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Periodic Heteroskedastic RegARFIMA models
for daily electricity spot prices

M. Angeles Carnero, Siem Jan Koopman and Marius Ooms

Abstract

Although the main interest in the modelling of electricity prices is often on volatility

aspects, we argue that stochastic heteroskedastic behaviour in prices can only be mod-

elled correctly when the conditional mean of the time series is properly modelled. In this

paper we consider different periodic extensions of regression models with autoregressive

fractionally integrated moving average disturbances for the analysis of daily spot prices

of electricity. We show that day-of-the-week periodicity and long memory are impor-

tant determinants for the dynamic modelling of the conditional mean of electricity spot

prices. Once an effective description of the conditional mean of spot prices is empirically

identified, focus can be directed towards volatility features of the time series.

For the older electricity market of Nord Pool in Norway, it is found that a long memory

model with periodic coefficients is required to model daily spot prices effectively. Further,

strong evidence of conditional heteroskedasticity is found in the mean corrected Nord Pool

series. For daily prices at three emerging electricity markets that we consider (APX in The

Netherlands, EEX in Germany and Powernext in France) periodicity in the autoregressive

coefficients is also established, but evidence of long memory is not found and existence of

dynamic behaviour in the variance of the spot prices is less pronounced. The novel find-

ings in this paper can have important consequences for the modelling and forecasting of

mean and variance functions of spot prices for electricity and associated contingent assets.

Keywords: Autoregressive fractionally integrated moving average model; Generalised

autoregressive conditional heteroskedasticity model; Long memory process; Periodic

autoregressive model; Volatility.
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1 Introduction

Electricity supply has been the responsibility of public-private companies in many OECD coun-

tries until recently. It is anticipated that the private trading of electricity will intensify further

in future and eventually move towards fully privatised electricity markets. In such markets

large volumes of electricity power will be traded for the short and long term together with fu-

ture contracts and options. Although similarities with financial markets may exist with respect

to its operations, electricity markets generally are subject to the limitations of the underlying

asset. Since the characteristics of electricity prices have important implications for derivative

pricing and real option analysis, the modelling of such time series has become of interest to

researchers and practitioners.

Following the standard practice in modelling volatility of financial returns, we are inter-

ested in the conditional mean and in the volatility of the innovations of the pricing process. For

electricity prices it is well established that the mean process is not a simple random walk in log-

arithms but has specific characteristics. For example, Escribano, Peña, and Villaplana (2002)

give a good overview of the salient features of electricity prices: (i) Seasonality: the strong de-

pendence of electricity demand on weather conditions and economic and business activities lead

to periodic behaviour in the prices, (ii) Mean-reversion: electricity prices are mean-reverting

since weather is a dominant factor and influences equilibrium prices through changes in demand;

(iii) Jumps and volatility: it is impossible or difficult to store large quantities of electricity so

that supply and demand shocks cannot easily be smoothed out.

The literature on analysing electricity prices is scarce but it grows quickly. Some initial

contributions are the papers by Knittel and Roberts (2001) and Lucia and Schwartz (2002)

who propose several models for electricity prices using Californian hourly data and Norwegian

daily data for the Nord Pool market, respectively. Escribano et al. (2002) propose and estimate

a more general model for daily spot prices in the electricity markets of Nord Pool, Argentina,

Australia, New Zealand and Spain. Wilkinson and Winsen (2002) point out that the pattern of

prices varies across day-types. By analysing the sample means of electricity prices in New South

Wales (Australia), they find that four type of days should be considered: Monday, Tuesday to

Friday, Saturday and Sunday.

We go further and look at periodicities, both in the deterministic function which explains

the yearly seasonality of these data, and in the dynamic parameters. We argue that not only the

mean and variance of daily electricity prices depend on the day of the week but also skewness,

kurtosis and autocorrelation structure. Therefore, the model parameters associated with the

dynamics should be different for each day of the week.

Once we have dealt with these periodic features of the time series, it is not taken for granted

that volatility clustering exist for the resulting innovations. We show that for some important

European electricity markets, the dynamic behaviour in the variance of such innovations de-

pends on the specification for the conditional mean. This means that the empirical work on

volatility in electricity prices may have produced spurious results.
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However, our empirical results indicate that this does not apply to all markets. First, the

model for the mean process can be more complicated than standard autoregressive dynamic

structures, especially if longer series are considered. Long memory features seem to be present

in market prices for which we have a long data set. Second, after the dynamics in the conditional

mean have been identified, the variance process may still have dynamic structure and volatility

clustering. For this paper we capture these variance features using a standard generalised

autoregressive conditional heteroskedastic (GARCH) model assuming a Student-t distribution

for the innovations and including a yearly cycle in the equation of the conditional variance with

the objective of capturing possible seasonal patterns in the conditional variance. Simultaneous

treatment of dynamics in the conditional mean and variance of electricity price requires further

investigation in the future.

The paper is organised as follows. Section 2 describes the markets and data sets and

provides the main motivation for the periodic analysis. Section 3 discusses the main Seasonal

Periodic RegARIMA models for the conditional mean. Section 4 presents the Seasonal Periodic

RegARFIMA model that allows for long memory characteristics. Section 5 reveals the main

empirical results obtained using the periodic models. Section 6 presents evidence on conditional

heteroskedasticity. Finally, section 7 concludes the paper.

2 European electricity markets and daily spot prices

2.1 Some facts about electricity markets

We analyse time series of daily spot electricity prices from the following European markets:

Nord Pool in Norway (www.nordpool.no), Amsterdam Power Exchange (APX) in The Nether-

lands (www.apx.nl), European Energy Exchange (EEX) in Germany (www.eex.de), and Pow-

ernext in France (www.powernext.fr). These markets have started in different years and

therefore the four daily time series are of different length. The oldest market is Nord Pool that

started in 1991 for the trading of all hydro electricity power generated by Norway. In 1996

Sweden, in 1998 Finland and in 1999 Denmark also joined the Nord Pool market but in this

paper we only consider prices for electricity produced by Norway. Most of this electricity (99%)

is generated in hydro electric power stations and therefore supply depends heavily on weather

conditions. The average production capability of Norway’s hydro power plants is about 113

Terawatt hours (TWh=109 KWh) per year. However, this production depends on precipitation

levels. For example, in 1998, electricity production was 116.7 TWh while in 1996 it was only

104.7 TWh. The daily spot market APX has been operational since May 1999 and in 2001 a

total of 8.24 TWh were traded on this market. The volume traded on the Amsterdam Power

Exchange increased by more than 60% in the last years and now it represents more than 9% of

the electricity consumption in the Netherlands. EEX is the largest national electricity market

in Europe and the volume traded on this market has also increased in the last years. In 2002,

about 33 TWh were traded on the EEX spot market, 50% more than in 2001. Finally, the

3



spot market Powernext in France started in November 2001 and in 2002 volumes traded on

this market represented already 2.5% of the France’s electricity consumption. All four markets

operate as “day-ahead” markets that concentrate on daily trade for electricity delivered on the

next day. Daily series are constructed as the average of 24 price series for the different hours

of the day. The resulting prices are referred to as spot prices.

2.2 Time series descriptives of electricity spot prices

The time series of spot prices are observed from January, 1, 2001 to June, 8, 2003, from October,

1, 2001 to June, 8, 2003, from December, 3, 2001 to June, 8, 2003 and from January, 4, 1993 to

November, 14, 1999 for the markets of the APX, EEX, Powernext and Nord Pool respectively.

Prices are in Euros/MWh in the APX, EEX and Powernext and in NOK/MWh in Nord Pool

( 1 Euro ≈ 8 NOK).

Figure 1 plots the four series of daily spot prices, Pt, computed as the average of the 24

hourly prices. As we can see in the graphs, the dynamic behaviour of the Nord Pool time

series is different from the behaviour of the other three series. One of the most important

reasons that could explain these differences is the type of electricity traded on the markets.

Most of the electricity traded on the Nord Pool market is produced by hydro power generation

and therefore, it depends on weather conditions. In the APX, most of the electricity traded

is thermal (via the burning of coal) and gas while the EEX and Powernext markets trade

electricity produced mainly by nuclear power plants.

As it is usual in the electricity literature, we are interested in modelling the logarithm of

prices. Figure 2 plots the log-daily prices, pt = log Pt, together with a kernel density estimate

and the correlogram. As we can see, the log-transformation stabilised the variation in the series.

The pattern of the correlations is similar for the three younger markets. The simultaneous time

series plots also reveal similar local trends in these markets. Strong weekly patterns are clearly

apparent in the correlograms of the series. The correlogram of Nord Pool is dominated by long

memory dynamics. This may partly be explained by its relation to river flow levels and, as it

is known, mean river flows often display long memory characteristics; see, for example Ooms

and Franses (2001) and references therein. Figure 1 at least reveals that the nature of the Nord

Pool series is very different from the other markets.

