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any local length scale. In contrast, this approach has been

applied more recently to static and dynamic permeability

�see Berdichevsky and Cai �13�, Thiery and Boutin �14� for

fibrous media, Boutin �15�, Boutin and Geindreau �16� for

granular media�. The reason lies in the fact that the problems

belong to another class characterized by a local conservation

equation of the form,

�y�variable� + Forcing term = Inertial term. �2�

Hence macroscopic description is of a different nature than

the local description, and implies parameters intrinsically

linked to a local length scale. Note that the trapping constant

problem also belongs to this category. In the same spirit, the

“cell models” has been used for assessing the permeability

and the thermal permeability by Tarnow �17� for fibrous me-

dia and by Umnova et al. �18� for assemblies of spheres.

These elements underline the complementarity of the ho-

mogenization of periodic media and the self-consistent ap-

proach. Further, it has been shown �16� that both leads to

very close results for dilute array of spheres. In this context,

the aim of this paper is twofold:

�i� First, to justify the link between the SCM and HPM

approaches. This is obtained by the following systematic ar-

gument independent of the problem in consideration: the pe-

riodicity induces conditions of zero flux and energy through

the whole surface of the REV that ensure the energy consis-

tency of the HPM approach. As these latter conditions apply

to nonperiodic fields, they can be used in the SCM approach,

and, in turn, the consistency requirement is necessarily sat-

isfied. Inversely, this observation leads to infer that the SCM

solution may provide an approximation of the local HPM

problem, for specific periodic materials such that the micro-

structure is “close” �in a sense defined hereafter� to the SCM

pattern.

�ii� Second, to identify classes of periodic materials for

which the SCM estimates are relevant. Two types of periodic

microstructure “close” to the SCM pattern are investigated.

The classical scheme consists in periodizing the bicomposite

pattern. This leads to periodic packings of spheres that over-

lap at low porosities. The original scheme proposed here, is

based on the idea that the SCM solution obtained for a

spherical bicomposite pattern should be a good geometrical

approximation for fields in a polyhedron bicomposite pat-

tern. This leads to consider periodic packings of polyhedrons

that never overlap whatever the porosity is �see Sec. II D�.
Numerical HPM results compared to analytical SCM expres-

sions demonstrate the excellent agreement for polyhedrons

packings on the whole range of porosity, while the agree-

ment for the classical spheres packings is limited to the di-

lute range �say porosity larger than 0.6, i.e., nonoverlapping

spheres�. Finally, the comparisons between spheres and poly-

hedrons periodic packings enable to identify the parameters

most and less sensitive to the media morphology.

The paper is organized as follows. In Sec. II, periodic and

self-consistent methods are briefly recalled, the manner to

combine them is exposed and the morphology of the studied

media is presented. Sections III–V are, respectively, devoted

to diffusion, harmonic flow permeability and harmonic ther-

mal permeability. In these three cases the theoretical results

of homogenization and the self-consistent estimates are first

recalled. Then calculations performed on regular assemblies

of spheres and of polyhedrons, are presented, discussed, and

compared to SCM analytical estimates.

II. HOMOGENIZATION METHODS AND STUDIED

POROUS MEDIA

The macroscopic representation of heterogeneous media

makes sense only if there is a scale separation. This implies

that �19�, �i� the material is regular enough to be described

by a representative elementary volume �REV� of character-

istic size l, and �ii� the physical variables driving the phe-

nomenon varies according to a size L much larger than l.

A. Asymptotic two-scale homogenization

In the asymptotic two-scale homogenization method the

above requirements are mathematically introduced. First, the

existence of a representative elementary volume is expressed

by assuming a periodic material made of identical cells � of

characteristic size l �Fig. 1�. Second, to describe the varia-

tions at the well distinct lengths L and l, two spatial variables

are introduced, x for the macroscopic variations, y for the

microscopic variations, x and y being related by the scale

ratio:

� = l/L � 1, y = �−1x .

