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Abstract—Event-triggered control (ETC) is a control strategy
that is especially suited for applications where communication re-
sources are scarce. By updating and communicating sensor and
actuator data only when needed for stability or performance pur-
poses, ETC is capable of reducing the amount of communications,
while still retaining a satisfactory closed-loop performance. In this
paper, an ETC strategy is proposed by striking a balance between
conventional periodic sampled-data control and ETC, leading to
so-called periodic event-triggered control (PETC). In PETC, the
event-triggering condition is verified periodically and at every sam-
pling time it is decided whether or not to compute and to transmit
newmeasurements and new control signals. The periodic character
of the triggering conditions leads to various implementation ben-
efits, including a minimum inter-event time of (at least) the sam-
pling interval of the event-triggering condition. The PETC strate-
gies developed in this paper apply to both static state-feedback
and dynamical output-based controllers, as well as to both cen-
tralized and decentralized (periodic) event-triggering conditions.
To analyze the stability and the -gain properties of the resulting
PETC systems, three different approaches will be presented based
on 1) impulsive systems, 2) piecewise linear systems, and 3) per-
turbed linear systems. Moreover, the advantages and disadvan-
tages of each of the three approaches will be discussed and the de-
veloped theory will be illustrated using a numerical example.

Index Terms—Control systems, digital control, event-triggered
control, linear feedback, networked control systems.

I. INTRODUCTION

I N many digital control applications nowadays, the control
task consists of sampling the outputs of the plant and

computing and implementing new actuator signals. Typically,
the control task is executed periodically, since this allows the
closed-loop system to be analyzed and the controller to be
designed using the well-developed theory on sampled-data
systems. Although periodic sampling is preferred from an anal-
ysis and design point of view, it is sometimes less preferable
from a resource utilization point of view. Namely, executing
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the control task at times when no disturbances are acting on
the system and the system is operating desirably is clearly a
waste of communication resources. This is especially disad-
vantageous in applications where the measured outputs and/or
the actuator signals have to be transmitted over a shared (and
possibly wireless) communication network, where the band-
width of the network and the power sources of the wireless
devices are constrained. To mitigate the unnecessary waste
of communication resources, it is of interest to consider an
alternative control paradigm, namely event-triggered control
(ETC), which has been proposed in the late nineties [1]–[5].
Various ETC strategies have been proposed since then, see,
e.g., [6]–[17]. In ETC, the control task is executed after the
occurrence of an event, generated by some well-designed
event-triggering condition, rather than the elapse of a certain
fixed period of time, as in conventional periodic sampled-data
control. In this way, ETC is capable of significantly reducing
the number of control task executions, while retaining a satis-
factory closed-loop performance.
The main difference between the afore-cited papers [1]–[17]

and the ETC strategy that will be proposed in this paper is that
in the former the event-triggering condition has to be monitored
continuously, while in the latter the event-triggering condition
is verified only periodically, and at every sampling time it is
decided whether or not to transmit new measurements and con-
trol signals. Only when necessary to guarantee stability or per-
formance requirements, the communication resources are used.
The resulting control strategy aims at striking a balance be-
tween periodic sampled-data and event-triggered control and,
therefore, we will use the term periodic event-triggered con-

trol (PETC) for this class of ETC, while we will use the term
continuous event-triggered control (CETC) to indicate the ex-
isting approaches that require monitoring of the event-triggering
conditions continuously. By mixing ideas from ETC and pe-
riodic sampled-data control, the benefits of reduced resource
utilisation are preserved in PETC as transmissions and con-
troller computations are not performed periodically, while the
event-triggering conditions are evaluated only periodically. The
latter aspect leads to several benefits, including a guaranteed
minimum inter-event time of (at least) the sampling interval
of the event-triggering condition. Furthermore, as already men-
tioned, the event-triggering condition has to be verified only at
periodic sampling times, making PETC better suited for prac-
tical implementations as it can be implemented in more stan-
dard time-sliced embedded software architectures. In fact, often
CETC will eventually be implemented using a discretized ver-
sion based on a sufficiently high sampling period resulting in
a PETC strategy after all. This fact provides a further motiva-
tion for direct analysis and design of PETC instead of obtaining
them in a final implementation stage as a discretized approxi-
mation of a CETC strategy. Another advantage of PETC is that
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it can be transformed more easily into a self-triggered control
variant [18]–[20] (at least in the case that the controller is in a
state-feedback form). Initial work in the direction of PETC was
taken in [2], [6], [7], [21], which focused on restricted classes of
systems, controllers, and/or (different) event-triggering condi-
tions without providing a general analysis framework. Recently,
the interest in what we call here PETC is growing, see, e.g.,
[22]–[26] and [27, Sec. 4.5], although these approaches start
from a discrete-time plant model instead of a continuous-time
plant, as we will do here.
In this paper, we will provide a general framework for a broad

class of PETC in the context of linear systems that allows to
carry out stability and performance analysis. In fact, we will pro-
vide three different modeling and analysis approaches, namely:
1) an impulsive system approach; 2) a discrete-time piecewise
linear (PWL) system approach; and 3) a discrete-time perturbed
linear (PL) system approach. The first approach adopts impul-
sive systems [28], [29] that explicitly include the intersample
behavior, which is not the case for the previously mentioned
PETC approaches [21]–[24] and [27, Sec. 4.5]. Based on the
impulsive system paradigm, we are able to provide guarantees
on performance in terms of -gains, besides guaranteeing sta-
bility. In the second method, we exploit PWL models, which
can be obtained as time-discretizations of the corresponding
impulsive systems, and use piecewise quadratic (PWQ) Lya-
punov functions that lead to LMI-based stability conditions for
the PETC system. The third method, which is based on PL sys-
tems, can be seen as a discrete-time counterpart of the work in
[11], in which CETC was studied. The essence of this approach
is that the difference between the control signal obtained by a
standard periodic controller and its event-triggered counterpart
can be modeled as a disturbance, resulting in a PL system, see
also [22]. This insight will be used to derive a sufficient condi-
tion for stability of the PETC system based on the -norm of
the PL system. This provides a simple stability test, which is,
however, more conservative than the stability conditions based
on the second approach. Interestingly, the PL system approach
provides insights that justify an emulation-based controller syn-
thesis method, as we will discuss in detail.
In the first part of the paper, we will present the three