Table 1 contains, for the APX, EEX and Powernext markets, descriptive statistics for the

whole (pooled) sample and for the samples of different days of the week, together with the

periodic autocorrelation coefficients as defined by McLeod (1994). For example, the fourth

column of this table shows rTue(1) = corr(pt, pt−1) with values 0.72, 0.60 and 0.67, for APX,

EEX and Powernext, respectively. These values correspond to the sample estimate of

E[(pTue − E(pTue))(pMon − E(pMon))]√
V ar(pTue)

√
V ar(pMon)

.

As Wilkinson and Winsen (2002) pointed out, the pattern of prices varies across day-types.

Table 1 further shows that the mean and variance of daily electricity prices depend on the day
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of the week and so does the skewness, kurtosis and autocorrelation structure.

For all markets, the mean is bigger on Tuesdays and smaller on Sundays and the correlation

coefficients depend on the day of the week. For example, the correlation between Wednesdays

and Tuesdays (0.83, 0.74 and 0.83 for APX, EEX and Powernext, respectively) is higher than

the correlation between Mondays and preceding Sundays (0.40, 0.63 and 0.63, respectively) as

one would expect.

The large day-to-day differences in the autocorrelation function strongly motivate a periodic

time series modelling approach. This pertains both to the regression part and the dynamic

part as we will illustrate in the following sections. In order to save space we mention without

showing all the results that the autocorrelation functions remain clearly periodic if apparent

nonstationarities due to day-of-the-week effects and yearly weather cycles have been removed

by regression or by (seasonally) differencing the data. Table 2 contains the corresponding

descriptive statistics for the Nord Pool data, both for log prices and daily changes in log prices.

The second panel of this table shows that the correlation function for the daily price changes on

the Nord Pool market is extremely periodic, even for longer lags, motivating a seasonal periodic

long memory time series model.

Even before specifying a modelling strategy it is relevant to discuss possible consequences

of neglecting periodicity when interpreting estimates of nonperiodic autocorrelation functions

of levels and squares of periodic processes.

2.3 Autocorrelation, periodic autocorrelation, in levels and squares

First, it is interesting to discuss the slightly puzzling fact that periodic autocorrelations for all

periods can be higher than an individual autocorrelation coefficient. For example, this is the

case for r(1) of EEX spot prices and for r(1) and r(2) of Powernext spot prices as reported

in Table 1. An understanding of this feature can be important for effective identification of

periodic time series models. The matter can be illustrated with the following example. Consider

the time series generating process

yt =






εj t = 4j − 3

−εj t = 4j − 2

ηj t = 4j − 1

ηj t = 4j

, εj
i.i.d.
∼ N(0, 1), ηj

i.i.d.
∼ N(0, 1), (1)

for t = 1, . . . , T and j = 1, . . . , T/4 with T chosen to be some multiple of 4. Note that εj

and ηj are assumed independent of each other at all times. It follows that the theoretical
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autocorrelation E(ytyt−1) is periodic

E(ytyt−1) =






E(εjηj−1) = 0 t = 4j − 3

E(−ε2
j) = −1 t = 4j − 2

E(−εjηj) = 0 t = 4j − 1

E(η2
j ) = 1 t = 4j

. (2)

Computing the sample counterparts of the autocorrelation and the periodic autocorrelations,

it is expected that two periodic autocorrelations will be significantly away from zero while

the overall first order correlation coefficient will be close to zero. Also higher order sample

autocorrelations will be close to zero. Therefore, in this case the standard correlogram will not

give evidence of serial correlation in yt.

A further consequence of the illustration is that the theoretical autocovariance in the squares,

E{(y2
t − 1)(y2

t−1 − 1)}, is periodic as well (0, 2, 0, 2 in the order of (2)). However, in this case

the sample first order autocorrelation of the squared yt will be significantly away from zero

(approximately 0.5). Given the fact that the correlogram for the levels suggests that yt is

white noise, this example shows that evidence provided by the correlogram of the squared yt

can be misleading, when periodic features are present in the mean. Therefore the possibility

of detecting spurious volatility clustering is existent. Further it is important to account for

periodic features of time series before dynamic models are fitted to conditional variances.

3 Periodic RegARIMA models

3.1 RegARIMA model

Regression models with autoregressive integrated moving average (ARIMA) disturbances have

been used in many areas of time series analysis and were introduced in the seminal book of Box

and Jenkins (1970). Most notably this time series model is often used as the basis for model-

based seasonal adjustment; see, for example, Bell and Hillmer (1984). Also the current version

of the U.S. Census program X-12-Arima allows the identification, estimation and diagnostic

checking of RegARIMA models as a precursor to the X-11 seasonal adjustment method; see

Findley, Monsell, Bell, Otto, and Chen (1998).

A RegARIMA model is defined as a multiple regression model with ARIMA disturbances.

For an observed time series yt and for k known and fixed time series xit with i = 1, . . . , k and

t = 1, . . . , T , the RegARIMA model is given by

yt =
k∑

i=1

βixit + ut, φ(L)∆dut = θ(L)ηt, ηt ∼ N(0, σ2), (3)

where β1, . . . , βk, σ
2 are fixed unknown coefficients, φ(L) and θ(L) are polynomials in the lag

operator L (Lpyt = yt−p) and ∆d is the differencing operator (1 − L)d for d = 0, 1, . . .. In
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section 4 of this paper we extend the model to allow for (seasonal) fractionally integrated

disturbances, that is “RegARFIMA” models, which allow for a non-integer order of differencing.

The coefficients of the lag polynomials

φ(L) = 1 − φ1L − . . . − φpL
p, θ(L) = 1 + θ1L + . . . + θqL

q, (4)

are fixed and unknown for any set of non-negative integers p and q. In short notation, we refer

to the model as RegARIMA(p, d, q).

The time series models that have been used for the modelling of spot electricity prices are

special cases of the RegARIMA model (3). The basic model for the logarithm of the daily spot

price, pt, can be represented as

pt = ft + ut, ft =
k∑

i=1

βixit, ut = φut−1 + ηt, (5)

where ft is a deterministic function to allow for specific seasonal patterns in the prices. The

basic model (5) is in effect the RegARIMA(1, 0, 0) model. The standard explanatory variables

are polynomial, trigonometric and other periodic functions of time. Observations and forecasts

for (stochastic) weather variables are not included in these types of market models.

For example, we can take k = 7 with

x1t = 1, x2t = t, x3t = sin λt, x4t = cos λt, x5t = sin 2λt, x6t = cos 2λt, (6)

where λ = 2π/365 and with

x7t =

{
0 t is workday

1 t is not a workday
. (7)

Models with such specifications for the mean function for log electricity prices have been used in,

for example, Lucia and Schwartz (2002), Escribano, Peña, and Villaplana (2002) and De Jong

and Huisman (2002). The first two authors propose the RegARIMA(1,0,0) model (5), with

four regressors, x1t, x3t, x4t and x7t in ft, for modelling spot prices for “next day” electricity.

Forecasts from this model are subsequently used for prices for electricity delivered at later days

(“future prices”). Other contributions in the electricity market pricing literature have adopted

this specification for the mean of log prices in order to model the presumed stochastic volatility

in the price series.

The considered RegARIMA model assumes that the regression component ft is appropriate

for the seasonal effects in the time series of prices. We argued in section 2.2 that a model

with periodic coefficients for ft and ut is required to adequately describe the dynamics of log

electricity prices. Before presenting extended models we discuss a reparameterisation of the

RegARIMA model that simplifies estimation in some interesting cases.
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3.2 Parameterisation and estimation of RegARIMA models

Maximum likelihood estimation of RegARIMA models is straightforward since an explicit ex-

pression for the (Gaussian) loglikelihood function is available; see standard textbooks such as

Brockwell and Davis (1994) for a time series point of view, or Johnston and Dinardo (1997) for

an econometric point of view. The consequence is that the likelihood needs to be maximised

numerically with respect to the unknown regression and lag polynomial coefficients. Numerical

optimisation can be avoided in models with pure AR processes for ut, by conditioning on the

first observations, leading to conditional least squares, see e.g. Shumway and Stoffer (2000).