The small parameter � suggests to look for physical un-

knowns q in the form of asymptotic expansions in powers of

�. As the material periodicity and the scale separation induce

the same periodicity for the physical quantities, all the terms

are �-periodic according to the variable y,

q�x,y� = �
0

�

�iqi�x,y� with qi�x,y�� − periodic in y .

�3�

The method consists in introducing the expansions in the

two-variable rescaled equations which govern the physics at

the local scale �i.e., equations where the dimensionless num-

bers are quantified in powers of �, and where the common

FIG. 1. �a� Macroscopic porous medium, �b� Periodic cell � of

porous media. �f and �s are respectively the volume of fluid and

solid. � is the fluid-solid interface inside �. Sf and Ss are the fluid

and the solid boundaries on ��.



spatial derivative is transformed into �−1
�y +�x�, then identi-

fying the terms of the same power in �, and finally solving

the boundary value problems obtained in series. The leading

order behavior and effective coefficients are derived from the

first nontrivial balance equation. The energy consistency be-

tween micro and macro descriptions is established through

the method.

B. Self-consistent approach

The self-consistent approach enables to conjecture the ef-

fective coefficients of heterogeneous media �20�. The method

consists in assuming the nature of the macroscopic behavior,

then considering a generic pattern representative of the mor-

phology undergoing the local physics of the phenomenon,

and finally solving the problem in the pattern submitted to

homogeneous macroscopic forcing term. By expressing the

energy equivalence between the generic pattern and the

equivalent medium, one deduces the macroscopic coeffi-

cients.

C. Combining periodic and self-consistent approach

The HPM enables, �i� to derive rigorously the macro-

scopic behavior from the equations at the pore scale and �ii�
to give the theoretical expression of the macroscopic coeffi-

cients whatever the periodic microstructure is. However the

quantification of these coefficients needs numerical compu-

tations. Thus identifying relationships between coefficients

and microstructure requires numerous simulations. Comple-

mentary to HPM, the interest of SCM is to propose plausible

values. They are based on analytical solutions in simplified

configurations assumed to capture the salient morphologic

features of the REV. If the basic analytical solution is exact,

the application of the result to real media is generally con-

jectured �21�, since, conversely to HPM, only a generic pat-

tern and not the actual microstructure is treated.

Nevertheless it is possible to exploit the principles identi-

fied by HPM in the framework of the SCM. The HPM shows

that the effective parameters result form the mean of local

fields �or flux� driven from the physics and REV geometry.

Since the averaging acts as a numerical filter, the effective

parameter contains less information than the local field. This

leads to infer that fields, solution of a local “ersatz” problem

defined on generic patterns conform to the basic morphologi-

cal information �proportions, connexity, size�, respecting the

same physics and close boundary conditions �in the sense

detailed below�, would give an approximation of exact field

and, after averaging, an acceptable estimates of the effective

parameter.

The main difficulty in defining an appropriate local prob-

lem, “ersatz” of the rigorous problem derived by the HPM,

lies in the formulation of “close” boundary conditions. In

other words, the periodicity conditions have to be substituted

by other conditions which respect the upscaling principles

identified by the HPM. To answer this question, recall that

the periodicity assumption is the simplest mathematical way

to traduce the physical notion of REV. Recall also that, be-

cause of the necessary scale separation, the periodicity of the

geometry is reported to the physical variables. As a conse-

quence, the whole flux of variables and energy through the

boundary of the period are null. This plays an essential role

in the HPM up-scaling, permitting to establish the macrode-

scription �from compatibility equations� and the energy con-

sistency. These arguments give rise to the idea that, to trans-

pose the essential consequence of the periodicity into the

local “ersatz” problem, it is sufficient to state that the whole

flux of variables and energy through boundary vanish. This

approach is interesting when the “ersatz” problem can be

solved analytically which induce to consider bicomposite

spherical pattern.

