always

possible since (Ap, Bp) and (Ap, Cp) are stabilizable and
detectable, respectively.

We consider the scenario where the plant and the controller
communicate via N independently operating networks, as

described in Section III. Zero-order-hold devices are used
so that f̂v = 0 as defined after (4). Each network is
scheduled by an arbitrary uniformly globally exponentially
stable (UGES) protocol, whenever the local triggering rule
is satisfied. Hence, items (i) and (ii) of Assumption 1 hold
with Wi : Rnei × Z≥0 → R≥0, ρi ∈ [0, 1), αWi

(s) = aWi
s,

αWi
(s) = aWi

s, i ∈ N , for some aWi
≥ aWi

> 0 and all
s ≥ 0, which depend on the considered protocol. We further

assume that there exists $i ≥ 0 such that |∂Wi(ei, κi)

∂ei
| ≤ $i

for almost all ei ∈ Rnei and κi ∈ Z≥0, which is the case for
the sampled-data case and RR and TOD protocols according
to Section V in [20].

Let x = (xp, xc) ∈ Rnx , v = (y, u) ∈ Rne , e = (v̂ − v),
nx = np + nc and ne = ny + nu. We write v := Cx, C :=[
Cp 0
0 K

]
∈ Rne×nx and

vi := Cix ∈ Rnei , i ∈ N, (21)

be the i-th element of v associated with network Ni with
Ci ∈ Rnei×nx . Define ey := ŷ−y = Cye, eu := û−u = Cue,
with appropriate matrices Cy ∈ Rny×ne and Cu ∈ Rnu×ne .

In this case, the hybrid model (9) is given by,

q̇ =


A1x+ B1e+D1ψ(x) + E1w
A2x+ B2e+D2ψ(x) + E2w

0N
1N

 q ∈ C

q+ ∈ G(q) q ∈ D,

(22)

where q = (x, e, κ, τ), B1 :=

[
BpCu
MCy

]
, D1 :=[

Dp 0
0 Dp

]
, E1 :=

[
Ep
0

]
, ψ(x) := (ψ(xp), ψ(xc)),

A2 := −

 C1A1

...
CNA1

, B2 := −

 C1B1
...

CNB1

, D2 :=

−

 C1D1

...
CND1

, E2 := −

 C1E1
...

CNE1

. The flow and jump sets

C and D are defined after (9), and the jump map G is given
in (12).

B. Input-to-state stability

Before stating the main results of this section, we need to
introduce some notation. For any π = (π1, ..., πN ) ∈ RN≥0, we
define

Ψ(π) := diag{π1Ine1 , . . . , πNIneN } ∈ Rne×ne . (23)

Let Ψi := diag{0ne1×ne1 , . . . ,0nei−1
×nei−1

, Inei×nei ,
0nei+1

×nei+1
, . . . ,0neN×neN } ∈ Rne×ne , B2,i :=

CiB1(Ine − Ψi) ∈ Rnei×ne , i ∈ N , B2 :=

 B2,1...
B2,N

 ∈
Rne×ne , where Ci comes from (21).
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TABLE I: Expression of functions and parameters in Section V.

Proposition 1/Lemma 1 Proposition 2

Σ11 :=

AT1 P + PA1 + aV Inx +DT2 ΨT (
√

2$L)Ψ(
√

2$L)D2

+2L|D1|P +AT2 (ΨT ($)Ψ($) + ΨT (ε)Ψ(ε))A2

+DT2 ΨT (
√

2L$)Ψ(
√

2L$)A2

+C
T

ΨT
(
ε
√

2L|D1|+ 1
)
Ψ
(
ε
√

2L|D1|+ 1
)
C

AT1 P + PA1 +DT2 ΨT ($L)Ψ($L)D2

+2L|D1|P +AT2
(
ΨT ($)Ψ($) + ΨT (ε)Ψ(ε)

)
AT2

+DT2 ΨT (
√

2L$)Ψ(
√

2L$)A2

+C
T

ΨT
(
ε
√

2L|D1|+ 1
)
Ψ
(
ε
√

2L|D1|+ 1
)
C + µCTz Cz

Σ21 := BT1 P + BT2 ΨT ($)Ψ($)A2 + BT2 ΨT (ε)Ψ(ε)C BT1 P + BT2 ΨT ($)Ψ($)A2 + BT2 ΨT (ε)Ψ(ε)C

Σ22 := −(Ψ(ν)− aW Ine ) + BT2 ΨT ($)Ψ($)B2 −Ψ(ν) + BT2 ΨT ($)Ψ($)B2
Σ31 := ET1 P + ET2 ΨT ($)Ψ($)A2 + ET2 ΨT (ε)Ψ(ε)C ET1 P + ET2 ΨT ($)Ψ($)A2 + ET2 ΨT (ε)Ψ(ε)C + µDTz Cz
Σ33 := −θ̃Inw + ET2 ΨT ($)Ψ($)ET2 −µθ2Inw + µDTz Dz + ET2 ΨT ($)Ψ($)E2
αWi (s) := aWis aWis
αWi (s) := aWis aWis
LWi := $i/aWi |CiB1Ψi| $i/aWi |CiB1Ψi|
Hi(x, e) := $i(|CiA1x+ B2,ie|+ L|CiD1||x|) $i(|CiA1x+ B2,ie+ L|CiD1||x|)
%Wi (w) := $i|CiE1||w| $i|CiE1w|
V (x) := xTPx xTPx
δi(vi) := ε2i |vi|2 δi(vi) = ε2i |vi|2
αV (s) := λmin(P )s2 λmin(P )s2

αV (s) := λmax(P )s2 λmax(P )s2

α̃V (x, e, w) := aV |x|2 + aW |e|2 −
N∑
i=1

1

N
θ̃|w|2 µ(|Czx+Dzw|2 − θ2|w|2)

γi :=

√√√√νi − aW −$2
i |B2,i|2

a2Wi

√√√√νi −$2
i |B2,i|2

a2Wi

Ji(x, e, w) :=
ε2i

( ∣∣∣AT1 CTi CiA1

∣∣∣+ 2L
∣∣∣CTi CiD1

∣∣∣)|x|2
+2ε2i

∣∣∣xTCTi Ci(B1e+ E1w)
∣∣∣

ε2i

( ∣∣∣AT1 CTi CiA1

∣∣∣+ 2L
∣∣∣CTi CiD1

∣∣∣)|x|2
+2ε2i

∣∣∣xTCTi Ci(B1e+ E1w)
∣∣∣

Lδi := 1 1

The next proposition states that all conditions of Corollary
1 hold if the linear matrix inequality (LMI) in (24) is satisfied.