In this case with only a stationary autoregressive polynomial ut, the RegARIMA(p, 0, 0)

model (5) can be written in an equivalent form of an Autoregressive model with exogenous

input variables (ARX) as

φ(L)pt =
k∑

i=1

βizit + ηt,

where zit = φ(L)xit for i = 1, . . . , k. Furthermore, in cases where xit is a polynomial or periodic

function of the time index t such as in (6) and (7), applying a stationary autoregressive lag

polynomial to xit to obtain zit, has no effect on the interpretation of the explanatory variables

and therefore its effect is void. Since we consider model (5) in which all explanatory variables

are polynomial or periodic functions of time t, we can take xit rather than zit for estimation

purposes. Of course, this replacement does lead to different regression coefficients. It is mainly

for this reason that the RegARIMA(p, 0, 0) model can be written as a standard regression model

with lagged dependent variables, that is

pt = φ1pt−1 + . . . + φppt−p +
k∑

i=1

β∗

i xit + ηt. (8)

The coefficients of this model can be estimated by Ordinary Least Squares (OLS) to get con-

sistent and efficient estimates for all coefficients φ1, . . . , φp, β
∗

1 . . . , β∗

k . From these it is straight-

forward to derive β1, . . . , βk in the AR(p) extension of equation (5), see e.g. Ooms (1994,

§A2.2.2).

3.3 Periodic RegARIMA models

Spot electricity prices change on a daily basis and are subject to strong seasonal effects. The

nature of the seasonality described in section 2.2 suggests that each day of the week should

be described by a different model. We therefore consider the periodic RegARIMA model

which in effect allows for different coefficients for different days in the week. If all coefficients

are different, including the variance σ2, we can isolate the days from each other and estimate

separate models for the seven weekly series of prices for Monday until Sunday effectively creating

one time invariant multiple RegARIMA model, c.f. Tiao and Grupe (1980). Our focus will also

be on more subtle periodic formulations of the RegARIMA model in which only certain mean
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coefficients for ft are different for each day or in which only certain lag polynomial coefficients

for ut are different.

Periodic autoregressive (periodic AR) models were first applied by Jones and Brelsford

(1967) and have found widespread use in geophysical time series modelling. Tiao and Grupe

(1980) discuss the consequences for traditional ARMA modelling if the underlying process

really follows a periodic ARMA model. Vecchia (1985) developed and applied conditional ML

estimation for periodic ARMA models, but these models are still not widely used. McLeod

(1994) discussed the empirical identification of periodic AR models. Econometric work on

periodic models with focus on testing for periodic integration, i.e. the nonstationarity of the

periodic AR part of the model, is discussed in various articles and in books by Franses (1996)

and Ghysels and Osborn (2001).

We follow the time series approach to periodic modelling by using the sample periodic auto-

correlation function as the basis for identifying the periodic RegARIMA model in a similar way

as is done for standard ARMA modelling. A definition of the sample periodic autocorrelation

function is found in McLeod (1994) and as we have seen in section 2.2, Tables 1 and 2 contain

the sample periodic autocorrelation coefficients for the data analysed in this paper. To allow

for the regression effect ft, the sample periodic autocorrelation function can be computed for

the OLS residuals of periodic regressions.

In the context of model (3) we formulate the periodic RegARIMA model by

yt =
k∑

i=1

βi,jxit + ut, φj(L)∆dut = θj(L)ηt, ηt ∼ N(0, σ2
j ), (9)

for j = j(t) = 1, . . . , s, with fixed periodic (or seasonal) length s and where φj(L) and θj(L)

are polynomials with coefficients indexed by j. The indices j(t) indicate that coefficients can

be different for different “seasons”. They are periodic functions of the time index t. For

example, in the case of daily time series with a general day-of-the-week periodic behaviour, we

have j(t) = 1 + (t mod 7). In the particular case of the electricity price model (5), both the

components ft and ut are taken as periodic counterparts of their original definitions.

3.4 Estimation of Periodic RegARIMA models

The number of coefficients to be estimated increases when periodic coefficients are introduced

in the model. Therefore the method of maximum likelihood that requires direct numerical

optimisation of the likelihood is to be avoided whenever possible.

As discussed in section 3.2, a linear regression approach can be taken for the RegARIMA(p,0,0)

model with polynomial and periodic regressors. This also holds for the periodic version of this

model for log electricity prices given by

pt = φ1,jpt−1 + . . . + φp,jyt−p +
k∑

i=1

β∗

i,jxit + ηt, ηt ∼ N(0, σ2
j ),
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where j is a (modulus) function of t and j = 1, . . . , s. This representation effectively is a

set of s different equations and estimation can be carried out by the method of least squares,

equation by equation. However when particular coefficients are restricted to be the same across

days, estimation requires the consideration of all equations jointly, hence the need to estimate

all coefficients simultaneously and nonlinear optimisation often becomes necessary. In the

particular case j = 1 + t mod s, we can also specify the model as a single equation by

pt =
s∑

j=1

Djt

(
φ1,jpt−1 + . . . + φp,jpt−p +

k∑

i=1

β∗

i,jxit + ηt

)
, ηt ∼ N(0, σ2

j ),

where Djt is a dummy variable that is one when t mod j = 0 and is zero otherwise. Straight-

forward (iteratively weighted) least squares can be used for the estimation of the coefficients,

whether periodic coefficients (or a selection thereof) are restricted to be the same or not, see

Oberhofer and Kmenta (1974). In effect one maximises the approximate conditional loglikeli-

hood function

c −
T

2s

s∑

j=1

ln σ̂2
j (10)

where c is a constant, T is the sample size and σ̂2
j is the average of the squared residuals for

“season” j. Periodicity can be tested by comparing loglikelihoods of the models under various

restrictions. Note that (10) simplifies to c − T
2

ln σ̂2 under homoskedasticity by taking s = 1.

Implementation is relatively straightforward. The software programs have been written for

this purpose using Ox 3.2, see Doornik (2002). The Ox programs are available from the authors

upon request.

4 Seasonal periodic heteroskedastic RegARFIMA mod-

els

In this section we present two extensions that build on the RegARIMA models discussed in the

previous section. First the seasonal RegARIMA will be briefly introduced. Next, the fractional

integration extension will be discussed in more detail.

4.1 Seasonal extension

The seasonal Box-Jenkins analysis is based on multiplicative polynomials for dynamics in the

level and for dynamics in the seasonal. Seasonal ARIMA models are discussed by Box and

Jenkins (1970) and in several textbooks such as Shumway and Stoffer (2000). The seasonal

model is given by

φ(L)Φ(Ls)∆d∆D
s ut = θ(L)Θ(Ls)ηt, t = 1, . . . , T, (11)

10



where φ(L) and θ(L) are polynomials in the lag operator L of orders p and q respectively (as

given by (4)), Φ(Ls) and Θ(Ls) are polynomials in Ls of orders P and Q respectively (similar

to (4)), ∆d = (1 − L)d, ∆D
s = (1 − Ls)D, p < s and q < s. Short hand notation for this model

is seasonal ARIMA(p, d, q) × (P,D,Q)s. Since the multiplication of two polynomials leads to

another single polynomial, the analysis based on seasonal ARIMA models is similar to ARIMA

models although the analysis can become more intricate since it involves more parameters and

higher dimensions. Tiao and Grupe (1980) showed how seasonal lags in the non-periodic model

can arise if one attempts to whiten the residuals of a periodic time series process, i.e. if one

attempts to approximate a periodic time series process by a nonperiodic model. It is therefore

interesting to include a seasonal ARIMA model in the analysis. The seasonal RegARIMA

model is given by

yt =
k∑

i=1

βixit + ut, t = 1, . . . , T,

where ut is modelled as in (11). In the remainder of this paper we will concentrate on to the

seasonal RegARIMA(p, 0, 0) × (1, D, 0)s model.

4.2 Seasonal fractional integration extension

The seasonal periodic ARFIMA model was first considered by Ooms and Franses (2001) to

model the long memory characteristics of the monthly flows in the Canadian Fraser river.

They based their analysis on the seasonal ARIMA(p, 0, 0) × (P,D,Q)12 model allowing the

nonseasonal AR parameters and the seasonal fractional integration parameter D to vary with

the month of the year.

The “fractional differencing” model introduced by Adenstedt (1974) has become a standard

model for long memory behaviour, see Beran (1994). In econometrics this model is known as

an I(d) process. The discrete integration model (1 − L)dut = εt, where εt is white noise and d

is a non-negative integer, becomes a fractional integration model when d is replaced by a real

number.

If |d| < 0.5 the “fractionally integrated” series ut is stationary and invertible and can be

written as an infinitely long AR process using the binomial expansion of (1 − L)d. For d > 0

the autocorrelation function of this process dies out hyperbolically, indicating the process is

long memory.

The generalisation towards a mixed autoregressive fractionally integrated moving average

(ARFIMA) process, introduced by Granger and Joyeux (1980) and Hosking (1981), is obtained

by considering (3), without regressors, with a real number |d| < 0.5. Statistical properties and

inference for ARFIMA processes and other long memory models are extensively discussed in the

monograph by Beran (1994) and more recently in Robinson (2003). The further generalisation

towards seasonal RegARFIMA models is evident by adding regressors for the mean and by

letting both d and D be continuous variables in (11). Carlin, Dempster, and Jonas (1985)

provided an early analysis of ARFIMA models with seasonal fractional integration parameter
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D. Porter-Hudak (1990) is probably the best known application to economic data.