The precise developments of this procedure relating HPM

and SCM, are detailed in the next sections for the different

transport parameters �assuming in addition the macroscopic

isotropy�. It enables to recover the self-consistent estimates

as established by Hashin �20� for the diffusion, by Ber-

dichevsky and Cai �13� and Boutin and Geindreau �16� for

the permeability.

D. Studied families of porous media

In the following, the periodic homogenization is applied

to porous media made of simple cubic, body-centered cubic,

and faced-centered cubic periodic arrays of solid inclusions.

According to the nature of inclusions two families of media

are considered �Fig. 2�.
The first family consists in arrays of nonoverlapping and

overlapping solid spheres of the same radius Ri �Fig. 2�.
These periodic lattices of spheres, labeled �SC�, �BCC�, and

�FCC�, are ranging from dilute systems with isolated spheres

to highly concentrated consolidated media. The transition be-

tween nonoverlapping and overlapping spheres occurs at po-

rosity of 0.47, 0.32, and 0.26 for the �SC�, �BCC�, and �FCC�
microstructure, respectively.

The second family consists in periodic arrays of solid

polyhedrons. These arrays, labeled �CC�, �TO�, and �RD�, are

built observing that each kind of packing determine a spe-

cific polyhedral volume whose periodic reproduction accord-

ing to the corresponding type of array realize a full paving of

the space. Precisely, the three arrays, �CC�, �TO�, and �RD�,
based on a cubic volume a3, are, respectively, associated to a

cube �six identical square faces, volume a3�, a truncated oc-

tahedron �six square faces and eight hexagonal faces, volume

a3
/2� and a rhombic dodecahedron �12 identical diamond

square faces, volume a3
/4� �Fig. 2�. Hence, the solid poly-

hedral inclusions are homothetic to the polyhedral volume

associated to the array. These lattices of polyhedrons range

from dilute systems to highly concentrated media, but, con-

versely to spheres packing, the inclusions are isolated in the

fluid phase whatever the solid concentration is. Solving

boundary value problems arising from the homogenization

process provide the effective parameters of such microstruc-

tures.

As for the SCM estimates, the self-consistent scheme

based on a bicomposite spherical pattern is considered �Fig.

3�. The composite sphere � of radius R, is constituted by an

inner solid sphere �s of radius Rs=	R surrounded by a

spherical shell �f �Rs
r
R� filled by the fluid. The poros-

ity is �=�f /�=1−	3. Analytical results will be compared



to the with finite element numerical results obtained on

spheres and polyhedrons packings presenting the same po-

rosity and volume of inclusion as the bicomposite spherical

pattern.

The three planar symmetry of the arrays and of the spheri-

cal pattern imposes the isotropy of the second rank tensors of

diffusion or permeability. Therefore, the comparison of the

results simply concerns scalar effective coefficients.

III. EFFECTIVE DIFFUSION

A. Homogenization of diffusion in porous media

The Fickean diffusion of a solute at concentration c in a

saturated porous media as described in Fig. 1, is governed by

the flux balance in the pores �f and the zero flux at the

fluid-solid interface �,

� · �D � c� = 0 in �f, �4a�

D � c · n = 0 on � , �4b�

where D is the molecular diffusion coefficient and n is the

outward normal to �. The homogenization of diffusion in

porous media has been already treated in the past �7�. Here,

we only recall the main results necessary for the sequel. The

first problem �4a−�−2, 4b−�−1� associated to the periodicity

condition yields to a constant concentration in the pores,

c0�x,y� = c0�x� .

At the next order, the �-periodic concentration c1 is derived

from equations �4a−�−1, 4b−�0�,

�y · �D��yc
1 + �xc

0�� = 0 in �f, �5a�

D��yc
1 + �xc

0� · n = 0 on � . �5b�

This set defines the local problem of the form of Eq. �1�
where �xc

0 acts as a forcing term. The solution reads �7�

c1�x,y� = ��y� · �xc
0 + c̄1�x�; � = �iei, �6�

where �i are the three concentrations distributions of zero

mean value corresponding to unit concentration gradient in

the three directions, �xc
0=ei.

