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Periodic forcing in viscous fingering of a nematic liquid crystal
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Viscous fingering of an air-nematic interface in a radial Hele-Shaw cell is studied when periodically switch-
ing on and off an electric field, which reorients the nematic and thus changes its viscosity, as well as the
surface tension and its anisotropy (mainly enforced by a single groove in the cell). Undulations at the sides of
the fingers are observed that correlate with the switching frequency and with tip oscillations that give maximal
velocity to smallest curvatures. These lateral undulations appear to be decoupled from spontaneous (noise
induced) side branching. It is concluded that the lateral undulations are generated by successive relaxations
between two limiting finger widths. The change between these two selected pattern scales is mainly due to the
change in the anisotropy. This scenario is confirmed by numerical simulations in the channel geometry, using

a phase-field model for anisotropic viscous fingering.

DOLI: 10.1103/PhysRevE.64.056225

I. INTRODUCTION

Interfacial instabilities constitute a diverse domain in non-
equilibrium pattern formation, with examples ranging from
biology (e.g., bacterial growth) to mathematics (Stefan prob-
lems), passing by physical systems as flows in porous media,
solidification, electrodeposition or flame propagation [1].

Progress in this domain has usually been made by study-
ing prototype systems as solidification or viscous fingering.
The latter deals with the destabilization of the interface be-
tween two immiscible fluids when the more viscous fluid is
displaced by the less viscous one, which is either injected at
an end of a channel-shaped cell (channel geometry) or from
the center of the cell (radial geometry)—for a review see
Ref. [2]. This initial destabilization leads to the formation of
fingers in both geometries, which finally restabilize into a
single stationary finger in the channel one. However, a suf-
ficient amount of noise may cause this single finger to tip
split. In contrast, in the isotropic, radial cell, fingers do not
stabilize, but repeatedly tip split to form more and more fin-
gers [3].

An external perturbation, however, can dramatically
change the fingers and can even suppress the tip splitting in
both geometries. A bubble of gas trapped just in front of an
advancing finger causes tip stabilization and (eventually) in-
tensive and very regular side branching both in the radial [4]
and channel [5] geometries. Engraving a grid on one of the
plates of the radial cell introduces an anisotropy, which, if
strong enough, also inhibits tip splitting and produces den-
drites and faceted structures, resulting in a rich morphology
diagram [6,7]. Different etched lattices give a variety of
highly branched structures whose symmetry depends on that
of the lattice when the anisotropy it introduces is strong
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enough [8]. The replacement of the grid by a set of parallel
grooves [9] has produced an even more complicated mor-
phology diagram than that presented in Ref. [6]. With a
single groove running from the center to the edge of the cell
the tips split in all directions except that of the groove [10],
in which a much faster growing dendritic structure is ob-
served, and the whole pattern is very similar to that reported
in Ref. [4]. An intrinsic anisotropy, such as that of a liquid
crystal used as the more viscous fluid, has also been shown
to stabilize the tips and yield growth with side branches
[11,12]. All these experiments have demonstrated that differ-
ent kinds of anisotropy affect viscous fingering as that of the
surface tension does for dendritic crystal growth, i.e., stabi-
lizing finger tips, so that, if the natural noise is strong
enough, destabilization of the finger takes place only at its
sides in the form of side branches.

In the channel geometry, Rabaud et al. have taken advan-
tage of the fact that fingers remain stable up to higher capil-
lary numbers once the introduced anisotropy has suppressed
tip splitting to artificially induce side branching by means of
an external perturbation [13]. This should enable one to
study the side branching in a more controlled way, and also
the coupling between the perturbation and the branching dy-
namics. They obtain side branches using a localized distur-
bance, namely, a knot on the thread that provides the anisot-
ropy. Pressure modulation also causes side branching in the
case of a thread, since, according to them, it mainly induces
localized initial disturbances near the intersection of the in-
terface with the thread. In contrast, in the case of two oppo-
site grooves in the middle of the channel, the lateral waves
caused by such sinusoidal pressure oscillations are symmetri-
cal, and, most significantly, of limited amplitude.

This brings us to the fundamental problem of the general
response of a pattern-forming interface to the nonlocalized
periodic forcing of its dynamics. We study this response and
the possible formation of lateral waves in an air finger invad-
ing a liquid crystal in the radial geometry, where the bound-
ary conditions would not limit their amplitude, when periodi-
cally forcing the system by a modulated electric field
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perpendicular to the cell. A single groove running over the
injection point stabilizes the finger tips in its direction. The
nematic director tends to align with the electric field when
this is switched on, and returns roughly to the cell plane
when this is switched off. The flow properties depend on the
orientation of the director, so that we expect to change the
control parameters of the dynamics whenever we switch the
field on or off. The use of a square wave for the amplitude of
the electric field (switching it on and off instantly) enables us
to observe the relaxation of the pattern to a parameter
quench.