As a final step one can let the fractional d and D be periodic. In this paper we do not consider

a periodic d, see Franses and Ooms (1997), but we do allow for periodic AR parameters and

a periodic seasonal fractional Dj. If one views this parametric model in its multiple equation

form, it can be given a fractional cointegration interpretation as in Sowell (1987), see e.g.

Dueker and Startz (1998) for an application. In our parametric context fractional cointegration

implies that different linear combinations of the separate (fractionally integrated) time series

for the different days are allowed to be integrated of different orders. Robinson and Yajima

(2002) consider estimation and testing for fractional cointegration in a semiparametric multiple

equation context.

As we show below, this turns out to be relevant for the Nord Pool data. For example, we

find that the daily difference of pt between Fridays and preceding Thursdays is approximately

white noise and therefore I(0), whereas the difference between Saturdays and preceding Fridays

is integrated of order 0.4. See the second panel of Table 2. In this case Thursdays and Fridays

share the same long memory property, which can be removed by considering their difference.

For the Nord Pool data, we specify a seasonal periodic ARFIMA(2, 0, 0) × (0, D, 0)7 model

with |Dj| < 0.5. We require Dj > −0.5 so that the model can be estimated using the nonlinear

least squares method following Beran (1995). We require Dj < 0.5 so that the regression

part of the model can be interpreted in a standard way. Note that this specification with 14

autoregressive parameters, 7 integration parameters and 7 variances is much more parsimonious

than a full fractional vector autoregressive model of order 1 for all the days of the week, which

would contain 49 autoregressive parameters, 7 integration parameters and and 21 parameters

for the variance covariance parameters.

For example, the stationary periodic model for log spot prices with |Dj| < 0.5 and p = 2 is

given by

pt =
k∑

i=1

βi,jxit + ut, (1 − φ1,jL − φ2,jL
2)(1 − Ls)Djut = ηt, (12)

for t = 1, . . . , T and for j = 1, . . . , s with j = 1 + (t mod s), and where ηt is white noise, with

a stable periodic AR part of the model.

The same arguments that led to formulation (8) of a RegARIMA(p, 0, 0) model also hold

for the RegARIMA part of a stationary RegARFIMA(p, 0, 0)× (P,D, 0) model with |D| < 0.5.

Similarly, the arguments hold for the short memory seasonal and periodic extensions of the

RegARIMA part of the model. We therefore can represent model (12) by

(1 − φ1,jL − φ2,jL
2)pt =

k∑

i=1

β∗

i,jxit + (1 − Ls)−Djηt, ηt ∼ N(0, σ2
j ), (13)

for j = 1, . . . , s, and t = 1, . . . , T . The transformed regression coefficients β∗

i,j are here only de-

fined with respect to the autoregressive polynomial φj(L). Note that the regression coefficients

would not be identified if one (also) would try to transform them with respect to the fractional
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difference operator. This is easily seen if one considers only the simple nonperiodic ’ARFIX’

transformation analogous to (8) and if xit contains only a constant, x1t = 1:

φ(L)(1 − L)dpt = φ(L)(1 − L)dβ∗∗

1 + ηt,

where (1 − L)dβ∗∗

1 = (1 − 1)dβ∗∗

1 = 0 and for all d > 0 for all β∗∗

1 , since the infinite sum of the

coefficients in the AR(∞) expansion of (1−L)d equals one. It is therefore impossible to derive

the mean β1 in the corresponding RegARFIMA model (12) using this transformation.

4.3 Estimating seasonal periodic RegARFIMA models

Although the general model can have potentially a large number of parameters that need

to be estimated, the suggested extensions of the RegARFIMA model do not lead to further

complexities in the estimation methodology.

Frequency domain methods for estimating long memory regression models are surveyed by

Robinson (2003). Important time domain methods were developed by Sowell (1992) for station-

ary ARFIMA processes and by Beran (1995) for invertible ARFIMA processes. Beran (1995)

based his method on nonlinear least squares methods applying the approximate (Gaussian)

loglikelihood function similar to (10). Fast computational methods for estimation and analysis

of ARFIMA models are implemented in the ARFIMA package of Doornik and Ooms (1999) and

available for the Ox programming environment. Doornik and Ooms (2003) provide a detailed

discussion.

Ooms and Franses (2001) showed that under the assumption of covariance stationarity the

model can be easily estimated using a periodic version of the nonlinear least squares method

of Beran (1995), considering separate equations for each day of the week.

The least squares methods do not impose stationarity for the (periodic) AR polynomials

or for the periodic seasonal integration parameters, so one should test for nonstationarity after

estimation. Test statistics for nonstationarity of the periodic AR polynomial follow so-called

Dickey-Fuller limit distributions under the null of nonstationarity, see Boswijk and Franses

(1996). Test statistics for specific values of the fractional integration parameters follow standard

t− and chi-squared limit distributions in most relevant cases, see Robinson (2003). Under our

stationarity assumption, test statistics on the regression parameters also follow standard limit

distributions.

5 Empirical results

5.1 Results for new European markets

In this section we analyse daily spot prices of electricity observed in three European mar-

kets: APX Netherlands, EEX Germany and Powernext France. Nord Pool results follow in

section 5.2. We provide detailed results for three models which can be summarised as follows.
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Model 1 is given by

pt = ft + ut, ft = β1 + β3x3t + β4x4t + β7x7t + ut, ut = φ1ut−1 + ηt, (14)

where ηt is white noise with variance σ2. The explanatory variables are specified above,

see (6) and (7).

Lucia and Schwartz (2002) proposed this RegARIMA(1, 0, 0) model (5) with four regressors

for a yearly cycle and a weekend effect. Other explanatory variables for the mean function ft,

these are x2t, x5t and x6t (trend and half-year cycle), have been considered in the analysis but

were not found to be significant. This also applies to the models that are discussed below.

Model 2 is an extended version of Model 1 with separate constants for each day of the week.

The weekend variable x7t in (14) is superseded and deleted. The regression part is there-

fore given by

ft = β1,j + β3x3t + β4x4t, j = 1, . . . , 7.

This model further involves a more elaborate autoregressive specification for the distur-

bance ut, in particular a seasonal ARIMA(2, 0, 0) × (1, 0, 0)7 model, see (11),

(1 − φ1L − φ2L
2)(1 − Φ1L

s)ut = ηt, ηt ∼ N(0, σ2
j ) (15)

where the disturbances ηt have periodic variances σ2
j for j = 1, . . . , s with s = 7.

The dynamic part of Model 2 is obtained using Box-Jenkins methodology, but it includes

different constants for different days following the suggestion of Wilkinson and Winsen (2002)

and also allows for periodic heteroskedasticity, which is clearly required by the data.

Model 3 is the completely periodic RegARIMA(2, 0, 0) model which can be written in ARX

form, that is

pt = φ1,jpt−1 + φ2,jpt−2 + β∗

1,j + β∗

3,jx3t + β∗

4,jx4t + ηt, ηt ∼ N(0, σ2
j ) (16)

for j = 1, . . . , s, with s = 7;

We estimate Models 1, 2 and 3 by (weighted) least squares to maximise the approximate

loglikelihood function (10). Tables 3, 4, and 5 report the parameter estimates for the three

models for the APX, EEX and Powernext markets, respectively. Models 1 and 3 are estimated

by ordinary least squares, where Model 3 is treated as a set of seven equations for each day

of the week. Model 2 implies a nonlinear restriction on the AR polynomial and is estimated

by nonlinear iterative weighted least squares. We compute standard errors for the parameter

estimates by the delta method using (numerical) second order derivatives of the approximate

loglikelihood (10). Diagnostic checks are performed on the (appropriately ordered) scaled resid-

uals.
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The effective number of observations for the three series, i.e. the number of nonzero residuals

we can compute, varies from model to model. The percentage of the number of observations

lost by conditioning at the beginning of the sample is maximum 9/553 = 1.6% for Model 2

for the Powernext data, while it is 1.0% and 1.5% for APX and EEX, respectively. The exact

likelihood for the first observations can be taken into account if (Gaussian) Exact ML (EML)

is applied. However, if one uses EML, the results are very similar to the least squares outcomes

for Models 1 and 2, as the number of observations is relatively large.