Macroscopic description. The macroscopic description

arises from the compatibility of the balance equation at the

next order: integrating �4a−�0� over �f, then using the zero

flux condition on � �4b−�� and the �-periodicity, yields:

�x · ��D��yc
1 + �xc

0�	� = 0 or �x · �Deff · �xc
0� = 0,

where here and in the following: �−	 denotes the average

over the representative volume 
�
−1��f
−dv. The effective

diffusion tensor is given by

Deff · �xc
0 = �D��y� · �xc

0 + �xc
0�	 , �7�

thus

Deff = �D��y� + I�	 , �8�

where I is the unit tensor.

Energy consistency. The consistency between the micro-

scopic and macroscopic descriptions is derived �7� by taking

the product of the flux balance �4a−�−1� by the field c1. After

integrating over the fluid domain �f, then, using the diver-

gence theorem, one obtains

��y · �D��yc
1 + �xc

0��c1	 = − �D��yc
1 + �xc

0� · �yc
1	

+ �
��f

D��yc
1 + �xc

0� · nc1ds

= 0.

(TO)(BCC)

(RD)(FCC)

(CC)(SC)

FIG. 2. �Color online� Periodic lattices of spheres: �SC� simple

cubic, �BCC� body-centered cubic, �FCC� face centered cubic, and

periodic lattices of polyhedrons: �CC� cubic-cubic, �TO� truncated

octahedron, �RD� rhombic dodecahedron. The porosity is 0.25.

FIG. 3. Bicomposite sphere � of radius R constituted by an

inner sphere �s surrounded by a spherical shell �f filled of fluid.



The boundary ��f of the pores consists into the fluid-solid

interface � and the fluid boundary Sf=��f−� of �� �Fig. 1�.
Thus, the surface integral vanishes because of the zero flux

condition on � and the periodicity on Sf. Consequently, we

get

�D��yc
1 + �xc

0� · ��yc
1 + �xc

0�	

= �D��yc
1 + �xc

0�	 · �xc
0 = �xc

0 · Deff · �xc
0. �9�

This establishes the energy consistency between the micro-

scopic and macroscopic descriptions: the energy in the peri-

odic cell is identical to the energy in the same volume of the

macroscopic model. Note that this result requires the period-

icity to enforce that

�
��f−�

D��yc
1 + �xc

0� · nc1ds = 0. �10�

Equation �10� insures that the energy consistency is satisfied

and will be used hereafter in the self-consistent approach.

B. Consistent estimate of effective diffusion

1. Setting of the local diffusion problem

The bicomposite sphere � �Fig. 3� is submitted to an

imposed macroscopic gradient of concentration G=Gez. We

use spherical coordinates �r, �, 
�, with the origin at the

center of the spheres and the �=0 axis given by ez. The

actual concentration in �f is decomposed into the concentra-

tion related to the macroscopic gradient, i.e., r ·G and a local

concentration denoted c̃. The balance equation and the inner

boundary condition over � are those derived by homogeni-

zation. The missed condition of periodicity is replaced by the

energy consistency condition �10�,

� · �D��c̃ + G�� = D � c̃ = 0 in �f�Rs � r � R� , �11a�

D��c̃ + G� · n = 0 on ��r = Rs� , �11b�

�
��f−�

�D��c̃ + G� · n�c̃ds = 0 on � ��r = R� . �11c�

The consistent estimate of the isotropic effective diffusion

denoted Deff= D̃I is deduced from the mean flux accordingly

to Eq. �7�,

D̃G =
1

�
�

�f

D��c̃ + G�dv .