We find the tip radius to relax very quickly to two differ-
ent values when the field is switched on and off, and that this
pulsating tip induces symmetrical lateral undulations. Fi-
nally, we explain these lateral undulations as the trace of a
periodic change in the selected tip radius, caused mainly by
the change in the effective anisotropy due to the interplay
between the liquid crystal and the groove. Back to the chan-
nel geometry, we confirm this scenario by numerically inte-
grating a phase-field model for viscous fingering [14] in
which the anisotropy is switched between two different val-
ues. Here, the alternate relaxation towards two different se-
lected pattern scales is particularly clear, since the symmetri-
cal lateral undulations saturate, as the finger oscillates
between two different selected widths.

This mechanism might be relevant to experiments in
which similar observations have been made. For instance, to
the case of symmetrical undulations at the sides of a finger
perturbed by a bubble on its tip, in which the tip curvature
oscillates [4,5,13] and the lateral undulations in the channel
geometry also lie between two well-defined asymptotic
widths, with a Saffman-Taylor finger as outer envelop [5,13].
Another example could be the sinusoidal modulation of the
injection pressure in fingers grown with two parallel grooves,
which also displayed symmetrical lateral waves of limited
amplitude [13].

The rest of the paper is organized as follows: In Sec. II we
present the experimental setup and observations. Section III
then introduces and exploits the theoretical framework
within which we explain these experimental results, and Sec.
IV, the numerical method for checking the outcoming hy-
pothesis in the channel geometry. The conclusions reached
are summarized in Sec. V.

II. EXPERIMENTAL SETUP AND RESULTS

The experiments were performed in a radial Hele-Shaw
cell. This was assembled from two glass plates coated with a
conducting layer of SnO,, which served as electrode. The
bottom plate, of dimensions 160 mmX 160 mm and thick-
ness 5.5 mm, had a hole of 1 mm diameter in the center as
an inlet for the air. On the coated face of the upper plate
(140 mmX 140 mm and thickness 3.1 mm) we engraved a
groove following its diagonal. The plates were separated by
d=0.32 mm or d=0.19 mm thick spacers. The inner faces
of the plates corresponded to the coated ones, so that the
electrodes directly faced each other, with no glass in be-
tween.

We applied an ac electric field E of frequency 1 kHz
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perpendicular to the plates, and switched it on/off with a
frequency v. The ‘‘semiperiods’’ during which E was on
(t,,) and off were unequal. Their ratio was chosen so that
fingers advanced a similar distance in each ‘‘semiperiod,”
which resulted in more apparent effects. Thus, a filling coef-
ficient of {=t¢,,v=0.67£0.03 was found to be convenient,
and it was used in all the experiments presented here.

Initially, the cell was filled with the commercial liquid
crystal mixture RO-TN-430 (La Roche), with positive di-
electric anisotropy, €,=¢|—¢&,=17.6 (¢ and &, are the
components of the uniaxial dielectric tensor parallel and per-
pendicular to the director, respectively), and a broad tem-
perature range of the nematic phase, from 7',,= — 10°C up to
Tn_,;=70°C (experiments were performed at room tem-
perature 7=23°C). The mixture was doped with dichroic
blue dye D16 (BDH) in order to enhance the contrast at the
air—nematic-liquid-crystal interface.

Then, after being filtered, air was injected through the
hole of the bottom plate at an excess pressure p,, regulated
by a ported precision regulator (Norgren 11-818-100) with
an accuracy of =0.03 bar, and further decreased and stabi-
lized by a unit for pressure reduction. The path of the air was
regulated by two three-path solenoid valves, and p, was
measured with a precision pressure meter (Watson & Smith),
with an accuracy of =1 mbar.

As the air displaced the liquid crystal, a camera recorded
the growth process, and images were fed into a PC for digital
analysis, with a spatial resolution of 512 pixels X512 pixels
and a 256 gray scale for each pixel. With the magni-
fication wused, a spatial resolution of (0.241 mm
X 0.166 mm)/ pixel was determined.

Experimental results are presented in Figs. 1-4. In all
cases, two air fingers whose tips do not split grow along the
groove, at each side of the injection hole. Two much slower
air bumps form at each side of the groove and perpendicular
to it (Figs. 1, 3 and 4), and their tips can split [Fig. 4(a)].

At low excess pressures (p,=5 mbar, Figs. 1-3) the two
stable viscous fingers along the groove do not show any
lateral undulations with (E on) or without (E off) an ac field
kept constant [Fig. 1(a) and Fig. 1(b), d=320 wm, and Fig.
3(a) and Fig. 3(b), d=190 wm]. However, fingers grown
with the field [Fig. 1(b) and Fig. 3(b)] are thinner and slower
(compare the times indicated in the captions) than their ana-
logues grown without it [Fig. 1(a) and Fig. 3(a), respec-
tively].