It is remarkable that the magnitudes and signs of the estimated dynamic parameters of

Models 1 and 2 are similar for the three series. As it might not be easy to grasp the main

patterns, similarities and differences for daily periodic results of Model 3 in Tables 3, 4 and

5, we also provide a graphical representation. Figures 3, 4 and 5 plot interval estimates for

the parameters of periodic Model 3 for the three markets. Regression coefficients, dynamic

parameters and residual variances vary from day to day in all three markets, and the periodic

patterns in the dynamic parameters vary significantly from market to market. Monday’s AR(2)

coefficients for the Powernext market deviate from the APX and EEX market. Sunday’s AR(2)

coefficients for the APX differ from the EEX and Powernext. Note that β̂3,j and β̂4,j are

not directly comparable across markets as the starting dates for the data sets are different.

Statistical significance, however, can be compared.

Figure 6 plots the scaled residuals, η̂t, of the three fitted models for the APX data together

with their correlograms, in levels (η̂t) and squares (η̂2
t ). It is clear that Model 1 is not able to

capture the structure of the conditional mean of the series. In particular, its residual correlations

at seasonal lags 7, 14, 28, . . ., are clearly significant confirming a strong weekly seasonality in

the time series. Model 2 performs better in capturing the dynamics in the mean, since, as we

can see, the scaled residuals seem to be uncorrelated. But looking at the correlogram of the

squared residuals, we can see some structure in them suggesting the presence of conditional

heteroskedasticity. However, it is interesting to note that the structure in the squares is not

as strong in the residuals of the periodic Model 3. In this case, it seems that there are no

dynamics left in the residuals, not in the levels nor in the squares.

Figure 7 helps to explain what is happening. When we look at the correlation coefficients

of the residuals of Model 2, they are not significant at any lag, however, looking at the periodic

correlation coefficients, this is not the case. Periodic correlations are significant for some lags

and days. For example, r(1) is highly significant and positive for Wednesdays, which indicates

a strong correlation between the residuals corresponding to Wednesdays and Tuesdays. In the

case of Sundays, r(1) is also highly significant but negative. This is related to our example

in section 2.3, where we illustrate how spurious volatility clustering could be detected when

looking at the correlogram of the squares if periodic features are present in the data and they are

not taken into account. The last seven plots of Figure 7 illustrate this periodic diagnostic check

for a periodic time series model. We also advise to make the corresponding periodic scatter

plots to check whether the periodic correlations are due to a few influential observations only,

see Ooms and Franses (1997) for an application of this periodic diagnostic. For the data sets
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in this paper we do not find that the periodic correlations are caused by only a few influential

observations.

Figures 8 and 9 show the standard diagnostics for the estimated EEX and Powernext models.

Model 3 outperforms Models 1 and 2 in both markets. Still, Model 3 shows remarkable outliers.

We experimented by adding dummy variables to Model 3 to take account of the outliers and

this improved normality diagnostics. However, this did not change the main results on the

other aspects of the models.

Table 6 provides loglikelihood values and Akaike information criteria for Models 1, 2 and 3

for the three markets. It also reports results for a number of intermediate models, which confirm

that both periodicity in the regression coefficients, periodicity in the dynamic parameters and

periodicity in the variance of the white noise disturbances contribute to goodness-of-fit in a

remarkable way. As can be seen in the table, the highest values of the loglikelihood, −135.06,

39.97 and 71.60 for the APX, EEX and Powernext respectively, correspond to Model 3. Also,

Model 3 has for the three markets the lowest values of the AIC.

Finally we note that the scaled residuals are significantly correlated across the three markets,

with correlations between 0.3 and 0.6 for the period December 2001-June 2003. This suggests

the feasibility of successful joint modelling, but this is outside the scope of this paper.

5.2 Nord Pool results

In this section we present empirical results for the daily Nord Pool data, for which data char-

acteristics are summarised in section 2.2. It is indicated that a seasonal periodic long memory

model might be needed to adequately capture the dynamics in the conditional mean of the

series. Moreover, the Nord Pool series are substantially longer than the series for the new

markets, which makes a parametric long memory analysis feasible.

In addition to Models 1, 2 and 3 we analyse Model 4 as well.

Model 4 is the seasonal periodic RegARFI(MA) model as in (13), in particular

(1 − φ1,jL − φ2,jL
2)pt = β∗

1,j + β∗

3,jx3,t + β∗

4,jx4,t + (1 − L7)−Djηt, ηt ∼ N(0, σ2
j ) (17)

for t = 1, . . . , T and j = 1, . . . , s.

Again, the process ηt is assumed to be white noise with zero mean and day-of-the-week variances

σ2
j , for j = 1, . . . , s.

We estimate Model 4 by nonlinear least squares with separate equations for each day of

the week. Again we use the approximate loglikelihood function (10) as the basis for inference.

Treating

pt = φ1,jpt−1 + φ2,jpt−2 + β∗

1,j + β∗

3,jx3,t + β∗

4,jx4,t + (1 − L7)−Djηt

as s regression models (for weekly data) with (weekly) ARFIMA(0,d,0) errors and estimat-

ing them using Exact ML delivered similar results. Diagnostic checks are performed on the

(appropriately ordered) scaled residuals of these seven equations.
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Table 7 presents the estimation results for Model 1, 2, 3 and 4. Figure 10 shows confidence

intervals for the main parameters of Model 4. The (periodic) autoregressive parts and the

fractional components of all these models are stationary. For example, the largest characteristic

root of the periodic AR part of Model 4 equals 0.845 which is well inside the unit circle, whereas

the largest Dj is estimated at 0.387 with a standard error of 0.06. The first plot of Figure 10

shows the seasonal long memory parameter of Model 4 that appears to be strongly periodic

with large values for Monday and Saturday only. For Wednesdays, Thursdays and Fridays φ1,j

is close to one and φ2,j close to zero. For Saturdays and Sundays the parameter sums φ1,j +φ2,j

are close to one. This means that we can interpret the model in terms of daily differences

for Wednesdays to Sundays. Most of the mean reversion seems to take place on Mondays as

φ1,1 +φ2,1 is clearly below one. Figure 11 shows diagnostics for the scaled residuals η̂t of Models

1, 2, 3 and 4. Model 4 effectively removes serial correlation at weekly lags. Figure 11 provides

evidence of nonnormality of η̂t. Strong serial correlation in η̂2
t is also detected in all models.

We address the latter issue in the next section.

The last column of Table 6 compares the goodness-of-fit of Models 1,2 3 and 4 and some

intermediate ones. The seasonal periodic long memory Model 4 outperforms Models 2 and 3

as expected from the analysis of the periodic autocorrelation functions in Table 2 above. The

estimated equations for Friday and Saturday in Model 4 clearly show the periodic behaviour in

the seasonal long memory part. A good approximation for Friday’s equation is given in obvious

notation by

pFri,t∗ = pThu,t∗ + ηFri,t∗

where t∗ is a time index for weeks. This means that pFri,t∗−pThu,t∗ is approximately white noise.

This is confirmed by its autocorrelation function reported in the lower panel of Table 2, which

also shows that it is (periodically) uncorrelated with pThu,t∗−pWed,t∗ and pWed,t∗−pTue,t∗ . On the

other hand the equation for Saturday’s prices clearly contains seasonal long memory, even after

conditioning on Friday’s and Thursday’s prices. This type of long memory was also indicated

by the large values for the autocorrelation function for pSat,t∗ − pFri,t∗ at weekly lags in Table

2. In econometric terms one can say that the weekly series pFri,t∗ and pThu,t∗ are fractionally

cointegrated in the context of a (restricted) fractionally integrated Vector Autoregressive Model

for weekly data, see e.g. Dueker and Startz (1998) for a recent application of this model

introduced by Sowell (1987). Moreover, the time series pFri,t∗ − pThu,t∗ does not seem to contain

a yearly cycle as β3,Fri and β4,Fri do not differ significantly from zero. Again, the presence of

these common features is also indicated in Table 2 where pFri,t∗ and pThu,t∗ display the same

slowly decaying autocorrelation function, whereas all autocorrelations of pFri,t∗−pThu,t∗ are close

to zero. As most of the periodic AR polynomials φj(L) seem to contain a “unit root”, we also

estimated the nonstationary model with daily differences so that φj(L) = (1 − L)(1 − φ∗

1,jL),

j = 1, . . . , s. This model is clearly rejected by the data, compare the last rows of Table 6. This

rejection is due to the bad fit for the equation for Monday.

Summarising the results of Model 4 for the Nord Pool data we find that the model ade-

quately captures the conditional mean of the process. The parameters are comparatively easy
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to interpret. As the estimated periodic AR polynomials φj(L) approximately contain a daily

difference factor 1 − L we can also interpret separate equations in terms of daily differences.

However, the combined periodic model is stationary.