2. Estimate of the effective diffusion

The resolution of the set Eqs. �11a�–�11c� begin by deter-

mining the form of the local field of concentration. To ac-

count for isotropy of the space and considering the spherical

symmetry of the system, c̃ must be an isotropic function of

both the forcing gradient G and the position vector r. Hence,

using the tensor theory �22�, c̃ necessarily takes the form,

c̃ = F�r · r,G · G,r · G� .

Taking into account of the linear dependence on G= 
G
, c̃

becomes

c̃ = r · Gf�r� = G cos���f�r� ,

whence

�c̃ = G
 f� cos���er −
f

r
sin���e�� .

This result reported in Eq. �11a� provides the differential

equation ��f�r��=0, so that f�r�=a
r

R
+b

R2

r2 where a and b are

two constants obtained by expressing the zero flux on � Eq.

�11b� and the consistency condition �11c�,

− �f��	R� + 1�cos��� = 0, �12a�

�4�/3��f��R� + 1�f�R� = 0. �12b�

The consistency condition imposes that f�R��f��R�+1�=0.

The solution f��R�+1=0 means that �c̃+Gez=0 in �f, i.e., a

zero total flux, hence a zero effective diffusion which is not

physically acceptable. Thus, the consistency condition is re-

duced to f�R�=0, i.e., c̃�R�=0, and the set Eqs. �12a� and

�12b� is written: a−2b	−3=−R and a+b=0. Finally, we get

f�r� = a� r

R
−

R2

r2 � with a = −
R

1 + 2	−3
.

Consequently,

1

�
�

�f

�c̃dv =
1

�
�

��f

c̃nds

= −
2��	R�2

�
Gf�	R��

0

�

cos���sin���d�er

=
	3 − 1

1 + 2	−3
Ger,

therefore

D̃ =
1

�
�

�f

D� 1

G
� c̃ + 1�dv = D�	3 − 1�� 1

1 + 2	−3
− 1� .

Thus we are left with the self-consistent estimate of the ef-

fective diffusion established by Hashin �20� following a

slightly different procedure:

D̃ = D
2�

3 − �
. �13�

Note that since c̃�R�=0, the actual concentration on the ex-

ternal boundary �� is exactly the one given by the forcing

gradient G. Further, the total flux on �� is given by

D��c̃ + Gez� · er = DG�3a

R
+ 1�cos��� = D̃G · er.

Thus, the actual flux on the external boundary �� is exactly

the flux due to the forcing gradient G in the homogeneous

equivalent media of diffusion coefficient D̃. Consequently,

the composite sphere is submitted to the homogeneous con-

ditions in concentration gradient and flux that would exist in

the equivalent media. We recover here the usual self-

consistent approach were these conditions of continuity be-



tween the bicomposite sphere and equivalent media are sup-

posed at first �20�. These homogeneous conditions at the

border of the bicomposite pattern imply that the consistent

estimate is an exact value for ordered or disordered media

made of a packing of homothetic bicomposite spheres filling

all the space.

C. Estimates versus numerical values on spheres

and polyhedrons packings

The effective diffusion D̃ of the different arrays of spheres

and polyhedrons �Fig. 2� have been computed by solving

over a period the boundary value problem �5a–5b� arising

from the homogenization process using a finite element code

�ComsolMultiphysics�. Due to the symmetry of both families

of microstructures, numerical simulations have been perform

on 1/16 of the total REV. The obtained results and the con-

sistent estimate Eq. �13� are presented on the Fig. 4.

It is worth to notice the excellent agreement between the

consistent estimate and numerical values in the whole range

of the porosity for the polyhedron arrays independently of

type of arrangement and thus of the geometry of the inclu-

sion. The agreement is also excellent for dilute arrays of

spheres, but discrepancies appear as soon as the spheres

overlap. Compared to the consistent estimate, the effective

diffusion may significantly be reduced specially at low po-

rosity.