Proposition 1: If there exist a positive definite symmetric
matrix P , aV , aW , θ̃, aWi

, εi > 0, $i ≥ aWi
and νi ≥ aW +

$2
i |B2,i|2, i ∈ N , such that the following LMI holds Σ11 ? ?

Σ21 Σ22 ?

Σ31 ET2 ΨT ($)Ψ($)B2 Σ33

 < 0, (24)

where Ψ is defined in (23), $ := ($1, . . . , $N ), ε :=
(ε1, . . . , εN ), Σ11, Σ21, Σ22, Σ31 and Σ33 are given in Table
I. Then, Assumptions 1-2 hold with the data given in Table I.

�
An immediate consequence of Proposition 1 is that the set

A = {q ∈ C ∪ D : x = 0, e = 0, κi ∈ Z≥0, τi ∈ [0, Ti], i ∈
N} is exponentially-ISS with a linear gain for system (22)
according to Corollary 1 by suitably defining λi and Ti, as
Proposition 1 ensures the satisfaction of all the conditions of
Corollary 1.

C. L2-stability

We now consider L2-stability for system (22) using Theo-
rem 3, with respect to the performance output z := Czx +
Dzw.

We can follow the proof of Proposition 1, provided in the
Appendix A, to show that the conditions of Theorem 3 hold.

Proposition 2: If there exist a positive definite symmetric
matrix P , µ, θ, εi, aWi

> 0, $i ≥ aWi
and νi ≥ $2

i |B2,i|2,
i ∈ N , such that (24) holds. Then, Assumptions 1-2 hold with
the data given in Table I. �

Based on Proposition 2, system (22) is L2-stable from w to
z with respect to the set A with gain less than or equal to θ
according to Theorem 3, when λi < λ∗i and Ti < TMASP,i(λi)
with λ∗i in (14) and TMASP,i(λi) in (15).

D. Special cases

When ψ in (19) only depends on the output y, not the state
xp, and Dp = Bp, condition (24) slightly differs and can be
shown to always hold as formalized next.

Lemma 1: Consider system (19) with ψ(y) instead of ψ(xp),

and Dp = Bp. Let D1 :=

[
Bp 0
0 0

]
and replace ψ(x) in

(22) by ψ(y, e) :=

[
ψ(y)− ψ(y + ey)

0

]
. Then, there exist a

positive definite symmetric matrix P , aV , aW , θ̃, aWi
, εi > 0,

$i ≥ aWi
and νi ≥ aW + L2|D1|2|P |2/aV + $2

i |B2,i|2 +
ε2iL

2|CiD1|2 + 2$2
i (L

2|CiD1|2 + L|CiD1||B2,i|), i ∈ N ,
such that (24) holds with Σ21, Σ31 and Σ33 from Table
I and Σ11 := AT1 P + PA1 + AT2

(
ΨT
(√

2$
)
Ψ
(√

2$
)

+

ΨT (ε)Ψ(ε)
)
A2 + 2aV Inx + C

T
ΨT (ε)Ψ(ε)C, Σ22 :=

−Ψ(ν)+(aW +L2|D1|2|P |2/aV )Ine +BT2 ΨT ($)Ψ($)B2 +
ΨT (εL|D2|)Ψ(εL|D2|

)
+ ΨT (k$)ΨT (k$) with

k2 = 2L2|D2|2 + 2L|D2|B2|. As a result, Assumptions
1-2 hold with the data from Table I except that
Hi(x, e) := $i(|CiA1x + B2,ie| + L|CiD2||e|),
γ2i =

(
νi − (aW + L2|D1|2|P |2/aV + $2

i |B2,i|2 +
ε2iL

2|CiD1|2 + 2$2
i (L

2|CiD1|2 + L|CiD1||B2,i|))
)
/a2Wi

,
Ji(x, e, w) := ε2i

(
(|AT1 C

T

i CiA1| + |Ci|2)|x|2 +

L2
∣∣CiD1

∣∣2 |e|2)+ 2ε2i

∣∣∣xTCTi Ci(B1e+ E1w)
∣∣∣. �
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It is important to note that Lemma 1 covers linear time-
invariant systems as in this case ψ(y) = 0. In other words,
the proposed approach can always be applied to stabilizable
and detectable linear time-invariant systems.

VI. ILLUSTRATIVE EXAMPLE

In this section, we provide an example of a nonlinear
system, which is not globally Lipschitz contrary to the systems
addressed in Section V, to which our results apply. The control
system consists of two coupled plants P1 and P2, whose
origin is unstable, as in Section VII.B in [4]. The plants Pi,
i ∈ {1, 2}, are modeled as

P1 :

{
ẋ1 = d1x

2
1 − x31 + x2 + u1 + w

y1 = x1
(25)

P2 :

{
ẋ2 = d2x

2
2 − x32 + x1 + u2 + w

y2 = x2
(26)

where xi ∈ R, i ∈ {1, 2}, is the state of subsystem Pi, yi = xi
is its output, d1, d2 ∈ R are unknown uncertain parameters
(potentially time-varying) verifying |d1| ≤ 1 and |d2| ≤ 1,
w ∈ R is the exogenous disturbance. For each subsystem, its
own controller is collocated with the actuator and is given by
ui = −2yi.

PETC 1 PETC 2

Controller 1 Controller 2

1y1ŷ

1u

2ŷ2y

2u

w

1P 2P

 

Fig. 2: Control setup of the two coupled systems.

We consider the case where the output measurements of
y1 and y2 are respectively transmitted via two independently
operating networks, N1 and N2, and received by the controller
as ŷ1 and ŷ2, as illustrated in Figure 2. Zero-order-hold devices
are used to implement the controller and this gives f̂v = 0,
as defined after (4). Let e1 = ŷ1 − y1 and e2 = ŷ2 − y2
be the networked-induced error (there is no need to introduce
û−u since the controller is static), x = (x1, x2), e = (e1, e2).
Let τ = (τ1, τ2) with τ1, τ2 ∈ R≥0. Note that κ ∈ Z≥0
in (9) is irrelevant here since both networks have only one
node. We obtain system (9) with q = (x, e, τ), F (q, w) =
(f(e, x, w), g(e, x, w), 1, 1), f(x, e, w) = (d1x

2
1 − x31 + x2 −

2(x1+e1)+w, d2x
2
2−x32+x1−2(x2+e2)+w), g(x, e, w) =

−f(x, e, w), C,D defined as after (9), G(q) in (12) with
hi(ei, x) being defined as hi(ei, x) = (1 − Γi(ei, x))ei,
i ∈ {1, 2}.