If one then periodically switches on and off the field
(modulated E), the tips undergo successive curvature
changes that induce formation of undulations at the sides of
the two stable fingers in a strong correlation with the switch-
ing frequency v, as shown for two different ones in Fig. 1(c)
and Fig. 1(d), where interfaces are displayed each time the
field is switched on/off. Note that the maxima and minima of
these lateral undulations in those figures roughly overlap
with the profiles of the fingers grown in the same conditions
but with the field kept off [Fig. 1(a)] and on [Fig. 1(b)],
respectively.

Similar to the solidification of a nematic liquid crystal
into a smectic B reported in Ref. [15], above a certain
switching frequency v, the main fingers show no lateral un-
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(e

FIG. 1. Air-nematic interfaces at subsequent times. d
=320 um, p,=5 mbar. (a) E off, t=0.32's, 0.64 5, 0.96 s, 1.32 s;
(b) E=0.32 V/um on, t=1.08 s, 2.20 s, 3.32 s, 4.44 s; (c)—(e)
modulated E, £=0.68: (¢) v=0.667Hz, t=04 s, 1.44 s, 1.84 s,
2.64s;(d) v=1.01 Hz, r=0.72 s, 1.04 s, 1.68 s, 2.04 s, 2.68 s, 2.88
s; (e) v=4.55Hz,t=0.525,1.04s,1.56 s, 2.08 s. (c) and (d) show
the interfaces each time E was switched on/off.

position of the tip (mm)

[o]

[ ] ]
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FIG. 2. Position of the tip of the main fingers in Fig. 1 vs time.
Filled (empty) symbols denote E on (off). Circles correspond to the
experiments with field kept off (empty) of Fig. 1(a) or on (filled) of
Fig. 1(b), whereas the other symbols stand for the different frequen-
cies with which the field was switched on/off: squares, triangles,
and diamonds for Figs. 1(c), 1(d), and 1(e), respectively.
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(a) lem
e ——
(b)

FIG. 3. Same as Fig. 1, but d=190 um. (a) E off, t=0.24 s,
0.60s,1.00s,1.40s; (b) E=0.55 V/umon, t=0.60s, 1.12s, 1.72
s, 2.24 s.

dulations [Fig. 1(e)]. Their widths are then intermediate, ly-
ing between those of Fig. 1(a) (E off) and Fig. 1(b) (E on).

Figure 2 plots the position of the tip of the fingers in Fig.
1 vs time. Here it is apparent that fingers grow faster with E
off [wider fingers of Fig. 1(a), empty circles] than with E on
[thinner fingers of Fig. 1(b), filled circles], but also that the
oscillations of the tip curvature in time when periodically
switching on/off the field of Fig. 1(c) and Fig. 1(d) are ac-
companied by tip velocity oscillations (squares and triangles,
respectively). In each oscillation, when the field is off (empty
squares and triangles) and on (filled ones) the velocity
roughly attains the values obtained for fingers grown with
the field kept off (empty circles) and on (filled circles) all the
time, respectively. Even for »>v,., when no lateral undula-
tions occur [Fig. 1(e)], the velocity increases and decreases
significantly when the field is switched off (empty diamonds)
and on (filled diamonds), respectively, although it is not clear
whether it attains the same values than for a constant field.

With the same p,=5 mbar but a smaller cell gap d
=190 wm (Fig. 3), all the previous qualitative observations
are reproduced, but now all fingers are narrower [than in Fig.
1, compare Fig. 3(a) with Fig. 1(a) and Fig. 3(b) with Fig.
1(b)].

FIG. 4. Same as Fig. 3, but p,=22 mbar. (a) E off, 1=0.04 s,
0.125,0.20,0.24 s; (b) E=0.55 V/umon, t=0.08s,0.16 s, 0.28
s, 0.36 s; (c) modulated E=0.58 V/um, v=8.42 Hz, £=0.68, t
=0.125,0.20 s, 0.28 s, 0.36 s.
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At higher excess pressure (p,=22 mbar) and the same
cell gap d=190 pum as in Fig. 3, the fingers along the
grooves show a weak, uncorrelated lateral noise both with E
off and on [Fig. 4(a) and Fig. 4(b)], whereas their overall
widths roughly stay the same [compare with Fig. 3(a) and
Fig. 3(b), respectively]. When periodically switching the
field on and off, the lateral undulations correlated with the
switching frequency of Fig. 1(c) and Fig. 1(d) reappear, but
now superimposed to and apparently decoupled from the un-
correlated lateral noise [Fig. 4(c)].

Also at this higher excess pressure p,=22 mbar do the
regular lateral undulations disappear above a certain fre-
quency v, and leave the bare uncorrelated noise of Fig. 4(a)
and Fig. 4(b). This upper frequency v, shows a roughly lin-
ear dependence on the excess pressure p, .

III. THEORETICAL DISCUSSION

We now present a possible simplified theoretical frame-
work to explain the experimental observations.