mentioned approaches for the basic setup of state-feedback
controllers. However, as in many practical situations not all the
states are available for feedback, it is of interest to study output-
based dynamic controllers as well, which we will do in the
second part of the paper. Another important issue is handling
the situation in which sensors, actuators and controllers are
physically distributed over a wide area. In fact, a centralized
event-triggering mechanism can be prohibitive in this case, as
the conditions that generate events would need access to all
the plant and controller outputs at every sampling time, which
can be an unrealistic assumption in large-scale systems. To
resolve this issue, in the second part of the paper we will also
propose decentralized periodic event-triggered conditions for
output-based dynamic controllers (which may be decentralized
themselves).
The remainder of this paper is organized as follows. After

introducing the necessary notational conventions, we introduce
PETC and give the problem formulation in Section II. In Sec-

tion III, the impulsive system approach, the PWL system ap-
proach, and the PL system approach are presented, together
with a discussion on their advantages and disadvantages. In Sec-
tion IV, we provide emulation-based design considerations for
PETC. In Section V, we will extend the ideas presented in the
first part of this paper towards output-based dynamic controllers
and decentralized periodic event-triggered conditions. Before
providing the conclusions in Section VII, we will provide a nu-
merical example in Section VI illustrating the main develop-
ments in this paper. The Appendix contains the more technical
proofs of the lemmas and theorems.

A. Nomenclature

For a vector , we denote by its
2-norm, and by the subvector formed by all components
of in the index set . For a symmetric ma-
trix , and denote the maximum
and minimum eigenvalue of , respectively. For a matrix

, we denote by the transposed of , and by
its induced 2-norm. Furthermore, by

and , we denote the submatrices formed by taking all
the rows of in the index set , and by all the
columns of in the index set , respectively. By

, we denote a block-diagonal matrix with the
entries on the diagonal, and for the sake of brevity

we sometimes write symmetric matrices of the form

as or . We call a matrix posi-

tive definite and write , if is symmetric and
for all . Similarly, we use , and to
denote that is positive semidefinite, negative definite and neg-
ative semidefinite, respectively. For a locally integrable signal

, where denotes the set of nonnegative
real numbers, we denote by its
-norm, provided the integral is finite. Furthermore, we define

the set of all locally integrable signals with a finite -norm as
. For a signal , we denote the limit from above

at time by .

II. PERIODIC EVENT-TRIGGERED CONTROL

In this section, we introduce periodic event-triggered control
(PETC) and give a precise formulation of the stability and per-
formance analysis problems we aim to solve in this paper.

A. Periodic Event-Triggered Control System

To introduce PETC, let us consider a linear time-invariant
(LTI) plant, given by

(1)

where denotes the state of the plant, is the
input applied to the plant, and is an unknown distur-
bance. In a conventional sampled-data state-feedback setting,
the plant is controlled using a controller

(2)
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Fig. 1. Event-triggered control schematic.

where , , are the sampling times, which are periodic
in the sense that , , for some properly chosen
sampling interval .
Instead of using conventional periodic sampled-data control,

we propose here to use PETC meaning that at each sampling
time , , state measurements are transmitted over
a communication network and the control values are updated
only when certain event-triggering conditions are satisfied. This
modifies the controller from (2) to

(3)

where is a left-continuous signal1, given for ,
, by

when
when

(4)

and some initial value for . Hence, considering the config-
uration in Fig. 1, the value can be interpreted as the most
recently transmitted measurement of the state to the controller
at time . Whether or not new state measurements are trans-
mitted to the controller is based on the event-triggering con-
dition with . In particular, if at time
it holds that , the state is trans-

mitted over the network to the controller and and the control
value are updated accordingly. In case ,
no new state information is sent to the controller, in which case
the input is not updated and kept the same for (at least) an-
other sampling interval implying that no control computations
are needed and no new state measurements and control values
have to be transmitted. In the next sections, we focus on central-
ized event-triggering conditions, which requires that a central
coordinator has access to the full state , while later in Sec-
tion V we consider decentralized event-triggering conditions.

B. Quadratic Event-Triggering Conditions

In this paper, we focus on quadratic event-triggering condi-
tions, i.e., , as in (4), is given by

(5)

where , for some symmetric matrix
. To show that these event-triggering conditions

form a relevant class, we will review some existing event-trig-
gering conditions that have been applied in the context of con-
tinuous event-triggered control (CETC), and show how they can

1A signal is called left-continuous, if for all ,
.

be written as quadratic event-triggering conditions for PETC as
in (5).
1) Event-Triggering Conditions Based on the State Error:

An important class of event-triggering conditions, which has
been applied to CETC in [10], [11], are given by

(6)

for , where . Clearly, (6) is of the form (5) with

(7)

2) Event-Triggering Conditions Based on the Input Error: In
[15], where the objective was to develop output-based CETC,
an event-triggering condition was proposed that would translate
for state-feedback-based PETC systems to

(8)

where . Condition (8) is equivalent to
in which is the control value deter-

mined on the basis of as in standard periodic state-feed-
back (see (2)). The event-triggering condition (8) is equivalent
to (5), in which

(9)

3) Event-Triggering Conditions as in [20]: A PETC version
of the condition used in [20] is