These results are supported by the physical intuition that,

on the whole range of porosity, the bicomposite pattern is a

better geometrical approximation of periodic polyhedron ar-

rays than of periodic sphere arrays. They also prove that the

obstacle made by overlapping areas of spheres sufficiently

modifies the flux distribution, which affects the effective dif-

fusion. Besides, the fact that regular packing of identical

cubes, truncated octahedrons or rhombic dodecahedrons

leads to the same effective parameter than ordered or disor-

dered packing of multidisperse bicomposite spheres of the

same porosity illustrates the limited morphological informa-

tion contained in the effective diffusion coefficient.

IV. DYNAMIC PERMEABILITY

A. Recall of homogenization results for the permeability

The derivation of the dynamic Darcy law from the HPM

was established by Levy �23� and Auriault �7�, and the sequel

recalls the mains results in the case of a rigid porous media

saturated by an incompressible fluid. Consider a porous me-

dia �Fig. 1� of porosity �, saturated by a fluid of dynamic

viscosity � and density �, submitted to small harmonic per-

turbations of frequency f =� /2�. In harmonic laminar re-

gime, the flow in the pores is described by the incompress-

ibility Eq. �14a�, the linearized Navier-Stokes Eq. �14b� and

the adherence condition on the fluid—solid interface � Eq.

�14c�,

� · v = 0 in �f, �14a�

− �p + � · �2�D�v�� = i��v in �f, �14b�

v = 0 on � , �14c�

where p, v, and D�v� stand, respectively, for the pressure, the

fluid velocity, and the strain rate tensor, and in which the

term e+i�t is omitted. The dynamic Darcy regime is reached

when the pressure gradient, the viscous forces and the iner-

tial forces are all of the same order of magnitude, i.e.,

O��p� = O�� · �2�D�v��� = O�i��v� . �15�

The pores’ geometry and the adherence condition enforce the

velocity to vary at the pore scale. Therefore a macroscopic

description requires the pressure to vary at the macro scale.

Hence

O��p� = p/L, O�� · �2�D�v��� = �v/l2, O�i��v� = ��v ,

so that with Eq. �15�, the viscous layer and the pore size are

of the same order,

�
v

= ��/�i��� = O�l� .

Such a physics of the flow is specified by rescaling Eq. �14b�
as follows:

− �p + �2 � · �2�D�v�� = i��v . �16�

The homogenization is applied to Eqs. �14a�, �14c�, and �16�.
First, Eq. �16� at the order �−1 reduces to −�yp

0=0 giving a

constant pressure in the pores,

p0�x,y� = P�x� .

Then, the �-periodic velocity v0 and pressure p1 are derived

from �16−�0, 14a−�−1, 14c−�0�,

− �yp
1 − �xP + �y · �2�Dy�v

0�� = i��v0 in �f,

�17a�

FIG. 4. Dimensionless effective diffusion coefficient D�= D̃ /D

versus porosity �. Comparison between self-consistent estimate

�Eq. �13�� �continuous line� and numerical results for the different

packings of spheres and polyhedrons �marks�.



�y · v0 = 0 in �f, �17b�

v0 = 0 on � . �17c�

This set of Eqs. �17�, in the form of Eq. �2�, defines the linear

dynamic permeability problem where �xP acts as a forcing

term. The solution reads �7�

�v0�x,y� = − ki · �xiP, p1�x,y� = �i · �xiP + p1̂�x� ,

�18�

where �−ki ,�i� are the three complex velocities and pressure

distributions corresponding to unit pressure gradient in the

three directions, �xP=ei.

Macroscopic description. The macroscopic mass balance

is derived by integrating �14a−�0� over the pore volume,

�
�f

��y · v1 + �x · v0�dv = 0.

From the divergence theorem, the periodicity and the adher-

ence condition �14c−�1� on �, the first term vanishes. Then,

inverting y-integration and x-differentiation, we obtain

�x · � 1

�
�

�f

v0d�� = �x · �v0	 = 0,

where �v0	 is the Darcy velocity. Finally, the macroscopic

description reads

�x · �v0	 = 0, �v0	 = −
1

�
K · �xP , �19�

with

K =
1

�
�

�f

ei
� kidv = KR + iKI, �20�

where KR and KI are the real and imaginary parts of the

complex dynamic permeability tensor K. The inverse form

of the macroscopic description is written,

�H · V = − �xP, H = K−1 = HR + iHI.