The shear viscosity of a nematic liquid crystal flowing in
a planar cell depends on the orientation of its director: The
highest viscosity is achieved with the director perpendicular
to the cell (homeotropic alignment). With the director lying
on the cell plane (planar alignment) the viscosity is lower
and anisotropic: higher with the director perpendicular than
parallel to the flow.

The director and the velocity fields are coupled by non-
linear nematohydrodynamic equations —see, e.g., Refs.
[16,17]. Thus, when the electric field is off, the flow forces
the director to be roughly in the plane of the cell (planar
alignment case). Moreover, the director tends to align itself
with the flow velocity in a certain pressure range. The latter,
together with the mentioned anisotropy of the viscosity in the
cell plane respect to the director orientation, results in a vis-
cosity that depends on the velocity direction. This causes the
viscosity to be nonuniform and anisotropic with respect to
the direction of the flow. This anisotropy turns out to be the
most important effect, since, if strong enough, it stabilizes
the finger tips, thus switching from a tip splitting to a side-
branching mode [11]. This can be understood by mapping
this anisotropy in the viscosity to an effective anisotropy in
the surface tension [12].

However, experiments performed without any groove
found no regime for which this anisotropy was strong
enough to clearly stabilize the finger tips for the liquid crys-
tal mixture used here [18], whereas the introduction of the
groove did stabilize them. Therefore, as a first approxima-
tion, we will neglect the anisotropic effect of the director
alignment in front of that of the groove: On one hand, we
will consider this planar alignment case to have a unique,
uniform, and isotropic average viscosity; on the other hand,
we will not consider the effective anisotropy in the surface
tension coming from that in the viscosity, but only the stron-
ger anisotropy introduced by the groove. Actually consider-
ing both of them does not change qualitatively the simulation
results.

An ac electric field also exerts a torque on the director.
For a liquid crystal with positive dielectric anisotropy, &,

PHYSICAL REVIEW E 64 056225

>0 as ours, and a field perpendicular to the plates, the elec-
tric torque competes with the shear one, trying to align the
director with the field, i.e., perpendicular to the plates (ho-
meotropic alignment). Therefore, the viscosity with E on
should now be even more isotropic in the shear plane.

Consequently, both with E off and on we will consider a
constant, isotropic viscosity. The only difference between the
viscosities with and without electric field will be that the
viscosity with E on should always be larger than with E off,
since the field favors the homeotropic alignment. Note that
this inequality of the viscosities with and without field will
hold even for an incomplete alignment.

Thus, the theoretical framework will be that of the stan-
dard viscous fingering equations, except for the dimension-
less surface tension By=0/(p,l.) (with o the surface ten-
sion and /.. an arbitrary length scale), which will read

B=B(1—acos’), (3.1)
where ¢ is the angle between the single groove used in the
experiments and the normal to the interface, and « represents
the twofold anisotropy induced by the groove. Grooves and
grids have usually been modeled by such an anisotropy in
the surface tension (see, e.g., Ref. [19]). This represents a
strong simplification, but we do not expect it to affect the
conclusions of this paper in any fundamental way.

Each time we switch E on or off, we change the director
orientation, and thus some physical parameters of the model,
which should result in a change in its dimensionless control
parameters, namely, B, and «, or in the time scale of the
dynamics, 12,u,lZ/(d2pg), where w is the viscosity. Since we
always switch E on or off instantly, the adimensionalization
leading to this set of control parameters remains valid, even
if their value is periodically switched. Before using evidence
from the experiments, let us discuss for clarity how can these
control parameters and time scale be expected to change a
priori.

The time scale 12,(1.13/ (d*p,) can change only through a
change in the viscosity u. Indeed, the change in the time
scale was measured directly for the same mixture from the
growth of a circular interface in the absence of grooves with
E on and off, and it was found to be a factor 3.7 slower with
E on [18]. We thus know that the viscosity is 3.7 times larger
with E on. (Note that this does not alter By=o/(p,l.), since
it does not depend on u for an experiment at constant excess
pressure, whereas it does for the constant injection rate case,
for which its definition is different). By=0o/(p,l,) could
only be altered by a variation in the surface tension o. Such
a variation has been measured for several liquid crystals, and
o has been found to be 20—-50% smaller with the director
parallel to the air-nematic interface (roughly our E on case)
than perpendicular to it [20] (closer to E off).

As for the anisotropy a due to the groove, it could be
changed by the following effect: The director inside the
groove might keep the planar alignment to some extent even
with E on, since the conducting layer was removed from the
etched region when engraving the groove. In that case, the
viscosity would be lower inside than outside the groove with
E on, thus reinforcing the mobility enhancement of the
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groove itself (higher gap d), and, therefore, increasing the
effect of the groove (the anisotropy a in our model).