We now verify Assumptions 1 and 2. Let i ∈ {1, 2}, we take
Wi(ei) = |ei|. Assumption 1 holds with αWi

(s) = αWi(s) =
s for all s ≥ 0, ρi = 0 (since the networks consist of one

node), LWi
= 2, H̃i(x, e, w) = |−dix2i+x3i−x3−i+2xi|+|w|,

i ∈ {1, 2}.
To verify Assumption 2, we take δi(vi) = 0.5y2i

and consider the candidate Lyapunov function V (x) =

a2
2∑
i=1

(
b
x2i
2

+ c
x4i
4

)
for any xi ∈ R, some a, b, c > 0

and i ∈ {1, 2}. Since 〈∇δi(vi), fvi(x, e, w)〉 ≤ −2x2i +
|dix3i + xix3−i − 2xiei + xiw| ≤ −4δi(vi) + |dix3i − x4i +
xix3−i|+ |2x2i |+ |ei|2 + |w|2 ≤ Lδiδi(vi) + Ji(x, e, w), item
(iii) of Assumption 2 holds with Lδi = −4, Ji(x, e, w) =
|x3i + xix3−i| + |2dix2i | + |e2i | + |w|2, i ∈ {1, 2}. We now
verify item (ii) of Assumption 2. Since 2s1s2 ≤ s21 + s22 for
any s1, s2 ∈ R, we have that

〈∇V (x), f(x, e, w)〉 ≤ a2
( 2∑
i=1

[(b2 + c2)e2i + 0.5(b2 + c2)w2

+ (−c+ 1.5)x6i + cdix
5
i + (−b− 2c)x4i + bdix

3
i

+ (−2b+ 1.5)x2i ] + 2bx1x2 + cx31x2 + cx1x
3
2

)
.

Noting that (s1 + s2)2 ≤ 2(s21 + s22) for any s1, s2 ∈ R,
H̃2
i (x, e, w) ≤ 2(−dix2i + x3i − x3−i + 2xi)

2 + 2w2 ≤
4(−dix2i +x3i +2xi)

2 +4x23−i+2w2 ≤ 4(x6i −2dix
5
i +5x4i −

4dix
3
i+4x2i )+4x23−i+2w2 and Ji(x, e, w) ≤ 0.5x2i+0.5(x2i+

x3−i)
2+2dix

2
i+e

2
i+w

2 ≤ x4i+x23−i+(2di + 0.5)x2i+e
2
i+w

2,
i ∈ {1, 2}. We then subtract and add α̃(x, e, w) = νx2 + νe2,
δi(vi) = 0.5x2i , H̃2

i (x, e, w) and Ji(x, e, w) to get

〈∇V (x), f(x, e, w)〉 ≤ −αV (x)− αW (e) + a2p(x)

+

2∑
i=1

[
%2Vi(|w|)− δi(vi)− H̃

2
i (x, e, w)

]
+

2∑
i=1

[
− Ji(x, e, w) + a2(b2 + c2 + a−2(1 + ν))e2i

]
,

where p(x) :=

2∑
i=1

x2i
[(
−2b+1.5+a−2(21+2di+ν)

)
+di(b−

16a−2)xi + (−b− 2c+ 21a−2)x2i + di(c− 8a−2)x3i + (−c+
1.5+4a−2)x4i

]
+2bx1x2+cx31x2+cx1x

3
2, %Vi(s) :=

(
0.5(b2+

c2) + 3a−2
)
s2 for all s ≥ 0. This implies that item (ii) of

Assumption 2 holds with γ1 = γ2 = a
√
b2 + c2 + a−2(1 + ν)

provided parameters a, b, c, ν are such that p(x) ≤ 0 for
all x ∈ R2. We take (a, b, c, ν) = (1.7, 3.93, 2.9, 0.01) to
ensure p(x) ≤ 0 for all x ∈ R2, which yields γi = 8.36
and determines the expression of V (x), hence, item (i) of
Assumption 2 holds.

Note that H̃i(x, e, w) = Hi(x, e) + %Wi
(|w|) with

Hi(x, e) := | − dix2i + x3i − x3−i + 2xi| and %Wi
(|w|) := |w|

for i ∈ {1, 2}, and α̃V (x, e, w) = αV (|x|) + αW (|e|) with
αV (|x|) := ν|x|2, αW (|e|) := ν|e|2. Items 1) and 2) of
Theorem 1 are therefore verified. We have that λ∗i = 0.2289
according to (14), from which we derive TMASP,i(λi) for any
λi ∈ [0, λ∗i ). Indeed, TMASP,1 can be taken as a function of
λ1, which tends to zero as λ1 tends to its maximal value λ∗1,
and the maximal value for TMASP,1 is 0.1634, which arises
when λ1 → 0. As a result, the set A is ISS according to
Theorem 1.
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TABLE II: Average inter-transmission time for N1 and N2 networks

Average inter-transmission time
λ1 = 0.06 λ2 = 0.02 λ1 = 0.1 λ2 = 0.09 λ1 = 0.15 λ2 = 0.12
N1 N2 N1 N2 N1 N2

T1 = 0.01 T2 = 0.02 0.068 0.0403 0.0793 0.0781 0.0952 0.08
T1 = 0.04 T2 = 0.05 0.0971 0.0556 0.101 0.098 × ×
T1 = 0.08 T2 = 0.1 0.1103 0.101 × × × ×

To illustrate the impact of λi and sampling period Ti,
i ∈ {1, 2}, on the number of transmissions over the net-
works, we have considered different values of λi and Ti with
Ti < TMASP,i(λi) being satisfied, where TMASP,i(λi) is the
MASP determined by the given λi ∈ (0, λ∗i ). We have set
εi = Ti for all i ∈ {1, 2}, and run 50 simulations over 10
seconds with parameters d1 = d2 = 0.8 and initial conditions
randomly selected in [−20, 20] for both systems. Parameter
εi was selected as Ti, so that the triggering generators pe-
riodically evaluate their triggering condition. We have taken
w(t) = 2 sin(20πt). The obtained average inter-transmission
times over the 50 simulations are reported in Table II.