(10)

where and, again, ,
which results in an event-triggering condition (5) with

, as ,

.
4) Event-Triggering Conditions Based on Lyapunov Func-

tions: In [30] and [31] in the context of CETC and in [19] in the
context of self-triggered control [18], Lyapunov-based event-
triggering conditions have been proposed. For PETC, a Lya-
punov-based event-triggering condition can be derived using
the discretization of (1), with , given by

(11)

in which

(12)

and taken as , , as in (2). In
case is designed such that has all its eigenvalues
inside the open unit circle, there exists a quadratic Lyapunov
function of the form , , with

and (13)
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for some . This implies the decrease of the Lyapunov
function in the sense that for all
along the solutions of (11) and (2). In [19] and [30], [31] an

event-triggering condition has been proposed (in the context of
CETC) based on the existence of by selecting and
only updating at time to when

(14)

Hence, only when the current input
no longer guarantees a decrease of the Lyapunov func-
tion with a factor , the signals and are up-
dated. Obviously, (14) can be written as in (5) by taking

. The interest in [19],

[30], [31] for this event-triggering condition is motivated
by the fact that for any choice of , is a Lya-
punov function for the PETC system (1), with , (3)
and (4) with event-triggering condition (14), and thus sta-
bility of the resulting PETC system is inherently guaranteed.
In fact, it is easily seen that for this scheme it holds that

for all .
The four mentioned examples show the relevance of the class

of quadratic event-triggering conditions (5), as their CETC
counterparts have been considered in the literature extensively.

C. Closed-Loop Model and Objective of the Paper

To obtain a complete model of the PETC system, we combine
(1), (3), (4) and (5), we use, as before, and define

(15)
to arrive at an impulsive system [28], [29] given by

when (16a)

when ,

when ,

(16b)

(16c)

where is a performance output with the matrices and
chosen appropriately, and the state keeps track of the time

elapsed since the last sampling time.
Besides the introduction of new classes of PETC schemes,

the main objective of this paper is to provide analysis and de-
sign techniques for event-triggering conditions of the form (5)
such that the corresponding closed-loop system (1), (3), (4) and
(5) is stable and has a certain closed-loop performance, both de-
fined in an appropriate sense, while the number of transmissions
between the plant and the controller is kept small. To make pre-
cise what we mean by stability and performance, let us define
the notion of global exponential stability and -performance.

Definition II.1: The PETC system (16) is said to be globally
exponentially stable (GES), if there exist and such
that for any initial condition all corresponding
solutions to (16) with and satisfy

for all . In this case, we call a (lower bound
on the) decay rate.
Definition II.2: The PETC system (16) is said to have an
-gain from to smaller than or equal to , if there is a

function such that for any , any initial
state and , the corresponding
solution to (16) satisfies

(17)

III. STABILITY AND -GAIN ANALYSIS OF THE PETC SYSTEM

In this section, we analyze stability and performance of the
PETC system (16) using three different approaches, namely:
1) an impulsive system approach; 2) a discrete-time piecewise
linear (PWL) system approach; and 3) a discrete-time perturbed
linear (PL) system approach. In particular, the first approach
allows to analyze both GES and -gain properties, while the
latter two approaches will focus on GES only.

A. Impulsive System Approach

In this section, we will analyze the stability and the -gain
of the impulsive system model (16), directly. To do so, let us
consider a Lyapunov/storage function of the form

(18)

for and , where with
, for . The choice of Lyapunov function is

inspired by [28], [32]. The function will
be chosen such that it becomes a candidate storage function for
(16) with the supply rate . In particular, we will
select to satisfy the Riccati differential equation

(19)

provided the solution exists on for a desired convergence
rate , in which is assumed
to exist and to be positive definite, which means that

. As we will show in the proof of Theorem III.2,
this choice for the matrix function yields

(20)

during the flow (16a). Combining inequality (20) with the
conditions

with (21a)

with (21b)
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which imply that the storage function does not increase during
the jumps (16b) of the impulsive system (16), we can guarantee
that the -gain from to is smaller than or equal to , see,
e.g., [33]. The result that we present below, is based on verifying
the satisfaction of (21) by relating to .
To do so, we introduce the Hamiltonian matrix

(22)

with , which is positive definite if again
. In addition, we introduce

the matrix exponential

(23)

allowing us to provide the explicit solution to the Riccati differ-
ential (19), yielding

(24)

provided that the solution (24) is well defined on , see,
e.g., [34, Lem. 8.2]. To guarantee this, we will use the following
assumption.
Assumption III.1: is invertible for all .
Before presenting the main result, observe that Assumption

III.1 is always satisfied for sufficiently small . Namely,
is a continuous function and we have that . Let

us also introduce the notation , ,
and , and a matrix that sat-

isfies . A matrix exists under Assump-
tion III.1, because this assumption will guarantee that the matrix

is positive semidefinite, as we will show in the proof
of the theorem presented below.
Theorem III.2: Consider the impulsive system (16) and let

, , and Assumption III.1 hold. Sup-

pose that there exist a matrix , and scalars ,

, such that for

(25)
Then, the PETC system (16) is GES with convergence rate
(when ) and has an -gain from to smaller than or

equal to .

The results of Theorem III.2 guarantee both GES (for )
and an upper bound on the -gain. In case disturbances are
absent (i.e., ), the conditions of Theorem III.2 simplify
and GES can be guaranteed using the following corollary.
Corollary III.3: Consider the impulsive system and let

be given. Assume there exist a matrix and scalars

, , such that

(26)
Then, the PETC system (16) is GES (for ) with decay

rate .