6 Volatility in electricity prices

It is well known that spot electricity prices are very volatile. The price can change very much

from one day to the other, with increasing variance on some particular days. In general, the

variance of the weekend days is smaller than the variance of the days at the beginning of the

working week; see, for example, Table 1. Volatility clustering also seems to be present, implying

that days with a high conditional variance tend to be followed by days with high variance and

more quiet days tend to be followed by quiet days. However, as we have discussed above, the

volatility clustering found in these series could be spurious. For the three younger markets,

APX, EEX and Powernext, we have found that once the conditional mean is modelled and

weekly periodicity in the variance is taken into account, no clear structure seems to remain in the

variance of the innovations. This is not the case for the Nord Pool data, where the correlation

in the squared residuals is present even after taking into account the periodic features of the

data, see Figure 11.

Whereas the linear time series modelling of the conditional mean has received little attention

in the literature, a wide range of nonlinear time series models has been applied for volatility in

daily electricity prices. One has considered various modifications for the statistical assumptions

for the innovations ηt. For example, Knittel and Roberts (2001) consider a jump diffusion model

and an exponential GARCH model. Escribano et al. (2002) take ηt as a GARCH process with

jumps and consider periodicity in the volatility with respect to the four seasons of the year.

De Jong and Huisman (2002) propose a stationary two-regime Markov switching model for

the APX data consisting of an AR(1) regime and a spike regime with high variance to capture

outliers. Byström (2001) considers hourly data for the Nord Pool market and fits fat-tailed

distributions in an AR-GARCH model.

We do not distinguish a separate regime for the outliers and confine ourselves to a standard

GARCH model to capture the volatility clustering in the Nord Pool data. Detailed analysis of

the extreme observations is beyond the scope of our analysis.

GARCH models, proposed by Bollerslev (1986) generalising the ARCH models of Engle

(1982), are the most popular to capture volatility clustering in financial markets. An extensive

review and discussion of these models can be found, for example, in Bollerslev et al. (1994). If

η∗

t = ηt/σj follows a GARCH(1,1) model, then η∗

t = εth
1/2
t where εt is a serially independent and

identically distributed process with zero mean, unit variance and finite fourth order moment,

independent of the volatility process h
1/2
t represented as

ht = α0 + α1η
∗2
t−1 + γ1ht−1

where α0, α1 and γ1 are parameters such that α0 > 0 and α1, γ1 ≥ 0. We have estimated
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GARCH models with Gaussian and Student t-distributions for the scaled residuals η̂∗

t of Model

3 for the APX, EEX and Powernext and for Model 4 for the Nord Pool series. We used

Maximum Likelihood as implemented in PcGive, see Doornik and Hendry (2001). Following

Byström (2001) we include a yearly cycle in the conditional variance equation, represented

by x3,t and x4,t. Let γ3 and γ4 be the corresponding parameters in the conditional variance

equation:

ht = α0 + α1η
∗2
t−1 + γ1ht−1 + γ3x3,t + γ4x4,t (18)

The t-distribution with unknown and fixed degrees of freedom ν is clearly preferable, in-

creasing the approximate loglikelihood by more than 100 compared with Gaussian errors. The

resulting estimated parameters and the corresponding standard errors are given in Table 8.

As can be seen in the table, GARCH behaviour is not clear for the APX and EEX series

of residuals since the estimated γ1 parameter is not statistically significant. However, the

Powernext results provide clear evidence of GARCH behaviour. For the Nord Pool data we

find significant estimates for α1 and γ1, close to the IGARCH case for which α1 + γ1 = 1.

This indicates high persistence in the conditional variance, a typical finding in many financial

applications. Moreover, the resulting scaled residuals ε̂t do not show significant serial correlation

in the squares.

The two-step estimation method is not optimal. Simultaneous estimation of the seasonal

periodic RegARFIMA Model 4 with GARCH-t-errors, combining equations (17) and (18), is

not easy using existing software. However it is possible to estimate (18) with a periodic α0,j.

This does not significantly improve the fit, an indication that the estimates for σj presented in

Table 7, are satisfactory although they do not take the GARCH-t process into account.

7 Summary and Conclusions

In this paper we have analysed the dynamic behaviour of daily spot prices in deregulated

European electricity markets. We find that the day-of-the-week periodic structure present in

these data should not be neglected, otherwise spurious volatility clustering could be detected.

In particular, in comparison with existing models, the correlation in the squared residuals is

reduced by allowing for periodic heteroskedasticity and by considering a periodic model for the

conditional mean. We present an empirical analysis for four European markets, the APX in

The Netherlands, the EEX in Germany, the Powernext in France and the Nord Pool in Norway.

After estimating a range of models for these markets, we propose to use periodic heteroskedastic

seasonal RegARIMA models to explain the dynamics in the conditional mean of log prices for

APX, EEX and Powernext.

For the series of Nord Pool, additional seasonal periodic long memory features appear to

be present. We fit a periodic long memory model that is able to capture the dynamics in the

conditional mean. The daily returns on Wednesdays, Thursdays and Fridays seem to be white

noise, whereas the returns on Mondays and Saturdays display long memory behaviour. This

model is stationary from year to year. The periodic long memory model is not able to capture
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the conditional variance dynamics since the squared residuals are still correlated. We fit a

GARCH-t model to capture the volatility clustering assuming a Student t-distribution for the

error term. This removes serial correlation in the scaled residuals.

The resulting models allow for dynamic point forecasting and stochastic simulation. Future

research should entail simultaneous estimation of the periodic parameters for the models for

the conditional mean and variance as well as joint modelling of these related markets. More-

over, outliers could be captured by examining other distributions for the shocks affecting daily

electricity prices. This would also allow the construction of realistic confidence intervals for

forecasts. These interval forecasts can become more realistic as more observations for these

young markets become available to estimate and select models.
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Figure 1: Daily spot prices for four European electricity markets
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NOTES: APX: January, 1, 2001 - June, 8, 2003, EEX: October, 1, 2001 - June, 8, 2003,

Powernext: December, 3, 2001 - June, 8, 2003, price in Euros/MWh,

Nord Pool: January, 4, 1993 - November, 14, 1999, price in NOK/MWh .
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Figure 2: Log daily spot prices for four European electricity markets
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Table 1: Descriptive statistics of daily log-prices for new markets

APX (The Netherlands)

Day All Mon Tue Wed Thu Fri Sat Sun

T 889 127 127 127 127 127 127 127

Mean 3.30 3.44 3.47 3.45 3.44 3.37 3.12 2.82

S.D. 0.48 0.55 0.53 0.45 0.41 0.35 0.29 0.33

Skewness 0.73 -0.06 1.51 1.51 0.59 1.43 1.16 -1.41

Kurtosis 7.31 8.21 7.17 7.73 5.44 8.17 5.47 11.37

r(1) 0.53 0.40 0.72 0.83 0.71 0.69 0.30 0.46

r(2) 0.28 0.34 0.25 0.74 0.63 0.64 0.33 0.22

r(7) 0.43 0.23 0.25 0.26 0.34 0.30 0.42 0.21

r(14) 0.30 0.09 0.03 0.05 0.14 0.06 0.34 0.13

EEX (Germany)

Day All Mon Tue Wed Thu Fri Sat Sun

T 616 88 88 88 88 88 88 88

Mean 3.12 3.24 3.31 3.27 3.25 3.20 2.95 2.65

S.D. 0.42 0.40 0.47 0.38 0.42 0.29 0.24 0.26

Skewness 0.03 1.60 0.48 -1.43 -2.17 0.30 0.29 0.04

Kurtosis 7.72 13.80 12.24 9.36 11.94 2.86 3.21 2.67

r(1) 0.55 0.63 0.60 0.74 0.67 0.71 0.70 0.83

r(2) 0.28 0.52 0.34 0.54 0.58 0.73 0.58 0.64

r(7) 0.47 0.32 0.10 0.35 0.15 0.38 0.40 0.62

r(14) 0.29 0.14 -0.30 -0.01 0.03 0.09 0.33 0.47

Powernext (France)

Day All Mon Tue Wed Thu Fri Sat Sun

T 553 79 79 79 79 79 79 79

Mean 3.06 3.14 3.23 3.23 3.20 3.16 2.90 2.60

S.D. 0.41 0.35 0.36 0.40 0.37 0.30 0.28 0.36

Skewness -0.03 0.37 1.72 -0.32 -0.54 0.46 -0.14 -0.14

Kurtosis 5.75 7.66 12.39 10.76 5.04 4.58 4.59 2.18

r(1) 0.61 0.63 0.67 0.83 0.69 0.82 0.79 0.62

r(2) 0.35 0.72 0.47 0.70 0.63 0.64 0.66 0.62

r(7) 0.48 0.30 0.14 0.26 0.26 0.32 0.42 0.40

r(14) 0.30 0.13 -0.09 -0.05 -0.01 -0.09 0.14 0.21

NOTES: T: Sample size.