Overall equilibrium. The momentum balance of the fluid is

not expressed by the Darcy law, since the viscous stresses are

transferred to the skeleton. This appears by integrating �16

−�0� over the pores volume. Using the divergence theorem

and the �-periodicity, we obtain

�
�

�1 · nds = �
�

�− p1I + 2�Dy�v
0�� · nds = �f�xP .

Thus the drag force of the flow is balanced by the skeleton.

This overall equilibrium explicitly uses the periodicity to

self-equilibrate the stress at the first order on the cell bound-

ary, i.e.,

�
��f−�

�1 · nds = �
��f−�

�− p1I + 2�Dy�v
0�� · nds = 0.

�21�

Energy consistency. The energy consistency is derived �7� by

taking the scalar product of the momentum balance with the

conjugate of the fluid velocity v0 �over bar stands for conju-

gate�. After integrating over the pore, one obtains

− ��yp
1 · v0	 + ��y · �2�Dy�v

0�� · v0	

= i���v0 · v0	 + �xP · �v0	 .

From the divergence theorem, the left hand side is trans-

formed into

�p1�y · v0	 − 2��Dy�v
0�:Dy�v

0�	

+
1

�
�

��f

�− p1I + 2�Dy�v
0��n · v0ds .

The surface integral vanishes because of the adherence on �
and the periodicity on ��f−�. Accounting for the zero di-

vergence of v0, we are left with the following identity:

2��Dy�v
0�:Dy�v

0�	 + i���v0 · v0	 = − �xP · �v0	

=
1

�
�xP · K̄ · �xP = �V · H · V̄ , �22�

which expresses the consistency of viscous and kinetic en-

ergy between the microscopic �left hand side� and macro-

scopic �right hand side� description. Note that this result ex-

plicitly uses the periodicity to state that

�
��f−�

�− p1I + 2�Dy�v
0��n · v0ds = 0. �23�

Inversely, if equalities �21� and �23� are assumed, the energy

consistency and the overall equilibrium are satisfied. It is

then physically justified to transpose these necessary condi-

tions �21� and �23� proven by homogenization of periodic

media to the self-consistent scheme.

B. Consistent estimates of the dynamic permeability

1. Setting of the local permeability problem

The bicomposite sphere pattern �Fig. 3� is subjected to an

uniform pressure gradient �P=G=Gez. Once again, we use

spherical coordinates �r, �, 
�, with the origin at the center of

the spheres and the �=0 axis given by ez. The total pressure

p is decomposed into the pressure r ·G induced by the mac-

roscopic gradient, and an additional pressure denoted p̃. The

local flow of the fluid in the shell, Rs=	R
r
R is driven

by equations identical to that treated by homogenization for

periodic media except for the periodicity conditions on p̃ and

v. These periodic conditions are replaced by the overall equi-

librium �Eq. �21�� and energy consistency constraints �Eq.

�23��. Thus, we have

− ��p̃ + r · G� + ���v� = i��v in �f, �24a�

� · v = 0 in �f, �24b�

v�	R� = 0 on � , �24c�

�
��f−�

�− p̃I + 2�D�v�� · nds = 0 on � � , �24d�



�
��f−�

�− p̃I + 2�D�v��n · vds = 0 on � � . �24e�

Following the HPM results, the macroscopic behavior com-

plies with the dynamic Darcy law �Eq. �19��. The Darcy

velocity and the isotropic dynamic permeability tensor K

=KI, are derived from the relationships,

V =
1

�
�

�f

vdv, V = −
1

�
K · G .