B. Piecewise Linear System Approach

In this section, we will obtain less conservative conditions
for GES (when ), if compared to the impulsive system
approach. These conditions will be obtained based on a dis-
crete-time PWL model, which is obtained by discretizing the
impulsive system (16) at the sampling times , ,
where we take2 and . The fact that we use a dis-
cretized model, thereby losing exact information on the inter-
sample behavior, might make an -gain analysis complicated.
Therefore, we focus on GES and . By defining the state
variable (and assuming to be left-continuous), the
discretization leads to the bimodal PWL model

when ,
when ,

(27)

where

(28)

with and as in (12).
Using the PWLmodel (27) and a piecewise quadratic (PWQ)

Lyapunov function of the form

when ,
when ,

(29)

we can guarantee GES of the PETC system given by (1), (3) (4)
and (5) under the conditions given next.
Theorem III.4: The PETC system (16) is GES with decay rate
, if there exist matrices , and scalars ,

and , , satisfying

and (30a)

for all (30b)

As stated in the beginning of this section, the impul-
sive system approach can never outperform the PWL
system approach in terms of the stability analysis. To for-
mally prove this statement, we substitute (28) into (26),
and apply a Schur complement to (26), yielding that

and
and , . As these conditions are

equivalent to the LMIs (30a), with ,
and , , this shows that if the LMIs (26) are
feasible, then the LMIs (30a) are feasible. In addition, since

the LMIs (30b) hold with . Hence, we
have proven the following result.
Theorem III.5: Let be fixed. Suppose that (26) is satis-

fied for some , and . Then (30a) and (30b)
are satisfied for some , and constants , ,

and , .

2Note that for (16) and in the stability definition (Def. II.1) the initial condi-
tions are allowed to have any value , while in the discretization we
take . Due to the linearity of the flow dynamics (16a) and the fact that

lies in a bounded set, it is straightforward to see that GES for initial condi-
tions with implies GES for all initial conditions with .
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Hence, in case the impulsive system approach guarantees
GES with convergence rate of the PETC system (16) using
Corollary III.3, then the PWL system approach using Theorem
III.4, proves GES with convergence rate of the PETC system
as well.
Remark III.6: In case Corollary III.3 is applied for stability

analysis, the resulting conditions are equivalent to the existence
of a quadratic Lyapunov function for the corresponding PWL
system. This explains that exploiting the impulsive system
approach for stability analysis does not improve upon the re-
sults obtained by the PWL system approach directly. However,
theoretically one can show that any Lyapunov function that
proves GES based on the discrete-time PWL system (27) can be
converted into a Lyapunov function for the impulsive system
(16) (with ) given by ,

and , for a sufficiently small positive value
of . However, to construct a Lyapunov function of the form

by a tractable computational
method directly on the basis of (16) is complicated.

C. A Perturbed Linear System Approach

For the particular case where the event-triggering conditions
are in the form of (6) or (8), more easily verifiable conditions
for GES can be obtained at the cost of being more conserva-
tive than the PWL system approach, see Theorem III.8 below.
These conditions will be obtained through a PL system approach
and can be based on standard -gain techniques allowing for a
simple maximization of in (6) or (8) subject to the sufficient
GES-conditions.
The GES analysis will be based on the discrete-time PL

system

(31)

where , [recall that the signal is
piecewise constant and left-continuous, cf. (4)], ,

, and , as in (12). The system (31) is obtained by dis-
cretizing (1), with , and combining it with (3). The system
expresses how the plant (1) with the event-triggered controller
(3) is perturbed when compared to the original periodic sam-
pled-data control system given by (1) and (2).
The following stability result relies on the concepts of dissi-

pativity, storage functions and supply rates, see, e.g., [35], [36].
Note that the result we present below uses the event-triggering
condition (6). A similar result can be obtained for event-trig-
gering condition (8) by modifying (31) into

and then , .
Theorem III.7: Suppose that the PL system (31) admits a

storage function with a symmetric positive

definite matrix for supply rate3 with ,

i.e., the dissipation inequality

(32)

is satisfied for any disturbance sequence and all corre-

sponding solutions . Then the PETC system (16) with
as in (6) is GES for any .

3We scaled the constant in front of to 1. Note that this is without loss of
generality as and can be scaled as well.

Proof: It is possible to give a direct proof on the basis of
(32) along the lines of [11], [22]. For reasons of brevity, we will
not give a direct proof, but point out that the proof follows from
Theorem III.8 together with Theorem III.4 .
Observe that the existence of a storage function satisfying

the dissipation inequality (32) is equivalent to feasibility of the
LMIs

and

(33)

In fact, feasibility of (33) is equivalent to the system (31) having
an -gain smaller than or equal to from to . To obtain
the largest minimal inter-event times, it follows from (6) that
should be as large as possible and thus that should be maxi-
mized, while satisfying (32) (in order to have a GES guarantee).
Hence, this results in the convex optimization problem of max-
imizing subject to (33). Interestingly, provided that
has all its eigenvalues within the unit circle, the maximal value
obtained in this way is such that the true -gain of (31)

from to is equal to , which is equal to the -norm
given by , see, e.g., [35].
Hence, the supremal satisfying (33) gives rise to the -gain
of and guarantees stability of the PETC system (1), (3),
(4), with (6) for any

. Hence, a standard -norm calculation
for a linear system provides stability bounds in terms of for
the event-triggering condition (6) [or (8)].
We will now formally show that for the particular event-trig-

gering condition (6) (or (8)), the PL system approach can never
do better than the PWL system approach in terms of the range
of for which GES of the PETC system can be proven.
Theorem III.8: Let be given. Suppose that (33) is

satisfied for some and . Then (30a) and (30b) are
satisfied for some , , constants , , ,

and , and with as in (7) with the same .

Hence, in case the PL system approach guarantees GES of
the PETC system (16) with as in (7) [or (9)] for some
using Theorem III.7, then the PWL system approach also guar-
antees GES of the PETC system for the same based on
Theorem III.4.