r(τ): Periodic autocorrelation of yt for a lag of τ days
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Table 2: Descriptive statistics of daily log-prices Nord Pool

Day All Mon Tue Wed Thu Fri Sat Sun

T 2506 358 358 358 358 358 358 358

Mean 4.84 4.86 4.88 4.87 4.87 4.85 4.78 4.76

S.D. 0.53 0.52 0.50 0.50 0.51 0.52 0.57 0.58

Skewness -0.90 -0.84 -0.78 -0.80 -0.82 -0.84 -0.99 -0.98

Kurtosis 4.41 4.35 4.33 4.21 4.31 4.24 4.47 4.23

r(1) 0.98 0.98 0.98 0.99 0.99 0.99 0.98 0.99

r(2) 0.96 0.98 0.97 0.97 0.98 0.98 0.97 0.98

r(7) 0.93 0.93 0.94 0.94 0.93 0.93 0.93 0.92

r(14) 0.87 0.86 0.88 0.88 0.88 0.88 0.87 0.86

First difference of log-prices

Day All Mon Tue Wed Thu Fri Sat Sun

T 2506 358 358 358 358 358 358 358

Mean 0.00 0.10 0.02 -0.00 -0.01 -0.02 -0.06 -0.02

S.D. 0.10 0.12 0.10 0.07 0.07 0.06 0.11 0.06

Skewness 0.43 1.75 2.36 -1.97 -0.25 -1.12 -2.64 -0.97

Kurtosis 14.44 7.14 18.90 26.66 14.17 8.60 12.69 8.01

r(1) 0.06 -0.27 0.07 0.09 0.04 -0.01 0.26 0.16

r(2) -0.19 -0.58 0.09 0.03 -0.01 0.05 0.11 0.13

r(7) 0.41 0.39 0.02 -0.13 -0.01 0.04 0.57 0.19

r(14) 0.38 0.38 -0.01 0.05 -0.01 0.06 0.38 0.05

NOTES: T: Sample size.

r(τ): Periodic autocorrelation of yt for a lag of τ days
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Table 3: Estimation results for daily log-prices APX (The Netherlands)

Model Day β̂1 β̂3 β̂4 φ̂1 φ̂2 10σ̂2

1 3.46∗∗(0.03) −0.15∗∗(0.04) 0.02(0.04) 0.54∗∗(0.03) 11.76

Mon 3.47∗∗(0.05) 17.98

Tue 3.48∗∗(0.05) 13.05

Wed 3.46∗∗(0.04) 6.03

2 Thu 3.45∗∗(0.04) −0.11∗(0.04) 0.06(0.04) 0.53∗∗(0.03) 0.10∗∗(0.03) 7.68

Fri 3.39∗∗(0.04) 6.43

Sat 3.12∗∗(0.04) 7.50

Sun 2.83∗∗(0.04) 8.42

Model Day β̂∗

1 β̂∗

3 β̂∗

4 φ̂1 φ̂2 10σ̂2

Mon 0.57(0.46) −0.10(0.05) −0.18∗∗(0.06) 0.60∗∗(0.13) 0.39∗∗(0.14) 16.80

Tue 0.91∗∗(0.29) −0.05(0.04) −0.06(0.05) 0.87∗∗(0.07) −0.15(0.11) 11.10

Wed 0.68∗∗(0.15) 0.04(0.03) 0.05(0.03) 0.54∗∗(0.06) 0.26∗∗(0.05) 5.60

3 Thu 1.39∗∗(0.19) 0.13∗∗(0.04) 0.05(0.03) 0.53∗∗(0.09) 0.07(0.08) 7.50

Fri 1.08∗∗(0.20) 0.02(0.03) −0.03(0.03) 0.45∗∗(0.08) 0.22∗∗(0.07) 6.10

Sat 2.29∗∗(0.24) −0.08∗(0.04) 0.11∗(0.03) 0.18(0.09) 0.07(0.08) 6.90

Sun 1.32∗∗(0.33) −0.06(0.04) 0.12∗∗(0.04) 0.37∗∗(0.10) 0.10(0.07) 8.10

NOTES: In Model 1, see (14): β̂7 = −0.45∗∗(0.03) and in Model 2, see (15): Φ̂1 = 0.09∗(0.03).

Model 3 is defined in (16). ∗ and ∗∗ indicate significance at 5% and 1% respectively.

Table 4: Estimation results for daily log-prices EEX (Germany)

Model Day β̂1 β̂3 β̂4 φ̂1 φ̂2 10σ̂2

1 3.24∗∗(0.03) 0.10∗(0.04) 0.02(0.04) 0.58∗∗(0.03) 8.71

Mon 3.22∗∗(0.04) 10.52

Tue 3.30∗∗(0.06) 15.21

Wed 3.26∗∗(0.04) 6.32

2 Thu 3.23∗∗(0.05) 0.15∗∗(0.04) −0.01(0.04) 0.48∗∗(0.04) 0.16∗∗(0.03) 9.52

Fri 3.19∗∗(0.04) 3.56

Sat 2.93∗∗(0.03) 2.64

Sun 2.63∗∗(0.03) 4.56

Model Day β̂∗

1 β̂∗

3 β̂∗

4 φ̂1 φ̂2 10σ̂2

Mon 0.56(0.46) −0.06(0.06) 0.05∗∗(0.05) 0.95∗∗(0.23) 0.06(0.25) 10.17

Tue 1.10∗(0.45) −0.04(0.06) 0.01(0.06) 0.74∗∗(0.13) −0.07(0.21) 14.63

Wed 1.04∗∗(0.23) −0.02(0.04) −0.01(0.04) 0.51∗∗(0.07) 0.17(0.08) 6.51

3 Thu 0.74∗∗(0.27) 0.11∗(0.05) 0.04(0.04) 0.61∗∗(0.12) 0.15(0.10) 9.16

Fri 1.21∗∗(0.17) 0.07∗(0.03) 0.01(0.03) 0.23∗(0.06) 0.38∗∗(0.07) 3.07

Sat 1.24∗∗(0.19) 0.12∗∗(0.02) −0.01(0.02) 0.44∗∗(0.08) 0.09(0.05) 2.46

Sun −0.03(0.21) 0.02(0.03) 0.01(0.02) 0.80∗∗(0.10) 0.10(0.08) 2.17

NOTES: In Model 1, see (14): β̂7 = −0.43∗∗(0.03) and in Model 2, see (15): Φ̂1 = 0.10∗(0.04).

Model 3 is defined in (16). ∗ and ∗∗ indicate significance at 5% and 1% respectively.

Standard errors in parenthesis.
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Table 5: Estimation results for daily log-prices Powernext (France)

Model Day β̂1 β̂3 β̂4 φ̂1 φ̂2 10σ̂2

1 3.17∗∗(0.03) 0.05(0.05) 0.13∗∗(0.04) 0.64∗∗(0.03) 7.08

Mon 3.11∗∗(0.05) 6.64

Tue 3.20∗∗(0.05) 6.99

Wed 3.20∗∗(0.05) 5.18

2 Thu 3.18∗∗(0.05) 0.09(0.06) 0.07(0.05) 0.59∗∗(0.04) 0.15∗∗(0.04) 7.06

Fri 3.13∗∗(0.04) 2.83

Sat 2.87∗∗(0.04) 6.43

Sun 2.58∗∗(0.05) 4.70

Model Day β̂∗

1 β̂∗

3 β̂∗

4 φ̂1 φ̂2 10σ̂2

Mon 0.52(0.28) −0.10∗(0.04) 0.08∗(0.04) 0.23∗(0.10) 0.71∗∗(0.13) 5.48

Tue 1.04∗∗(0.29) 0.01(0.05) 0.01(0.04) 0.63∗∗(0.11) 0.08(0.11) 7.27

Wed −0.17(0.24) −0.04(0.03) −0.06(0.03) 0.75∗∗(0.08) 0.32∗∗(0.09) 4.30

3 Thu 1.14∗∗(0.27) 0.01(0.04) 0.10∗(0.04) 0.53∗∗(0.13) 0.11(0.15) 6.89

Fri 0.98∗∗(0.18) 0.04(0.03) 0.05(0.03) 0.55∗∗(0.07) 0.13(0.06) 2.95

Sat 0.59∗∗(0.20) 0.07∗∗(0.03) −0.01(0.03) 0.67∗∗(0.11) 0.06(0.08) 2.73

Sun −0.02(0.32) 0.05(0.04) 0.06(0.04) 0.76∗∗(0.17) 0.12(0.16) 6.39

NOTES: In Model 1, see (14): β̂7 = −0.40∗∗(0.02) and in Model 2, see (15): Φ̂1 = 0.05(0.04).

Model 3 is defined in (16). ∗ and ∗∗ indicate significance at 5% and 1% respectively.