Empty boxes in Table II mean that the condition Ti <
TMASP,i(λi) is violated. In view of the lines of Table II, we
see that the average inter-transmission times increase when
λi grows for the same sampling period Ti. Also, when we
keep the same triggering parameter λi and vary the sampling
period Ti, the average inter-transmission times increase with
Ti. This suggests that, for this example and this set of
simulations, setting sampling periods close to TMASP,i(λi)
uses less network bandwidth and ensures system stability.
Interestingly, selecting Ti large and λi small, or Ti small and
λi large, lead to similar average inter-transmission times in
view of Table II.

VII. CONCLUSIONS

We considered periodic event-triggered control of nonlin-
ear systems subject to exogenous disturbances, where the
controller communicates with the plant via multiple asyn-
chronously operating networks. An emulation-based system-
atic design procedure was proposed, which is applicable for
output feedback control. The starting point of the design is the
availability of a controller, which robustly stabilizes the system
in the absence of communication constraints. In the next step,
the implementation of the controller over the networks was
considered. Each network consists of multiple nodes, in which
case a protocol is used to schedule transmissions. Moreover, a
transmission over each network is triggered when a criterion,
which only depends on the local measurements and the local
control signals, is violated at given discrete sampling instants.
We derived a hybrid system model to describe the resulting
dynamics of the NCS and constructed a novel hybrid Lyapunov
function for stability analysis. We provided conditions on the
controller and scheduling protocols in order to design the local
event-triggering criteria and explicit bounds on the maximum
allowable sampling periods (MASP), to ensure input-to-state
stability and Lp-stability of the NCS. We showed that our
design framework is applicable to a class of globally Lipschitz
nonlinear systems and formulated the required conditions as
linear matrix inequalities. We also showed explicitly that our

results are applicable to any stabilizable and detectable linear
time-invariant system. The effectiveness of the scheme was il-
lustrated via simulations for a nonlinear example, which is not
globally Lipschitz and suffered from parametric uncertainties.

Several extensions can be envisioned based on the frame-
work laid down in this paper. Refined results could be de-
veloped for more specific classes of nonlinear systems. The
results on LTI systems in Section V may also serve as a basis
to derive co-design techniques, where both the triggering gen-
erator and the controller are designed simultaneously, similarly
to [30] where CETC is studied.

APPENDIX A
PROOFS

A. Proof of Theorem 1

We define, for any q ∈ C ∪D, the Lyapunov function

U(q) := V (x) +

N∑
i=1

Si(q)

Si(q) := max
{
γiφi(τi)W

2
i (ei, κi), λiδi(vi)

}
,

(27)

where Wi, δi and V come from Assumptions 1 and 2, and
φi : [0, Ti] →

[
µ
i
, µi

]
with µi > µ

i
> 0 is defined as in

Lemma 3 in Appendix B.
We first show that the following properties hold for system

(9). There exist αU , αU , αU , θF ∈ K∞ such that:
a) U is locally Lipschitz in x, e and τ , and, for all q ∈ C∪D,
αU (|q|A) ≤ U(q) ≤ αU (|q|A);

b) for all q ∈ C and w ∈ Rnw , U◦(q;F (q, w)) ≤
−αU (U(q)) + θF (|w|);

c) for all q ∈ D, w ∈ Rnw and g ∈ G(q), U
(
g
)
≤ U(q).

Proof of item a). It follows from Assumptions 1 and 2, the
definition of φi in Lemma 3 that the Lipschitz property of U
in item a) is satisfied. Since δi is continuous and positive semi-
definite, vi = gvi(x) with gvi in (8) is continuous and gvi(0) =
0, as g = (gp, gc) and gp(0) = gc(0) = 0 with gp and gc in (1)
and (2), there exists αδi ∈ K∞ such that δi(vi) ≤ αδi(|x|), see
Lemma 4.3 in [31]. In view of Lemma 3, φi(τi) ∈

[
µ
i
, µi

]
for all τi ∈ [0, Ti] with 0 < µ∗

i
< µ

i
< µi < µ∗i , i ∈ N .

Consequently, in view of items (i) of Assumptions 1 and 2

and (27), αV (|x|) +

N∑
i=1

γiµiα
2
Wi

(|e|) ≤ U(q) ≤ αV (|x|) +

N∑
i=1

(
γiµiα

2
Wi

(|e|) + λiαδi(|x|)
)
. By applying Lemma 4 in

Appendix B, we derive that there exist αU , αU ∈ K∞ such
that αU (|q|A) ≤ U(q) ≤ αU (|q|A), hence item a) holds.
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Proof of item b). Let q ∈ C, w ∈ Rnw and i ∈
N . We distinguish three cases according to Lemma 2
in Appendix B: Case I) γiφi(τi)W

2
i (ei, κi) < λiδi(vi);

Case II) γiφi(τi)W
2
i (ei, κi) > λiδi(vi); and Case III)

γiφi(τi)W
2
i (ei, κi) = λiδi(vi). Suppose that Cases I), II) and

III), respectively, hold for i ∈ NI , i ∈ NII and i ∈ NIII ,
where NI , NII , NIII ⊆ N and NI ∪NII ∪NIII = N . Then,
in view of item (ii) of Assumption 2, items 1)-2) of Theorem
1,

U◦(q;F (q, w)) ≤ −αV (|x|)− αW (|e|)

+
∑
i∈N

(Zi(q, w) + S◦i (q;F (q, w))) , (28)

where Zi(q, w) = γ2iW
2
i (ei) − H̃2

i (x, e, w) − Ji(x, e, w) −
δi(vi)+%V,i(|w|). We next consider S◦i (q;F (q, w)) for i ∈ NI ,
i ∈ NII and i ∈ NIII , respectively.
Case I) i ∈ NI . We have that Si(q) = λiδi(vi) in (27) in this
case. It then follows from item (iii) of Assumption 2 and [32]
that

S◦i (q;F (q, w)) ≤ λi
(
Lδiδi(vi) + H̃2

i (x, e, w) + Ji(x, e, w)
)
.