D. Discussion on the Different Approaches

When comparing the different analysis approaches, several
observations can be made. The first observation is that the PL
system approach provides, in case of event-triggering condi-
tions (6) and (8), stability guarantees of the PETC system via
a simple -norm computation, or, alternatively, via direct
maximization of subject to the sufficient GES conditions in
terms of the LMIs (33). Both these computations are of a lower
complexity than the computational tests required for the impul-
sive and PWL system approaches. In particular, considering the
PWL system approach, the maximization of subject to the
sufficient GES-conditions (30) are not directly LMIs as is in-
cluded through , see (7) and (9), which is multiplied by
and , . However, when fixing the conditions
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(30) become LMIs and hence, a line search in is needed to
maximize subject to (30). Similar comments apply for the im-
pulsive system approach.
The second observation is that the impulsive system approach

is the only one of the three approaches that allows the -gain
from to to be studied at this point, which makes this ap-
proach important for PETC as well. Although one might at-
tempt to use the PWL and PL system approaches to obtain upper
bounds on the -gain by including the intersample behavior,
doing so might be difficult.
Finally, the PWL system approach is relevant since, when

comparing it to the PL system and the impulsive system ap-
proach, we can show that for stability analysis (when ),
the PWL system approach never yields more conservative re-
sults than the other two approaches (Theorem III.5 and Theorem
III.8). However, the PWL system approach is computationally
(somewhat) more involved than the PL system approach, as al-
ready mentioned.

IV. DESIGN CONSIDERATIONS

In this section, we will provide guidelines for the design of
PETC strategies, which consists of the proper selection of the
sampling period , the feedback gain in (3), and the matrix
in the event-triggering condition (5). In general, the design of

the PETC loopwill be a tradeoff between control properties (sta-
bility and performance, e.g., -gains) and resource utilization.
The joint design of the controller and the event-triggering

condition is a hard problem, both in the context of CETC and
PETC. In fact, most of the existing CETC design methods
follow a so-called emulation-based approach. Based on the
general analysis framework provided in Section III, one can
show that a similar emulation-based approach can be taken in
the context of PETC as well. To explain this in more detail, we
focus on the PETC conditions given by (6) or (8), so that the
design process consists of selecting , and .
In the emulation-based approach, two phases can be distin-

guished. In the first phase, the controller is assumed to be imple-
mented in a standard periodic sampled-data fashion and, there-
fore, standard sampled-data controller design tools, see, e.g.,
[37], [38] can be used to select and such that the resulting
closed-loop system, given by (1), (2), and , , is
GES and has a satisfactory -gain. In this first phase, the selec-
tion of is directly incorporated and balanced with stability and
performance requirements. The importance of the selection of
for the eventual PETC law is that it provides directly a lower

bound on the time difference between two consecutive updates
of the control signal in the PETC system (1), (3), (4) and (5).
In CETC it is rather difficult to tune the parameters in the con-
troller and the event-triggering condition in order to guarantee
an a priori specified lower bound on the inter-event times. Only
indirect tuning knobs are available for CETC, and several iter-
ations selecting different parameter settings might be needed to
obtain a desirable lower bound (if possible at all). In PETC, the
lower bound can be selected directly in the design, which is a
benefit of PETC over CETC.
Remark IV.1: The minimum inter-event time, being the

largest lower bound on the time differences between two con-
secutive control updates in the PETC system (1), (3), (4) and

Fig. 2. Decentralized event-triggered control schematic.

(5), might actually be larger than . If we restrict ourselves to
the disturbance-free case ( ), the minimum inter-event
time can be computed exactly [39, Ch. 5], and is given by

with

(34)
where and were defined in (28).
In the second phase of the emulation-based design process

(when and are already given) an appropriate value for
has to be chosen in order to appropriately balance control per-
formance and resource utilization. Based on the analysis frame-
work in Section III, it can be investigated for which values of
GES and certain upper bounds on the -gain can still be

guaranteed. Of course, a first requirement when increasing
is that GES is preserved. Interestingly, based on the results in
Section III-C using the PL system approach (see Theorem III.7
and the succeeding discussion), we immediately have that if the
controller implemented in a conventional periodic sampled-data
fashion stabilises the system (i.e., if has all its eigen-
values inside the unit circle), then the PETC system (16) with

and the event-triggering condition (6) or (8) remains to be
GES for sufficiently small values of . Indeed, if
has all its eigenvalues inside the unit circle, the -norms
given by in
case of (6), and
in case of (8) are finite and hence, for any , GES of
the corresponding PETC systems is guaranteed. Using the PWL
system approach the values of for which GES can be guaran-
teed can even be enlarged.
Similarly, starting from appropriate -gain properties for the

conventional periodic sampled-data loop, one can investigate
how the guaranteed upper bound on the -gain based on The-
orem III.2 varies as a function . An illustration will be given
for a numerical example later leading to Fig. 3(a) below. Based
on such curves one can decide how much of the -gain one
would like to trade for less resource utilization. The larger is
taken, the larger the -gain typically becomes [Fig. 3(a)], and
the larger the reduction in resource utilization will be [Fig. 3(d)].

V. OUTPUT-BASED DECENTRALIZED PETC

In this section, we will extend the previous results in two
directions, namely towards dynamical output-based controllers
and towards decentralized event-triggering conditions. As al-
ready indicated in the introduction, the motivation for the study
of output-based controllers is that often not all the states are
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available for feedback in practice. The focus on decentralized
event-triggering conditions is motivated by the fact that sen-
sors, actuators and controllers can be physically distributed over
a wide area. In this case, a centralized event-triggering mech-
anism can be prohibitive, as the coordinator that verifies the
event-triggering conditions would need access to all the plant
and controller outputs at every sampling time, which can be an
unrealistic assumption in large-scale systems. To resolve this
issue, decentralized periodic event-triggered conditions based
on only local information are of interest.