Now, consider the experimental results reported in the
previous section, and first of all, those for a field kept either
on or off during all the experiment. The main fingers were
found to be slower and thinner with E on. Their smaller
velocity is explained by the increase in the time scale of the
dynamics due to that in the viscosity, whereas their smaller
width should be understood as a decrease in the selected
finger tip radius for a given length of the finger, which re-
sults in a visually overall thinner finger. (Thus we will talk
about thinner and wider fingers to refer to larger and smaller
tip curvatures at a given finger length, respectively). In our
model, this decrease in the selected length scale could be due
to either a decrease in the dimensionless surface tension B
or an increase in its anisotropy «.

To check the two possibilities, we varied B, and « by
means other than reorienting the director. In order to increase
a, we decreased the cell gap d, which is the standard way of
increasing the effect of a groove or grid [6,19], and which
does not affect anything else in our model but the time scale.
As mentioned in the previous section, the fingers do narrow.
Note also that very similar widths are obtained either by
switching on the field [Fig. 1(b)] or by increasing « through
a decrease in d [Fig. 3(a)]. This proves that the observed
finger narrowing when switching on the field can be caused
by an increase in «. Consistently with this hypothesis, if « is
further increased by switching on the field with this lower
cell gap d, the fingers narrow more [Fig. 2(b)].

In order to decrease B, we kept this lower cell gap and
increased the injection pressure up to p,=22 mbar. B, must
have been actually lowered, since the interfaces obtained
were much noisier, and the fingers growing perpendicular to
the groove even tip split, as reported in the previous section.
(The amount of noise necessary for a finger to tip split is
known to decrease with decreasing dimensionless surface
tension B, [21]). However, also as explained in the previous
section, there was no significant width change. The fact that
a change by a factor 4.4 in the dimensionless surface tension
B, when increasing the injection pressure from p,=5 mbar
up to p,=22 mbar causes no visible width change implies
that the mentioned change of 20-50% in B through the
change in the surface tension o measured for other liquid
crystals cannot cause it either. We are, therefore, led to con-
clude that it is the anisotropy in the surface tension and not
the dimensionless surface tension itself what accounts for the
observed width change.

Once we have understood how the introduction of an
electric field affects the width and velocity of the fingers, we
are in a position to explain the experimental observations
when the electric field is periodically switched on and off.
One would be tempted to understand the lateral oscillations
in Fig. 1(c), Fig. 1(d), and Fig. 4(c) as standard side
branches, i.e., due to the amplification of perturbations origi-
nating on the tip of the fingers. One could thus think that the
periodic change in some control parameter when switching
on and off the field provided the necessary local perturbation
on the tips to induce side branching, or that a large enough
perturbation due to the natural noise was further amplified

PHYSICAL REVIEW E 64 056225

through a resonance phenomenon with the frequency of
change of this parameter and thus also produced visible and
regular side branches, as seen in related problems [15]. In
this case, the relevant control parameter should be the anisot-
ropy «, since the viscosity only enters the time scale, and can
thus not affect the shape of the pattern. In this scenario, the
fact that Fig. 1(e) shows no oscillations would be interpreted
as the result of being too far from the resonance frequency,
and the velocity oscillations seen in Fig. 2 would be those
sometimes associated with side branching.

However, the velocity turns out to decrease when the fin-
ger tip narrows, as opposite to the usual case. This smaller
velocity of thinner tips can only be explained by the change
in the time scale due to the change in the viscosity. Actually,
we visually observe the velocity to change instantly each
time the field is switched on and off in each period, and it
roughly attains in each semiperiod when the field is on (off)
the same value than in a finger grown all the time with E on
(off), as explained in the previous section.

The finger tips are also observed to narrow at the very
moment the field is switched on and to widen at the moment
it is switched off, and the minima (maxima) of the lateral
undulations also have approximately the same width than the
finger with E kept on (off), as also explained above.

All this suggests that the lateral undulations are the wake
left by a tip quickly and alternately relaxing to the two dif-
ferent selected radii corresponding to the two different values
(one for E on and one for E off) of the relevant control
parameter, the groove anisotropy «.

Thus, the obtained undulated fingers when periodically
switching on and off the field of Fig. 1(c) and Fig. 1(d)
themselves are the result of alternately relaxing between the
thinner [Fig. 1(b)] and wider [Fig. 1(a)] fingers grown all the
time with or without the field, respectively. With this expla-
nation, the absence of significant lateral undulations for too
high frequencies is due to the lack of time for the finger to
relax to any of the two widths within each period, which
should result in an intermediate width, as is indeed the case
in Fig. 1(e).

This mechanism seems to be decoupled from ‘‘natural’’
(noise induced) side branching, since, when this natural side
branching is already present with a field kept off and on [Fig.
4(a) and Fig. 4(b), respectively], periodically switching on
and off the field seems just to superimpose the mentioned
wake of tip radius changes, but not to eliminate or regularize
the previously present modes [Fig. 4(c)]. The fact that the
two effects be decoupled supports the idea that the width and
velocity oscillations observed when switching on and off the
field are the result of the relaxation back and forth between
two different stationary widths and velocities, rather than
that of the amplification of perturbations coming from the
tip.