Since φi(τi) ≥ µ
i
> µ∗

i
= ρi ≥

γiλi
1− λiLδi

according to

Lemma 3, 1 − λiLδi > 0 as ensured by λi < λ∗i with λ∗i
defined in (14), γiφi(τi)W 2

i (ei, κi) < λiδi(vi) implies that

γ2iW
2
i (ei, κi) <

γiλiδi(vi)

φi(τi)
<

γiλiδi(vi)

ρi
≤ γiλiδi(vi)

γiλi
1−λiLδi

=

(1− λiLδi)δi(vi), and

Zi(q, w) + S◦i (q;F (q, w)) ≤ γ2iW 2
i (ei)− H̃2

i (x, e, w)

− Ji(x, e, w)− δi(vi) + %V,i(|w|)
+ λi

(
Lδiδi(vi) + H̃2

i (x, e, w) + Ji(x, e, w)
)

≤ −(1− λi)
(
H̃2
i (x, e, w) + Ji(x, e, w)

)
+ %V,i(|w|)

≤ %V,i(|w|) (29)

since λi < λ∗i ≤ 1 in view of (14).

Case II) i ∈ NII . We have that Si(q) = γiφi(τi)W
2
i (ei, κi)

in this case. We omit below the dependency of φi on τi for
the sake of convenience. In view of item (ii) in Assumption
1 and the facts that φi(τi) ≤ µi according to Lemma 3,
H̃i(x, e, w) = Hi(x, e) + %Wi

(|w|) according to item 1) of

Theorem 1,
√
s21 + s22 ≤ s1 + s2 and 2s3s4 ≤ νs23 +

1

ν
s24, for

s1, s2, s3, s4 ≥ 0 and ν > 0,

S◦i (q;F (q, w)) = γi(−2(LWi + ν̃i)φi − γi(φ2i + 1))W 2
i (ei, κi)

+ 2γiφiWi(ei, κi) (LWiWi(ei, κi) +Hi(x, e) + %Wi(|w|))
≤ γi(−(2LWi + ν̃i)φi − γi(φ2i + 1))W 2

i (ei, κi)

+ 2γiLWi
φiW

2
i (ei, κi) + γ2i φ

2
iW

2
i (ei, κi) +H2

i (x, e)

+ γiφi

(
ν̃iW

2
i (ei, κi) +

1

ν̃i
%2Wi

(|w|)
)

≤ −γ2iW 2
i (ei, κi) +H2

i (x, e) +
µiγi
ν̃i

%2Wi
(|w|),

where ν̃i > 0 is given in Lemma 3. Then, since µi < µ∗i and
H̃2
i (x, e, w) ≥ H2

i (x, e),

Zi(q, w) + S◦i (q;F (q, w)) ≤ γ2iW 2
i (ei)− H̃2

i (x, e, w)

− Ji(x, e, w)− δi(vi) + %V,i(|w|)

− γ2iW 2
i (ei, κi) +H2

i (x, e) +
µiγi
ν̃i

%2Wi
(|w|)

≤ −δi(vi)− Ji(x, e, w) +
µiγi
ν̃i

%2Wi
(|w|) + %V,i(|w|)

≤ µ̄∗i γi
ν̃i

%2Wi
(|w|) + %V,i(|w|). (30)

Case III) i ∈ NIII . In view of Lemma 2 and (30), in this

case, Zi(q, w) +S◦i (q;F (q, w)) ≤ µ∗i γi
ν̃i

%2Wi
(|w|) + %V,i(|w|).

In view of Cases I)-III),

U◦(q;F (q, w)) ≤ −αV (|x|)− αW (|e|) (31)

+
∑
i∈N

(Zi(q, w) + S◦i (q;F (q, w)))

≤ −αV (|x|)− αW (|e|) +
∑
i∈N

(
µ∗i γi
ν̃i

%2Wi
(|w|) + %V,i(|w|)

)
.

In view of item a), there exists αU ∈ K∞ such
that item b) holds with θF (s) :=

∑
i∈N

θFi(s), and

θFi(s) :=
µ∗i γi
ν̃i

%2Wi
(s) + %V,i(s) for all s ≥ 0.

Proof of item c). Let q ∈ Di, i ∈ N . We distinguish two cases
whether a transmission occurs. When a transmission occurs,
Wi(χi(ei, κi), κi+1) ≤ ρiWi(ei, κi) according to item (ii) of
Assumption 1. Note that φi(0) < µ∗i = 1/ρi, φi(Ti) > µ∗

i
=

ρi and ρi ≥ ρi in view of Lemma 3. Let g ∈ Gi(q),

Si(g) = max
{
γiφi(0)W 2

i (χi(ei, κi), κi + 1)), λiδi(vi)
}

≤ max

{
γi

1

ρi
ρ2iW

2
i (ei, κi), λiδi(vi)

}
≤ max

{
γiρiW

2
i (ei, κi), λiδi(vi)

}
≤ max

{
γiφi(Ti)W

2
i (ei, κi), λiδi(vi)

}
≤ Si(q). (32)

When no transmission occurs, it follows from (7), (13)
and item (ii) of Assumption 1 that γiW 2

i (χi(ei, κi), κi) =
γiW

2
i (ei, κi) ≤ λiρiδi(vi). Since φi(0) < µ∗i = 1/ρi

according to Lemma 3, we have that

Si(g) = max
{
γiφi(0)W 2

i (ei, κi), λiδi(vi)
}

≤ max

{
1

ρi
λiρiδi(vi), λiδi(vi)

}
= λiδi(vi) ≤ Si(q).

As a result, for all q ∈ D and g ∈ G(q),

U(g) ≤ V (x) +

N∑
i=1

Si(g) ≤ V (x) +

N∑
i=1

Si(q) = U(q),

and item c) holds.

Let (ϕ,w) be a solution to (9). Note that U is locally
Lipschitz in x, e, τ from item a). In view of page 99 in [32], for



13

any ν ∈ (0, 1), all j ∈ Z≥0 such that there exists t ∈ R≥0 with
(t, j) ∈ dom ϕ and almost all s ∈ Ij := {t̄ : (t̄, j) ∈ domφ},

d

ds
U(ϕ(s, j)) ≤ U◦(ϕ(s, j);F (ϕ(s, j), w(s, j)))

≤ −(1− ν)αU (U(ϕ(s, j))

− ναU (U(ϕ(s, j)) + θF (|w(s, j)|).

By invoking standard ISS arguments, we derive that there
exists β ∈ KL such that for all (t, j) ∈ dom ϕ,

U(ϕ(t, j)) ≤ β(U(ϕ(t, tj), t− tj) + α−1U

(
1

ν
θF (||w||(t,j))

)
,

where tj := inf Ij . It follows from item c) that, for all j such
that (t, j) ∈ dom ϕ,

U(ϕ(tj+1, j + 1)) ≤ U(ϕ(tj+1, j)).