A. Description of Output-Based PETC With Decentralized

Event-Triggering

Let us consider the linear time-invariant (LTI) plant given by

(35)

where denotes the state4 of the plant, the
input applied to the plant, an unknown disturbance,
and the output of the plant. The plant is controlled
using a discrete-time LTI controller

(36)

where denotes the state of the controller, the
input of the controller, and the output of the controller.
As before, at the sampling times , , where
is again the sampling interval, the outputs of the plant and
controller are sampled. At a sampling time , a
decentralized event-triggering condition will determine which
values in and will be transmitted and which are not.
This will determine the updates of and . Just as was the
most recently received version of in the state-feedback case
in Section II, and are now the most recently received ver-
sions of and , see Fig. 2. To formalize this, we need a few
conventions.
The states of the controller are updated based on .

To implement the discrete-time controller (36) in practice, the
update of the state to should occur somewhere in the
time interval , , although in the mathematical
model we adopt the convention that for , ,
it holds that

(37)

indicating that the updates of take place right after ,
. Observe that is a left-continuous signal. In addition, the

control value at time is computed on the basis
of , which will be equal to , being the most recently
received output at the plant at , as we define for

and (38)

Hence, and are also left-continuous, , and
. In this way, ,

.

4We added superscript here to denote the state of the plant (cf. (1)), as now
we have to distinguish between the plant state and the controller state .

Finally, to introduce the decentralized event-triggering con-
ditions to determine which signals will be transmitted at , we
define and with

, and assume that the outputs of the plant and
controller, i.e., the entries in and , are grouped into nodes,
see also Fig. 2. The entries in and corresponding to node

are denoted by and , respectively. To in-
troduce the adopted decentralized event-triggering conditions,
we focus on (6), although alternative event-triggering condi-
tions can be used as well, see Remark V.1. By focussing on (6),
the decentralized event-triggering condition and update of the
signals can be described as

if
if ,

(39)

for , , in which , ,
are given constants. Hence, (39) expresses that at a sampling
time , , each node samples the respective outputs of
plant and controller and verifies if the difference
is too large with respect to (determined by ). In case
the difference is too large, node will transmit its corresponding
signals , and is updated accordingly just after . In this
setup, each node has its own local event-triggering condition,
which invokes transmission of if

(40)

Note that in this setup it is possible that several nodes may
transmit at the same time. If communication constraints pro-
hibit that multiple nodes transmit simultaneously, extensions of
the presented framework are possible. The interested reader is
referred to [39, Sec. 5.6.3] for a short discussion on this issue.
Evidently, each of the local event-triggering conditions in

(40) can be reformulated as the quadratic event-triggering
condition

(41)

in terms of by
proper choice of , . To show how this can be
accomplished, we introduce some notational conventions. For
an index set we define the diagonal matrices

(42)

where the elements , with , are equal to 1

if , elements , with , are equal
to 1 if . The element is 0 otherwise. We will
also sometimes use the diagonal submatrices
and of that satisfy .
Furthermore, we use the notation , and

for , , and

, to obtain for that

and

(43)
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which allow us to rewrite (40) as (41) with

(44)

Moreover, now we can compactly write the updates of just
after time as

(45)

where for

(46)

Remark V.1: Note that any decentralized event-triggering
conditions that can be written in the form (41), e.g., the decen-
tralized equivalents of (10) or (14), can also be analyzed with
the tools presented below without any modification.
To obtain an impulsive system model of the decentralized

PETC system, given by (35), (36), (38), (37), and (40), we ob-
serve that due to the definition of in (46) we have for

that if and only if

and
(47)

where we denote for any arbitrary set its com-
plement by . Based on the above, we can
obtain the impulsive model

when (48a)

when

and (48b)

(48c)

where is a performance output, similar to (16c). The
matrices , , are given as in (44), and

(49a)

(49b)

B. Impulsive System Approach

In a similar fashion as the developments in Section III-A, we
can obtain the following result, whose proof is omitted due to
space limitations.
Theorem V.2: Let , and

Assumption III.1 hold, and suppose that there are a ma-

trix and scalars , ,

, such that

(50)

for all , with

and , where

, as in (23) with in (22) for , as in

(49), and a matrix satisfying . Then, the

PETC system (48) is GES with decay rate (when ) and

has an -gain from to smaller than or equal to .

C. Piecewise Linear System Approach

To arrive at a discrete-time PWL model (for the case ),
we discretize the impulsive system (48), with and

, at the sampling times , , as before (see
footnote 2). Following now the same rationale used to derive
the PWL system (27), we again define the state ,
and obtain the model

when

and (51)

where

(52)

with and as in (12).
In a similar fashion as we derived Theorem III.4 for the state-

feedback case, we can obtain the following result using the
piecewise quadratic Lyapunov function given
by

when

and (53)

with regions. The proof is omitted due to space limitations.
Theorem V.3: The PETC system (48) is GES with

decay rate , if there exist symmetric matrices ,

, and scalars , and

, , , such that for

all

(54)
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and for all

VI. NUMERICAL EXAMPLE

In this section, we illustrate the presented theory using a nu-
merical example based on a state-feedback controller. For an
example using a dynamic output-based controller and decentral-
ized event-triggering conditions, we refer the interested reader
to [39, Ch. 5].
Let us consider the example taken from [11] with plant (1)

given by

(55)

and state-feedback controller (3), where we take
and , , with sampling interval . We
consider the event-triggering condition given by (8). For this
PETC system, we will apply all the three developed approaches
for stability analysis (for ), and the impulsive system
approach for performance analysis. For all three approaches, we
aim at constructing the largest value of in (6) and (8) such
that GES or a certain -gain can be guaranteed. The reason
for striving for large values of is that then large (minimum)
inter-event times are obtained, due to the forms of (6) and (8).
The PWL system approach (using Theorem III.4) yields a

maximum value for of , while still guaran-
teeing stability of the PETC system. The PL system approach
gives a maximum value of , while the impul-
sive system approach results in the maximum
in this case. Hence, as expected based on Theorem III.5 and
Theorem III.8, we see that and , al-
though the values are rather close.5 In fact, the minimum inter-
event time according to (34) is equal to for all values