Indeed, instantly switching on and off the field with a
certain period does not introduce any extra time scale nor
control parameter in the dynamics of each semiperiod during
which the field is either on or off. Each semiperiod can be
understood as the relaxation with certain values of the con-
trol parameters towards a new steady state from a given ini-
tial condition. Just that this initial condition turns out to be a
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state more or less close to the steady state corresponding to
different values of the control parameters. Since no extra
time scale is introduced, no coupling with the natural noise
was to be expected.

However, varying the amplitude of the field with say a
sinusoidal wave instead of a square one would introduce as
new time scale the period of the wave, so that the dynamics
would change. The injection pressure in viscous fingering in
a channel has indeed been varied with such a sinusoidal
wave. The interesting point is that the tip velocity follows the
pressure modulation and the pattern obtained also displays
lateral undulations of limited amplitude, which are sym-
metrical as long as no external element breaks this symmetry
(case of two parallel grooves) [13]. Also a bubble on the tip
of a finger can induce the tip curvature to oscillate periodi-
cally and give rise to symmetrical lateral undulations of a
well-defined amplitude (in the channel geometry) and peri-
odicity. The amplitude is such that the outer envelope of the
wave is a larger Saffman-Taylor finger in the channel, and
the periodicity is correlated to the frequency of oscillation of
the tip [4,5,13].

All these observations with pressure modulation or
bubbles match our own observations with electric field
modulation, so that the mechanism of successive relaxations
between two different steady states that we propose might
also be relevant to these other experiments. Our case, how-
ever, is particularly clear thanks to the use of a square wave
to modulate the electric field.

In conclusion, two different limiting cases seem to lead to
the formation of lateral waves: (i) The amplification of small
perturbations when advected from the tip to the sides of the
finger (e.g., natural, noise-induced side branching). (ii) Suc-
cessive and alternate relaxations between two different finger
widths, also advected from the tip to the sides, when for
some reason the tip curvature oscillates (e.g., periodic, in-
stant changes in a control parameter affecting selection as in
our experiments). Of course, the lateral undulations caused
by the successive relaxations (ii) might also be damped or
amplified as in (i), and it can be difficult to tell whether a
particular deformation of the tip is rather a small perturbation
(i) or an overall curvature change (ii), so that we feel that
both mechanisms should be regarded as complementary, and
experiments where a large perturbation is used to force the
dynamics might be expected to be mixed cases.

IV. NUMERICAL RESULTS AND DISCUSSION

The difficulty to check the explanation of the lateral un-
dulations in terms of successive changes in the selected
width proposed in the previous section lies in the fact that the
finger width is not well defined. The sides of (anisotropic)
viscous fingers in the radial geometry are not parallel, and,
most importantly, anisotropic fingers do not reach a steady
tip radius nor velocity. There is indeed a selection mecha-
nism, but the first keeps growing and the latter decreasing
with time (see Ref. [22]). Therefore, it is especially useful to
perform numerical simulations of anisotropic fingers in the
channel geometry to check out this scenario, since their sides
are parallel, and, above all, their widths and velocities do
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saturate and are easy to compare with one another. Note that
the experiments in the channel geometry with pressure
modulation or bubbles mentioned in the previous section
[13] are not clear enough for that purpose, since the selected
width keeps changing all the time as the effective control
parameters should oscillate sinusoidally in response to a
sinusoidal pressure or bubble forcing. In contrast, we will
instantly change the value of the relevant control parameter
(the anisotropy due to the groove «) in our simulations to
mimic the switching on and off of the electric field.

On the other hand, it is well known that a thinner finger
grows faster in dimensionless time, although the experimen-
tal observation is just the opposite in real time. This means
that the change in the time scale due to the change in the
viscosity (3.7 times larger with E on) must be dominant over
the change in dimensionless time. The question is whether
there actually exists a range of change of the groove anisot-
ropy « that yields the observed narrowing of the finger but
also respects the fact that thinner fingers grow slower in real
time.

To answer this question and check the proposed explana-
tion of the lateral undulations, we numerically integrate the
described theoretical model, but we run it in the channel
geometry. We use the phase-field model for viscous finger-
ing presented and tested in Ref. [14]. The only change in the
model is that we now use the anisotropic surface tension
given by Eq. (3.1). We recall the model,

A LR NP R :
Crv Y+cV-(0 ¢)+;m7(9)(1—9),

4.1)

30 R PR
GZEZf(ﬁ)-i— e2V20+ 2 k(0)|V O+ €*2- (VX Ve),
4.2)

where ¢ is the stream function, 6 is the phase field, c=(u
— o)/ (et o) is the viscosity contrast (u, po are the vis-
cosities of the liquid crystal and the air, respectively) and e,

€ are model parameters that must be small to recover the
sharp-interface equations of the theoretical model. We have

defined f(8)=6(1— 6°), and y(6)/2=5(0)-{V[B(8)«(6)]
+3}, k(0)=—V-7(6), with B(§)=B[ ¢p=arccosy-r(6)],
F(6)=V6/|V6| and $(6)=r(6)XZ. All quantities are di-
mensionless and, in particular, lengths are in units of the

channel width (y is length along the channel, x across it, z is
perpendicular to the plates, and ¢ is reinterpreted as the

angle between y and the normal to the interface).