Let ε := min
i∈N

εi, where εi > 0 is the minimum inter-sampling

time corresponding to network Ni. Let (t, j) ∈ domϕ. The
integer j represents the total number of transmissions over the
N networks, we can therefore write it as j = j1 + ... + jN ,
where ji is the number of transmissions that has occured so
far on network Ni. In view of the definition of the jump set

in (9), t ≥ ε(ji − 1). Consequently,
t

N
≥ ε

N
(ji − 1) and

t = N
t

N
≥ ε

N
(j1 + .... + jN ) − ε =

ε

N
j − ε. Since t ≥ 0,

we have that t ≥ t/2 + ε/2 max

{
j

N
− 1, 0

}
. Consequently,

for any (t, j) ∈ dom ϕ,

U(ϕ(t, j)) ≤ β(U(ϕ(0, 0), t) + α−1U

(
1

ν
θF (||w||(t,j))

)
≤ β

(
U(ϕ(0, 0)), 0.5t+ 0.5εmax

{
j

N
− 1, 0

})
+ α−1U

(
1

ν
θF (||w||(t,j))

)
.

Since α(s1 + s2) ≤ α(2s1) + α(2s2) for any α ∈ K∞ and
s1, s2 ≥ 0, see (7) in [33], we deduce from item a), to have
that |ϕ(t, j)|A ≤ β(|ϕ(0, 0)|A, t + j) + ψ(||w||(t,j)),
for all (t, j) ∈ domϕ, where β(s1, s2) :=

α−1U

(
2β
(
αU (s1), 0.5 min{ε, 1}max

{s2
N
− 2, 0

}))
and

ψ(s) := α−1U

(
2α−1U

(
1

ν
θF (||w||(t,j))

))
.

B. Sketched proof of Theorem 2

For any q ∈ C ∪ D, let U(q) := V (x) +
max

{
γφ(τ)W 2(e, κ), λV (x)

}
with W and V coming from

Assumption 3. The function φ : [0, T ]→
[
µ, µ

]
is defined as

in Lemma 5 in Appendix B.
The proof Theorem 2 follows same steps as the proof

of Theorem 1. We only explicitly prove the flow property
corresponding to item b) in Appendix A-A in the following. In
particular, we need show that item b) holds under Assumption
3. Let q ∈ C and w ∈ Rnw and we distinguish three cases
according to Lemma 2.

Case I) γφ(τ)W 2(e, κ) < λV (x). We have that U(q) =
(λ + 1)V (x) in this case. According to Lemma 5, φ(τ) ≥
ρ >

γλ

aV
. Hence, there exists ν ∈ (0, 1) such that ρ ≥

1

1− ν
γλ

aV
. Thus, γ2W 2(e, κ) ≤ γλV (x)

ρ
≤ (1 − ν)aV V (x)

and U◦(q;F (q, w)) ≤ (λ + 1)
(
− aV V (x) − αW (|e|) +

γ2W 2(e, κ) + ρV (|w|)
)
≤ (λ + 1)

(
− νV (x) − αW (|e|) +

%V (|w|)
)
.

Case II) γφ(τ)W (e, κ) > λV (x). In this case, we have that
U(q) = V (x)+γφ(τ)W 2(e, κ). From item (ii) of Assumption
3, the facts that φ(τ) ≤ µ in view of Lemma 5, and 2ab ≤
ca2 + 1/cb2 for all a, b ≥ 0 and c > 0,

U◦(q;F (q, w)) = −aV V (x)− αW (|e|)
+ γ2W 2(e, κ) + ρV (|w|)

+ γ

(
−(2LW + ν̃)φ− γ

(
L2
V

aV − ν̃
φ2 + 1

))
W 2(e, κ)

+ 2γφW (e, κ)
(
LWW (e, κ) + LV

√
V (x) + %W (|w|)

)
≤ −aV V (x)− αW (|e|) + γ2W 2(e, κ) + ρV (|w|)

− γ(2LW + ν̃)φW 2(e, κ)− γ2
(

L2
V

aV − ν̃
φ2 + 1

)
W 2(e, κ)

+ γ2
L2
V

aV − ν̃
φ2W 2(e, κ) + (aV − ν̃)V (x)

+ 2γLWφW
2(e, κ) + γφ

(
ν̃W 2(e, κ) +

1

ν̃
%2W (|w|)

)
≤ −ν̃V (x)− αW (|e|) +

µγ

ν̃
%2W (|w|) + %V (|w|),

where ν̃ > 0 comes from Lemma 5.

Case III: γφ(τ)W 2(e, κ) = λV (x). In view of Lemma 2,
and cases I and II, U◦(q;F (q, w)) ≤ −min{ν, ν̃}V (x) −
αW (|e|) + %V (|w|) +

µγ

ν̃
%2W (|w|).

In view of cases I)-III), U◦(q;F (q, w)) ≤
−min{ν, ν̃}V (x) − αW (|e|) + %V (|w|) +

µγ

ν̃
%2W (|w|)

for all q ∈ C and w ∈ Rnw . Then, there exists αU ∈ K∞
such that item b) holds with θF (s) :=

µγ

ν̃
%2W (|w|) + %V (|w|)

for all s ≥ 0. The rest of proof follows the same steps as the
proof of Theorem 1 and is therefore omitted.

C. Sketched proof of Theorem 3

We define the storage function as (27) and prove the desired
result by ensuring the satisfaction of the next properties.
a) U is locally Lipschitz in x, e and τ , and, for all q ∈ C∪D,
αU (|q|A) ≤ U(q) ≤ αU (|q|A), where αU , αU ∈ K∞;

b) for all q ∈ C and w ∈ Rnw , U◦(q;F (q, w)) ≤ µ(θp|w|p−
|z|p);

c) for all q ∈ D, w ∈ Rnw and g ∈ G(q), U
(
g
)
≤ U(q).

The proof of items a) and c) follows the same steps
as the proof of Theorem 1. We therefore prove the flow
property corresponding to item b) in Appendix A-A. Recall
that there are three cases to consider when q ∈ C: Case I)
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γiφi(τi)W
2
i (ei, κi) < λiδi(vi); Case II) γiφi(τi)W 2

i (ei, κi) >
λiδi(vi); and Case III) γiφi(τi)W 2

i (ei, κi) = λiδi(vi), and
they are respectively hold for i ∈ NI , i ∈ NII and i ∈ NIII .
We derive that the following hold.