, and in the event-triggering condition (8). For the
equivalent CETC scheme also using (8), there does not exist a
strictly positive minimum inter-event time (see also [15]), even
in absence of disturbances. In fact, accumulations of update
times (Zeno behavior) occur, indicating that the corresponding
CETC strategy is not useful.
When analyzing the -gain from the disturbance to the

output variable as in (16c) where , we obtain
Fig. 3(a), in which the smallest upper bound on the -gain that
can be guaranteed on the basis of Theorem III.2 is given as a
function of . This figure clearly demonstrates that better guar-
antees on the control performance (i.e., smaller ), necessitates
more updates (i.e., smaller ), allowing us to make tradeoffs be-
tween these two competing objectives (see also the discussion in
Section IV on emulation-based design perspectives). Note that
for (meaning no performance requirements), the value
of approaches the stability boundary obtained by using Corol-
lary III.3, which is equal to . On the other hand, for

5In case the event-triggering condition (6) would have been used, the differ-
ences would be larger, namely and .
In absence of disturbances the expression (34) leads for

to the exact minimum inter-event time and for to
[39, Ch. 5].

Fig. 3. Figures corresponding to numerical example. (a) Upperbound -gain
as a function of . (b) The evolution of the disturbances and the output as
a function of time for . (c) The inter-event times as a function of time
for . (d) The number of events as a function of .

, we recover the -gain for the periodic sampled-data
system, given by (1) of the controller (2) with sampling interval

and , . Hence, this figure can be used to
get information on closed-loop performance for various values
of .
Fig. 3(b) shows the response of the performance output

of the PETC system with , initial condition
and a disturbance as also depicted in Fig. 3(b). For

the same situation, Fig. 3(c) shows the evolution of the inter-
event times. We see inter-event times ranging from up
to 0.85 (17 times the sampling interval ) indicating a significant
reduction in the number of transmissions. To more clearly illus-
trate this reduction, Fig. 3(d) depicts the number of transmis-
sions for this given initial condition and disturbance, as a func-
tion of . Using this figure and Fig. 3(a), it can be shown that
the increase of the guaranteed -gain, through an increased ,
leads to fewer transmissions, which demonstrates the tradeoff
between the closed-loop performance and the number of trans-
missions that has to be made. Conclusively, using the PETC in-
stead of the periodic sampled-data controller for this example
yields a significant reduction in the number of transmissions/
controller computations, while still preserving closed-loop sta-
bility and performance to some degree.

VII. CONCLUSIONS

In this paper, we proposed a novel class of event-triggered
control (ETC) strategies, which aim at combining the benefits
that both periodic sampled-data control and ETC offer. In par-
ticular, the ETC strategy is based on the idea of having an event-
triggering condition that is verified only periodically, instead
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of continuously as in most existing ETC schemes. This control
strategy, for which we used the term periodic event-triggered
control (PETC), preserves the benefits of reduced resource utili-
sation as transmissions and controller computations are not per-
formed periodically, while the event-triggering condition still
has a periodic character. The latter aspect leads to several bene-
fits as the event-triggering condition has to be verified only at the
periodic sampling times, instead of continuously, which makes
it suitable for implementation in standard time-sliced embedded
system architectures. Moreover, the strategy has an inherently
guaranteed minimum inter-event time of (at least) one sampling
interval of the event-triggering condition, which is easy to tune
directly.
We developed PETC for both static state-feedback con-

trollers, and dynamical output-based controllers, and both
centralized and decentralized event-triggering conditions.
To analyze the stability and -gain properties of the PETC
systems, we used three approaches: 1) an impulsive system
approach; 2) a discrete-time piecewise linear (PWL) system
approach; and 3) a discrete-time perturbed linear (PL) system
approach. We discussed the advantages and disadvantages
of all the three approaches, showing that each of the three
presented modeling approaches is of independent interest.
Namely, the PWL system approach provides the least conser-
vative stability guarantees, the PL system approach has the
lowest computational complexity and provides useful insights
for emulation-based controller synthesis, while the impulsive
system approach provides -gain analyses. We illustrated the
theory using a numerical example and showed that PETC is
indeed capable of reducing the utilization of communication
and computation resources significantly, while still realizing
satisfactory closed-loop behavior.

APPENDIX

Proof of Theorem III.2: The proof is based on showing that
(19) guarantees that (20) holds, and that the hypotheses of the
theorem guarantee that the conditions in (21) hold and that (18)
is a well-defined storage function candidate. This would com-
plete the proof as, provided that (18) is a well-defined storage
function candidate, (20) and (21) proveGES and an upper bound
on the -gain of , see, e.g., [33]. Proving that (19) guarantees
that (20) holds for the function (18) will be the first step in the
proof. To prove that the hypotheses of the theorem guarantee
that the conditions in (21) hold, we need to relate
to and doing so will be the second step of the proof.
The final step in the proof is to show how this relation can be
used to show that the conditions in the theorem guarantee that
(21) hold and that (18) is indeed a well-defined storage function
candidate.
To show that (19) yields that the derivative of (18) along the

flow part (16a) of the impulsive system (16) satisfies (20), we
observe that

(56)

Now using the fact that ,
with , we have that

, and, therefore, it holds that

(57)

or, equivalently, due to (16c), this gives (20). This completes the
first step in the proof.
We will now relate to . To do so,

we first reverse the time in the Riccati differential (19) by intro-
ducing , . This results in