We set B,=10"2, which we know to allow stable fingers
for the amount of numerical noise present even for vanishing
anisotropy [12]. We use two different values of the anisot-
ropy, «=0.9 and «=0.1, to account for the cases with and
without electric field, respectively. The higher anisotropy
gives the lowest B at the finger tip that we will need to
resolve, and thus the value of the interface width to use, €
=0.00625. As for the viscosity contrast, for numerical con-
venience we use ¢ =0.9, which is known (see, e.g., Ref. [12])
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x _0.5 D ) (@)
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FIG. 5. Interfaces in the channel geometry, simulated in the
reference frame moving with the mean interface and then translated
into the laboratory frame. By=10"2, €=0.00625, c=0.9, e=0.4.
(a) Change of width in the stationary pattern at ' =7.8 when chang-
ing from a=0.1 (wider finger) to @=0.9 (thinner finger). (b),(c)
Periodic, instantaneous switch of a between the two values in (a),
with a lower (b), and a higher (c) frequency. Interfaces are shown
each time the field is switched on or off with £=0.67, until ¢’
=15.3.

to be sufficiently close to the high viscosity contrast limit ¢

=1 of the experiments. €= 0.4, which suffices to resolve the
displacement of the liquid crystal by the air. The initial con-
dition is a cosine wave of wavelength and amplitude 1 (the
channel width) in all cases.

Since the simulations use dimensionless variables, the ef-
fect of the different time scale with or without the electric
field does not show up. To make it apparent, we introduce
another dimensionless time increment

At when field is off,

A=V ,A7 when field is on,

4.3)

where a=3.7 is the measured ratio of the time scale with E
on and that with E off, and we compare runs at a same time
t". In this way we compare runs that would have taken the
same time in the experiments, since the factor restoring the
dimensions is now the same independently of how much
time was the field on or off during each run. Also, the phase-
field equations [Egs. (4.1) and (4.2)] are in the reference
frame moving with the mean interface. Since the experimen-
tal figures are in the lab frame, the numerical simu-
lations (Figs. 5-7) have been translated into the latter for
comparison.

Figures 5 and 7 are the computational, channel analogues
of Fig. 1 and Fig. 2, obtained from experiments in the radial
geometry. In Fig. 5(a) we show a wider (a=0.1, field off,
A=0.588) and a thinner («=0.9, field on, A =0.387) finger,
both at t' =7.8, where \ is the finger width. We can see that
the wider finger does go faster in real time even for this
significant change in width. Therefore, we conclude that a
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tip width

FIG. 6. Finger width at one unit length behind the tip and tip
radius vs rescaled time (¢") for the runs in Fig. 5(b) (solid lines) and
Fig. 5(c) (dashed lines). Recall that the unit length is the channel
width.

simultaneous increase in the surface tension anisotropy and
the viscosity, does actually explain the fact that fingers are
both narrower and slower.

In Fig. 5(b) and Fig. 5(c), interfaces are shown exactly
each time the anisotropy was changed between the two dif-
ferent values in Fig. 5(a) (each time the field was switched
on or off), which was done with a very similar filling coef-
ficient than in the experiments, £=0.67. This visually leaves
no doubt of the fact that the two different widths in Fig. 5(a)
are successively selected at the tip to produce the pattern in
Fig. 5(b). The small mismatch between the tails of the two
front interfaces in Fig. 5(b) is presumably due to the fact that
the viscosity contrast is not strictly 1 (¢=0.9), so that the
dynamics in the tail region is not completely frozen. In Fig.
5(c) the width has no time to relax to any of the two in Fig.
5(a), and gently oscillates in the intermediate range 0.526
<\<0.537. However, the curvature seems to relax more
quickly.

FIG. 7. Tip position (y) vs rescaled time (") for the runs in Fig.
5. The steeper (less steep) straight, long-dashed line corresponds to
the wider (thinner) finger in Fig. 5(a). The solid and dotted lines in
between correspond to the runs in Figs. 5(b) and 5(c), respectively.
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These relaxation processes can be seen in more detail in
Fig. 6, where we have monitored the finger width one unit
length behind the tip (which is only slightly below the
asymptotic width) and the tip radius. The latter is the inverse
of the curvature modulus of the zero level-set of the phase
field [ 1/]x(6=0)|], and, therefore, of the interface. To avoid
spurious lattice oscillations, such a radius is plotted only
when the finger tip hits near a grid point (| 8| <10~ at the tip
of the finger). The solid and dashed lines correspond to the
runs in Fig. 5(b) and Fig. 5(c), respectively. In the case of the
lower frequency (solid lines), we can see that the tip radius
relaxes always first to its asymptotic value, and is then fol-
lowed by the finger width as the information of the tip is left
behind. Thus, for the higher frequency (dashed lines), the
finger has not enough time to relax to its asymptotic widths,
but the curvature almost attains its asymptotic values. On the
other hand, for the lower frequency it is possible to observe
that the tip widens much faster than it narrows, as can be
seen both in the tip width and its radius, but especially in the
first. This behavior may be expected in connection with the
existence of a set of (unstable) solutions with larger width
than the selected one, whose proximity may effectively slow
down the relaxation dynamics.