Standard errors in parenthesis.
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Figure 3: Estimated parameters of the periodic Model 3 for the APX

0 5

0

1

2

3
Constant 

0 5

−0.2

0.0

0.2
CosYear 

0 5

−0.2

−0.1

0.0

0.1
SinYear 

0 5

0.0

0.5

1.0 ph1 

0 5

0.0

0.5
ph2 

NOTES: See equation (16). 95% confidence intervals for β1,j , β3,j , β4,j , φ1,j ,

φ2,j respectively. j = 1 : Monday, . . ., j = 7: Sunday.
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Figure 4: Estimated parameters of the periodic Model 3 for the EEX
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NOTES: See equation (16). 95% confidence intervals for β1,j , β3,j , β4,j , φ1,j ,

φ2,j respectively. j = 1 : Monday, . . ., j = 7: Sunday.

30



Figure 5: Estimated parameters of the periodic Model 3 for Powernext
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NOTES: See equation (16). 95% confidence intervals for β1,j , β3,j , β4,j , φ1,j ,

φ2,j respectively. j = 1 : Monday, . . ., j = 7: Sunday.
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Figure 6: Residuals of the three models for the APX data
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Figure 7: Correlations and Periodic correlations of the residuals of Model 2 for the APX
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Figure 8: Residuals of the three models for the EEX data
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Figure 9: Residuals of the three models for the Powernext data
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Table 6: Goodness of fit of different models

APX EEX Powernext Nord Pool

T 889 616 553 2506

Model k Llik AIC Llik AIC Llik AIC Llik AIC

1 6 -308.06 0.7066 -120.45 0.4105 -50.76 0.2053 2533.4 -2.0171

1s 12 -274.97 0.6456 -86.35 0.3193 -19.24 0.1130 2690.5 -2.1376

2ns 13 -212.80 0.5080 -53.15 0.2148 26.29 -0.0481 2658.7 -2.1115

2 19 -181.47 0.4510 11.58 0.0241 43.46 -0.0885 2779.6 -2.2032

2b 25 -186.92 0.4767 -45.02 0.2273 38.92 -0.0503 2714.6 -2.1465

2bs 31 -157.32 0.4237 18.61 0.0402 56.42 -0.0919 2824.6 -2.2296

3 42 -135.06 0.3983 39.97 0.0066 71.60 -0.1071 2896.6 -2.2779

4d 42 2892.01 -2.27455

4 49 2944.5 -2.3108

NOTES: T is the number of observations. The effective number of observations slightly varies from model to

model depending on the (periodic) AR order of the model. Llik: the loglikelihood used for estimation: see

(10). AIC: Akaike Information criterion defined as = (1/T ) · (−2·Llik +2 · k), with k the number of parameters.

Models 1, 2 and 3 (reported in bold) are defined in section 5.1, see (14), (15), see (16). Model 4 (also reported

in bold) is defined in section 5.2, see (17). The other models are defined as follows:

Model 1s is Model 1 allowing for periodic variances: σ2
j , j = 1, . . . , s,

Model 2ns is Model 2 restricting the variance to be constant: σ2
j = σ2,

Model 2b is Model 2ns allowing for periodic coefficients for the yearly cycle: β3,j and β4,j , j = 1, . . . , s,

Model 2bs is Model 2b allowing for periodic variances: σ2
j , j = 1, . . . , s,

Model 4d is Model 4 with “unit roots“ imposed in the PAR part: φj(L) = (1 − L)(1 − φ∗

1,jL), j = 1, . . . , s.
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Table 7: Estimation results for daily log-prices Nord Pool (Norway)

Model Day β̂1 β̂3 β̂4 φ̂1 φ̂2 D̂ 10σ̂2

1 4.87∗∗(0.11) 0.01(0.01) 0.32∗∗(0.10) 0.98∗∗(0.01) 0.08

Mon 4.88∗∗(0.13) 0.12

Tue 4.90∗∗(0.13) 0.09

Wed 4.89∗∗(0.13) 0.06

2 Thu 4.89∗∗(0.13) 0.17(0.13) 0.52∗∗(0.12) 1.05∗∗(0.02) −0.06∗∗(0.02) 0.05

Fri 4.87∗∗(0.13) 0.04

Sat 4.80∗∗(0.13) 0.10

Sun 4.78∗∗(0.13) 0.03

Model Day β̂∗

1 β̂∗

3 β̂∗

4 φ̂1 φ̂2 D̂ 10σ̂2

Mon 0.54∗∗(0.05) −0.01(0.01) −0.03∗∗(0.01) 0.56∗∗(0.08) 0.34∗∗(0.08) 0.09

Tue 0.29∗∗(0.05) 0.01(0.01) 0.01(0.01) 0.92∗∗(0.05) 0.03(0.04) 0.09

Wed 0.06(0.04) −0.01∗(0.01) 0.01(0.01) 1.05∗∗(0.04) −0.06(0.04) 0.05

3 Thu 0.01(0.04) −0.01(0.01) 0.01(0.01) 1.02∗∗(0.05) −0.03(0.05) 0.04

Fri −0.06(0.04) −0.01(0.01) 0.01(0.01) 0.98∗∗(0.05) 0.03(0.05) 0.04

Sat −0.41∗∗(0.05) −0.01(0.01) 0.02∗(0.01) 1.36∗∗(0.08) −0.28∗∗(0.08) 0.09

Sun 0.08∗(0.03) −0.01∗(0.01) 0.02∗∗(0.01) 1.09∗∗(0.03) −0.11∗∗(0.03) 0.03

Mon 0.71∗∗(0.09) 0.01(0.01) −0.02(0.01) 0.65∗∗(0.08) 0.22∗(0.09) 0.22∗∗(0.05) 0.09

Tue 0.29∗∗(0.07) 0.01(0.01) 0.01(0.01) 0.92∗∗(0.05) 0.03(0.05) 0.00(0.06) 0.09

Wed 0.03(0.03) −0.01∗∗(0.01) 0.01(0.01) 1.04∗∗(0.04) −0.05(0.04) −0.10∗(0.04) 0.05

4 Thu 0.01(0.04) −0.01(0.01) 0.01(0.01) 1.02∗∗(0.05) −0.02(0.05) −0.02(0.04) 0.04

Fri −0.06(0.04) −0.01(0.01) 0.01(0.01) 0.98∗∗(0.05) 0.03(0.05) −0.01(0.04) 0.04

Sat −0.25∗(0.11) −0.01(0.01) 0.03∗(0.02) 1.25∗∗(0.07) −0.21∗∗(0.07) 0.39∗∗(0.06) 0.08

Sun 0.08(0.04) −0.01(0.01) 0.02∗∗(0.01) 1.09∗∗(0.03) −0.11∗∗(0.04) 0.07(0.05) 0.03

NOTES: In Model 1: β̂7 = −0.08∗∗(0.01) and in Model 2: Φ̂1 = 0.17∗∗(0.02).
∗ and ∗∗ indicate significance at 5% and 1% nominal level respectively.

Standard errors in parenthesis.
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Figure 10: Estimated parameters of the seasonal periodic long memory Model 4 for the Nord

Pool data

0 5

0.00

0.25

0.50
d_j 

0 5

0.0

0.5

1.0 Constant_Nordpool 

0 5

0.00

0.05
CosYear 

0 5

−0.025

0.000

0.025
SinYear 

0 5

0.5

1.0

1.5
ph1 

0 5

−0.25

0.00

0.25

0.50
ph2 

NOTES: See equation (17). 95% confidence intervals for Dj , β1,j , β3,j , β4,j ,

φ1,j , φ2,j respectively. j = 1 : Monday, . . ., j = 7: Sunday.

Table 8: GARCH-t models applied to η̂t/σj

Market Model α̂0 α̂1 γ̂1 γ̂3 γ̂4 ν̂

APX 3 0.44∗∗(0.16) 0.25∗∗(0.07) 0.32(0.19) −0.13∗(0.05) −0.25∗(0.10) 5.86∗∗(1.09)

EEX 3 0.43∗∗(0.10) 0.36∗∗(0.12) 0.23(0.12) 0.02(0.06) 0.08(0.06) 4.25∗∗(0.73)

Powernext 3 0.06∗(0.03) 0.13∗∗(0.04) 0.82∗∗(0.05) −0.01(0.01) −0.01(0.01) 4.80∗∗(0.97)

Nord Pool 4 0.04∗∗(0.01) 0.24∗∗(0.03) 0.74∗∗(0.03) −0.01∗(0.01) 0.02∗∗(0.01) 5.06∗∗(0.51)

NOTES: Estimates for equation (18) applied to scaled residuals of Model 3 and 4; see (16)

and (17) respectively. Standard errors in parenthesis.
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Figure 11: Scaled Residuals of the fitted models for the Nord Pool data
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