(58)

or equivalently

(59)

in which we have exploited the fact that is symmetric. Note
that

because for any matrix it holds that
. Furthermore, because for any matrix for

which is invertible, it holds that
, we have that , where

as was also used in the definition of
the Hamiltonianmatrix (22). Furthermore, observe that

and . To link to , and thereby
to , we use the Hamiltonian matrix (22), which allows

us to find explicitly the solution to the Riccati differential (59).
Indeed by using (23), we can express the solution to (59) as

(60)

which requires that is invertible, see, e.g.,
[34, Lemma 8.2]. Since (60) relates to (by taking ),
provided that (60) is well defined for all , and thereby
relates to , this completes the second step of the proof.
It now only remains to show how the expression (60) and

the hypotheses can be used to show that the candidate storage
function is well defined on and satisfies (21). To do so, we
will use the fact that is simplectic, i.e.,

for all , where , and thus .

This fact follows from observing that holds
and for all , by exploiting the
structure in the Hamiltonian (22) giving . From
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, we obtain that (omitting the -dependence
for shortness)

(61)

We will use these relations to rewrite (60). In partic-
ular, under Assumption III.1, we have for all for which

is invertible

(62)

where the fact that for
and was used in the third equality and the

fact that for
was used in the last equality. Now since Lemma A.1 states that

is positive semidefinite, there exists a ( -dependent)
matrix that satisfies . This leads to

(63)

for all for which is defined, as
.

Now (63) will be used to show that the candidate Lya-
punov/storage function is well defined for all and
that the conditions in (21) hold, if the hypotheses in the the-
orem are satisfied. Namely, (63) shows that having
defined for all is equivalent to the existence of

for all . Now observe that the
existence of the inverse of for all
is guaranteed if for all , or,
equivalently (by applying a Schur complement twice and using
that ), if for all . The
fact that Lemma A.1 guarantees that
is nondecreasing, i.e., for all

, gives that implies that
, for all . Furthermore, using

the reasoning in the proof of Proposition 8.1 of [34], we can
show that for under Assumption III.1. Now
since by the hypotheses of the theorem (in particular, (25)),

and , the function (18) satisfies
for some , for all

and for all , and is therefore a well-defined
storage function candidate.
It now only remains to show that the conditions in the theorem

guarantee that the conditions (21) hold. To do so, we choose
in (63) to obtain

(64)
where for , and . Substi-
tuting (64) into (21a), and using an S-procedure to encode that

, yield that (21a) with holds if

(65)

is positive semidefinite for some , which is implied by
(25) for . Using a similar reasoning, satisfaction of (21b)
is implied by (25) with as .

Lemma A.1: Consider as in (23). Under Assump-
tion III.1, it holds that and

are positive semidefinite and nondecreasing for

all , i.e., and , when

.

Proof of Lemma A.1: Note that is the solution to (59)
for according to (60). In particular

(66)

where , which
depends on . Applying now Proposition 8.1 of [34] yields that

, . Since satisfies (66),
satisfies

(67)

Since , applying Proposition 8.1
of [34] once more shows that for .
This shows that is nondecreasing.
A similar reasoning applies to for a somewhat modified

Riccati differential equation corresponding to the Hamiltonian
with . Defining

(68)
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and using that , we can show that
(ex-

ploiting symmetry of solutions to Riccati differential equations
of the type (59) for symmetric initial conditions). Applying
the same reasoning to as for using the Riccati
differential equation corresponding to the Hamiltonian , the
facts that and is nondecreasing follow.

Proof of Corollary III.3: The proof follows from a slight
modification of the reasoning in Section III-A and the proof
of Theorem III.2. Namely, instead of the dissipation inequality
(20), we require along the solutions of (16a)
with . Using the same Lyapunov function candidate
as in (18), this is satisfied if the matrix differential equation

holds, which has
the solution and thus

Substituting this in the jump con-
ditions (21) yields

(69)

when , and

(70)

when . These conditions are guaranteed by the hy-
potheses of the theorem.

Proof of Theorem III.4: From (30b), it follows that
for . Since this implies that

and that
, with

, we have that

for all satisfying and that

for all satisfying . This proves that for the candidate
Lyapunov function (29), there exists a

and some such that
for all .

Furthermore, note that if , it holds that
, and if , then

, for . Hence, using this and
(30a)

(71)

where in the latter inequality we used that . By stan-
dard Lyapunov arguments this proves GES of the discrete-time
PWL system (27) with decay factor . Now, by including the
intersample behavior in a straightforward fashion, as was done
in, e.g., [40] following [41], this also implies GES with decay
rate of the (continuous-time) PETC system (16).

Proof of Theorem III.8: We will only give the proof for the
triggering condition (6), as the proof is similar for (8). The proof
will be based on showing that if the LMIs (33) are feasible for

for some , then

(72)

is a solution to the LMIs (30a) and (30b), with the matrix
as in (7), for some constants , , and ,

, for some (sufficiently small) . To do so,
we first observe that (30b) is satisfied for all with

. Focussing on (30a) with , we observe that for
, (30a) with and as in

(72) is equivalent to

(73)

where is given as in (28). Clearly, due to (33), for suffi-
ciently small and , we have that

and are positive semidefi-
nite matrices. Hence, the matrix inequality in (73) is satisfied
and thus (30a) with is satisfied for as in (72) for

and a sufficiently small value
of . Focussing now on (30a) with , we observe that
by taking and , we obtain

(74)

where is given as in (28) and is given as in (6). This
inequality is equivalent to

(75)

with

(76)
To guarantee now that (75) is satisfied for some (arbitrary small)

, we have to show that for the given . Since
, (33) implies that and, hence, that the matrix

inequality in (75) is satisfied and thus (30a) with is satis-
fied for as in (72) for and .
This completes the proof.
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