Case I) i ∈ NI . In this case, S◦i (q;F (q, w)) ≤ λi
(
Lδiδi(vi)+

H̃2
i (x, e, w) + Ji(x, e, w)

)
. Let Zi(q, w) = γ2iW

2
i (ei) −

H̃2
i (x, e, w) − Ji(x, e, w) − δi(vi). We have that Zi(q, w) +

S◦i (q;F (q, w)) ≤ γ2iW
2
i (ei, κi) − (1 − λiLδi)δi(vi) − (1 −

λi)
(
H̃2
i (x, e, w) + Ji(x, e, w)

)
≤ −(1 − λi)H̃

2
i (x, e, w) −

(1 − λi)Ji(x, e, w), i ∈ N , since λiLδi < 1 from (14) and
γ2iW

2
i (ei, κi) < (1− λiLδi)δi(vi).

Case II) i ∈ NII . In Case II), S◦i (q;F (q, w)) =
γi(−(2LWi

+ ν̃i)φi − γi(φ
2
i + 1))W 2

i (ei, κi) +
2γiφiWi(ei, κi)

(
LWi

Wi(ei, κi) + H̃i(x, e, w)
)

≤
−γ2iW 2

i (ei, κi)+H̃
2
i (x, e, w) and Zi(q, w)+S◦i (q;F (q, w)) ≤

−δi(vi)− Ji(x, e, w), i ∈ N .

Case III) i ∈ NIII . In view of Lemma 2, and cases I and
II, Zi(q, w)+S◦i (q;F (q, w)) ≤ max{−(1−λi)H̃2

i (x, e, w)−
(1− λi)Ji(x, e, w),−δi(vi)− Ji(x, e, w)}.

Consequently, U◦(q;F (q, w)) ≤ µ(θp|w|p −
|z|p) +

∑
i∈N

Zi(q, w) + S◦i (q;F (q, w)) ≤ µ(θp|w|p −

|z|p) −
∑
i∈NII

(δi(vi) + Ji(x, e, w)) −
∑
i∈NI

(1 −

λi)
(
H̃2
i (x, e, w) + Ji(x, e, w)

)
−

∑
i∈NIII

max{(1 −

λi)(H̃
2
i (x, e, w) + Ji(x, e, w)) + δi(vi) + Ji(x, e, w)} ≤

µ(θp|w|p − |z|p) since λi < λ∗i ≤ 1 in view of (14). The
satisfaction of items a) and c) follows by applying similar
arguments as in the proof of Theorem 1.

Let (ϕ,w) be a solution to (9). In view of page 99 in
[32], for all j ∈ Z≥0 such that there exists t ∈ R≥0 with
(t, j) ∈ dom ϕ and almost all s ∈ Ij := {t̄ : (t̄, j) ∈
domφ}, d

ds
U(ϕ(s, j)) ≤ U◦(ϕ(s, j);F (ϕ(s, j), w(s, j))) ≤

−|z(s, j)|p + θp|w(s, j)|p. We then follow similar lines as the
the proof of Theorem 1 and the Theorem IV.7 in [26] and we
obtain that ||z||Lp ≤ γ̃(|ϕ(0, 0)|A)+θ||w||Lp , where γ̃ := αU .

D. Proof of Proposition 1
Let matrix P , aV , aW , θ̃, εi > 0 and νi ≥ aW +$2

i |B2,i|2,
i ∈ N , be given such that (24) holds. Let i ∈ N ,

since
∣∣∣∣∂Wi(ei, κi)

∂ei

∣∣∣∣ ≤ $i for almost all ei ∈ Rnei and

κi ∈ Z≥0 (as the protocol is UGES, see discussions above
(21)), we have that for all x ∈ Rnx and almost all e ∈
Rne ,

〈
∂Wi(ei, κi)

∂ei
,−Ci(A1x+ B1e+D1ψ(x) + E1w)

〉
≤

$i|CiA1x + CiB1e + CiD1ψ(x) + CiE1w| ≤ $i|CiA1x +
B2,ie+CiD1ψ(x)+CiE1w|+ |CiB1Ψie|) and |CiD1ψ(x)| ≤
L|CiD1||x| in view of the properties of ψ. Note that B2,ie is
independent to ei and B1Ψie depends only on ei according
to the definition of B2,i and Ψi. This implies that item
(iii) of Assumption 1 holds with LWi = $i/aWi

|CiB1Ψi|,
H̃i(x, e, w) = $i(|CiA1x+ B2,ie+ CiE1w|+ L|CiD1||x|).

Recall that δi(vi) = ε2i |vi|2, vi = Cix and note that∣∣∣xT (CTi CiA1 +AT1 C
T

i Ci

)
x
∣∣∣ = 2

∣∣〈Cix, CiA1x
〉∣∣ ≤

2
∣∣Cix∣∣ ∣∣CiA1x

∣∣ ≤
∣∣∣xTCTi Cix∣∣∣ +

∣∣∣xTAT1 CTi CiA1x
∣∣∣.

Hence,
〈
∇δi(vi), Ci(A1x+ B1e+D1ψ(x) + E1w)

〉
≤

ε2i

∣∣∣xT (CTi CiA1 +AT1 C
T

i Ci

)
x
∣∣∣ + 2ε2i (|xTC

T

i Ci(B1e +

E1w)|+L|CTi CiD1||x|2) ≤ Lδiδi+Ji(x, e, w), where Lδi = 1

and Ji(x, e, w) = ε2i

(∣∣∣AT1 CTi CiA1

∣∣∣+ 2L
∣∣∣CTi CiD1

∣∣∣) |x|2 +

2ε2i

∣∣∣xTCTi Ci(B1e+ E1w)
∣∣∣, hence item (iii) of Assumption 2

holds.
Let V (x) = xTPx. Item (i) of Assumption 2 holds with

αV (s) := λmin(P )s2, αV (s) := λmax(P )s2 for all s ≥ 0.
Note that, for all x ∈ Rnx and almost all e ∈ Rne ,
〈∇V (x),A1x+B1e+D1ψ(x)+E1w〉 = xT (AT1 P+PA1)x+
2xTPB1e+2L|D1|xTPx+2xTPE1w. We now post- and pre-
multiply LMI in (24) respectively by the state vector (x, e, w)
and its transpose, re-arrange its terms, and derive from (24)
and the definitions of A2, B2 and E2 defined after (22) that
item (ii) of Assumption 2 holds with functions H̃i, Ji, δi, %V,i
and γi > 0 given in Proposition 1.