Finally, in Fig. 7 we show the evolution of the tip position
for the runs in Fig. 5. The steeper (less steep) straight, long-
dashed line corresponds to the wider (thinner) finger in Fig.
5(a), i.e., to the case with the field off (on). The initial relax-
ation to the stationary velocity is so fast that it is almost
invisible at this scale. The runs in Figs. 5(b) and (c) corre-
spond to the solid and dotted lines in between, respectively.
We can see that, for the lower frequency (solid line), the
velocity successively relaxes to the values with or without
field of the straight, long-dashed lines. Initially, however, it
attains a value slightly below (above) the steady velocity
when it relaxes to a lower (higher) velocity. This effect is
more apparent for the relaxation to a lower velocity. In con-
trast, for the higher frequency (dotted line), we are left with
these slightly too low or high initial values of the velocity,
since the field is switched on or off again just when the
velocity was about to achieve its asymptotic value. This is
quite similar to what happened to the curvature for the higher
frequency (lower dashed line in Fig. 6), in contrast with the
failure of the finger width to relax (upper dashed line in Fig.
6). So the finger velocity seems to be more correlated to the
tip curvature than to the finger width.

In order to compare with the experiments of Rabaud et al.
with two opposite grooves in the channel geometry in which
they modulated the injection pressure [13], we have repeated
our simulations changing the dimensionless surface tension
from By,=10"2 to By=6.5X10"* (with €=0.005) and
keeping its anisotropy to &= 1. Note that, indeed, an instant
change in pressure is equivalent to a change in the time scale
and the dimensionless surface tension. In the experiments of
Rabaud er al. the modulation was sinusoidal, which also in-
troduces an extra time scale, but they nevertheless obtained
symmetrical lateral waves of limited amplitude as ours [13].
In our simulations, we use instant changes in the dimension-
less surface tension, and we obtain qualitatively the same
results than in Fig. 5 and Fig. 7. The instant changes make
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the saturation of the finger width possible, and the fact that
the finger width does saturate to the values with a constant
B suggests that the basic mechanism for the lateral waves
observed by Rabaud ef al. when modulating the pressure
might also be the relaxation towards two different steady
widths.

V. CONCLUSIONS

We have performed viscous fingering experiments in a
radial Hele-Shaw cell, where the more viscous fluid was a
liquid crystal mixture in its nematic phase. After ruling a
single groove across the center of the cell, we achieved
stable finger tips in the direction of the groove (otherwise
unstable). By applying an electric field perpendicular to the
cell, we oriented the nematic director in this direction, which
resulted in thinner and slower fingers. We then periodically
switched on and off the field to find oscillations in the finger
width and velocity, with an amplitude that decreased as the
switching frequency was increased.

We explain how fingers are slower when the field is on
because the viscosity of the liquid crystal is higher with the
director perpendicular to the cell, and that the reason why
they are thinner may be attributed to an increase in the an-
isotropy due to the groove when the field is on. Also the
surface tension is reduced when the field is switched on, but
it cannot affect so strongly the finger width, since no signifi-
cant width change was observed by increasing the excess
pressure, and both a decrease in the surface tension and an
increase in the excess pressure would lower the dimension-
less surface tension. The proposed scenario reproduces the
experimental observations, as shown by numerical integra-
tion in the channel geometry of a simplified theoretical
model. We also explain the finger width and velocity oscil-
lations as the result of the relaxation back and forth between
the selected tip radii and velocities with the field on and off,
as suggested by the experiments and clearly seen in the nu-
merical integration of the theoretical model.

We discuss how this latter result might be relevant to
experiments with a bubble on the tip of a finger and espe-
cially when modulating the injection pressure in a channel
with two parallel grooves [4,5,13]. We reproduce the quali-
tative observation that the lateral waves are symmetric and of
limited amplitude for such a pressure modulation by simula-
tions instantly changing the dimensionless surface tension.
We point out that the amplification of small tip perturbations
describing natural, noise-induced side branching, and the
successive relaxations between to steady widths describing
the formation of lateral undulations when periodically chang-
ing a control parameter seem to be two complementary
mechanisms for lateral wave formation, and that experiments
forcing the dynamics with large perturbations might be un-
derstood as mixed cases.
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