E. Proof of Lemma 1

The proof agrees with the one to Proposition 1 with re-
placing ψ(x) by ψ(y, e), and the property |ψ(y, e)| ≤ L|e| in
view of properties of ψ. Since 2L|Px||D1||e| ≤ aV |x|2 +
1/aV (L|P ||D1||e|)2 for all x ∈ Rnx , e ∈ Rne and any
aV > 0, and hence, 〈∇V (x),A1x+B1e+D1ψ(y, e)+E1w〉 =
xT (AT1 P +PA1)x+ 2xTPB1e+ 2L|Px||D1e|+ 2xTPE1w.
We then follow similar lines as in the proof of Proposition 1 to
show Assumptions 1-2 hold. On the other hand, (24) always
has a solution in this case since A1 is Hurwitz, which ensures
Σ11 < 0 and (24) follows by taking sufficiently large θ̃, ν and
small enough ε > 0.

APPENDIX B
TECHNICAL LEMMAS

The next statements corresponds to Lemma II.1 in [34].
Lemma 2: Consider two functions U1 : Rn → R and

U2 : Rn → R that have well-defined Clarke derivatives for
all x ∈ Rn and v ∈ Rn. Introduce three sets A := {x :
U1(x) > U2(x)}, B := {x : U1(x) < U2(x)}, Γ :=
{x : U1(x) = U2(x)}. Then, for any v ∈ Rn, the function
U(x) := max{U1(x), U2(x)} satisfies U◦(x; v) = U◦1 (x; v)
for all x ∈ A, U◦(x; v) = U◦2 (x; v) for all x ∈ B, and
U◦(x; v) ≤ max{U◦1 (x; v), U◦2 (x; v)} for all x ∈ Γ. �

Lemma 3: Let i ∈ N , λi ∈ [0, λ∗i ) and Ti < TMASP,i(λi)
with λ∗i and TMASP,i(λi) defined in (14) and (15), respectively.
Let µ∗i := 1/ρi, µ∗i = ρi with ρi defined after (13). There exist
µi > µ

i
> 0, satisfying 0 < µ∗

i
< µ

i
< µi < µ∗i , and ν̃i > 0

such that the solution φi to φ̇i = −(2LWi
+ ν̃i)φi − γi(φ2i +

1), φi(0) = µi, verifies φi(t) ∈
[
µ
i
, µi

]
for all t ∈ [0, Ti],

where LWi ≥ 0 comes from Assumption 1 and γi > 0 from
Assumption 2. �
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Proof of Lemma 3. Let i ∈ N , λi ∈ [0, λ∗i ) and Ti <
TMASP,i(λi). We first show that the following fact holds.

Fact 1: 0 ≤ γiλi
1− λiLδi

< 1, i ∈ N . �

Fact 1 holds since 0 ≤ γiλi
1− λiLδi

≤ γiλi
1 + γiλi

< 1 when

Lδi ≤ −γi, and λi <
1

Lδi + γi
when Lδi > −γi, in view of

the definition of λ∗i in (14).

Fact 1 leads to ρi = max

{
ρi,

γiλi
1− λiLδi

}
∈ [0, 1) since

ρi ∈ [0, 1). Hence, 0 ≤ µ∗
i
< µ∗i . Denote by T (µi, µi, ν̃i)

the time it takes for the solution φi to decrease from µi to
µ
i

for a given ν̃i ≥ 0. In view of the dynamics of φi, the
function Ti is continuous in all its arguments, increasing in µi,
decreasing in µ

i
and decreasing in ν̃i. By following similar

lines as in the proof of Lemma 2 in [28], we have that TMASP,i

defined in (15) satisfies TMASP,i(λi) = Ti(λi, µ∗i , µ∗i , 0).
Since Ti < TMASP,i(λi), by continuity of Ti and in view
of its increasing/decreasing properties, there exists a triplet
(µi, µi, ν̃i) with µi < µ∗i , µ

i
> µ∗

i
and ν̃i > 0, such that

Ti = Ti(λi, µi, µi, ν̃i) and φi(t) ∈
[
µ
i
, µi

]
holds for all

t ∈ [0, Ti]. �

Lemma 4: For any α1, . . . , αN ∈ K, α

(
N∑
i=1

si

)
≤

N∑
i=1

αi(si) ≤ α

(
N∑
i=1

si

)
holds for all si ≥ 0 and i ∈ N ,

where α, α : s 7→ min
{
α1

( s
N

)
, . . . , αN

( s
N

)}
∈ K and

α :=

N∑
i=1

αi. �

Proof of Lemma 4. Let α1, . . . , αN ∈ K and s1, ..., sN ≥ 0.

Since α1, . . . , αN are increasing functions,
N∑
i=1

αi(si) ≤

N∑
i=1

αi(s1 + . . . , sN ) = α

(
N∑
i=1

si

)
. Without loss of

generality, we assume that sj = max{s1, . . . , sN} for

some j ∈ N . It then follows that
1

N

N∑
i=1

si ≤

sj and
N∑
i=1

αi(si) ≥ αj(sj) ≥ αj

(
1

N

N∑
i=1

si

)
≥

min

{
α1

(
1

N

N∑
i=1

si

)
, . . . , αN

(
1

N

N∑
i=1

si

)}
, which com-

pletes the proof. �

The proof of Lemma 5 follows the proof to Lemma 3 and
is therefore is omitted.

Lemma 5: Let λ ∈ [0, λ∗) and T < TMASP(λ) with λ∗

and TMASP(λ) defined as (17) and (18), respectively. There
exist µ > µ > 0, satisfying 0 < ρ < µ < µ < 1/ρ, and
ν̃ ∈ (0, aV ) such that the solution φ to φ̇ = −(2LW + ν̃)φ−

γ

(
L2
V

aV − ν̃
φ2 + 1

)
, φ(0) = µ, verifies φ(t) ∈

[
µ, µ

]
for all

t ∈ [0, T ], where ρ := max

{
ρ,
γλ

aV

}
, ρ ∈ [0, 1) LW , LV ≥ 0

and aV , γ > 0 come from Assumption 3. �
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[29] M. Tabbara and D. Nešić, “Input-output stability with input-to-state
stable protocols for quantized and networked control systems,” in
Proceedings of the 47th IEEE Conference on Decision and Control,
Cancun, Mexico, 2008, pp. 2680–2685.

[30] M. Abdelrahim, R. Postoyan, J. Daafouz, D. Nešić, and W. Heemels,
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