2. Three estimates of dynamic permeability

From classical algebra, the general form of p̃ and v re-

specting the isotropy of space and satisfying the Navier-

Stokes equation and the incompressibility are

p = G · �h�r�, �v = G · �� � �f − I � f� , �25�

where

h�r� = c0

r2

6
− c1

1

r
, �26�

f�r� = �
v

2
c0

r2

12
+ c1

1

r
+ �

v

2�c
er/�

v

r/�
v

+ c�
e−r/�

v

− r/�
v

�� . �27�

The constants �c0 ,c1 ,c� ,c� are determined using the adher-

ence, the overall equilibrium and energy consistency condi-

tions �24b�–�24d�. The energy condition, apparently nonlin-

ear, requires a specific analysis. In this aim, note first from

Eq. �25�, that the radial velocity reads

vr = −
2f�

r

G

�
· er.

Hence, as the mean velocity �of zero divergency� defines the

Darcy velocity, we have:

V = �v	 =
1

�
�

��f

r�v · er�ds = − 2
f��R�

R

G

�
.

Then, Vr�R�=vr�R�, i.e., the radial components of the Darcy

velocity and the local fluid velocity are identical at any point

on the bicomposite sphere boundary. Now, introduce the

Darcy velocity V to rewrite the energy consistency condition

as

�
��f−�

��− p̃I + 2�D�v�� · er� · �v − V�ds

+ V · �
��f−�

��− p̃I + 2�D�v�� · er�ds = 0.

The second integral vanishes because of the overall equilib-

rium and since Vr�R�−vr�R�=0, we are left with

�
��f−�

2�Dr��v��v� − V��ds = 0.

According to the field expressions, the energy consistency

condition leads to the alternative:

�i� either the shear stress 2�Dr� vanishes uniformly and

the stress vector at the boundary of the fluid inclusion match

the Darcy pressure. This assumption leads to the P-estimate.

�ii� or the tangential velocities are equals, i.e., v�=V� and

the fluid and Darcy velocities are identical on the boundary,

i.e., v�R�=V�R�. This assumption leads to the V-estimate.

Finally, the C-estimate results from the “cell” model as-

sumption of vanishing vorticity at the boundary �e.g., Tarnow

�17� and Umnova et al. �18��. This means that the fluid pres-

sure �not the stress� at the boundary equals the Darcy pres-

sure. Despite its nonconsistency, the C-assumption is of

physical interest since, referring to the HPM, as the

P-assumption, the C-boundary conditions are correct up to

the first order, conversely to the V-boundary conditions.

According to the P-, V-, and C-assumption, the resolution

of the three linear systems allows the determination of the

three dynamic permeability estimates whose expressions are

given hereafter �16�.
�i� The P-estimate reads, where x=R /�

v
,

Kp =
�

v

2

1 −
3

x2
Cp

, Cp =
Ap + Bp tanh�x�	 − 1��/x

ap + bp tanh�x�	 − 1��/x
, �28�

with

Ap = �3 + �	x�2��1 + x2
/6� − 3	�1 + x2

/2� ,

Bp = �3 + �	x�2��1 + x2
/2� − 3	x2�1 + x2

/6� ,

ap = �3 + �	x�2�/3 − 3	 − �1 + x2
/6�2/	 +

4

cosh�x�	 − 1��
,

bp = �3 + �	x�2� − 	x2 − �1 + x2
/2�2/	 . �29�

�ii� The V-estimate reads

K
v

=
�

v

2

1 −
3

x2
C

v

, C
v

=
A

v
+ B

v
tanh�x�	 − 1��/x

a
v

+ b
v

tanh�x�	 − 1��/x
, �30�

with

A
v

= �3 + �	x�2� − 3	�1 + x2
/3� ,

B
v

= �3 + �	x�2��1 + x2
/3� − 3	x2,

a
v

= − 2�	 + 1/	� +
4

cosh�x�	 − 1��
,

b
v

= �3 + �	x�2�2/3 − �1 + x2
/3�2/	 . �31�

�iii� The C-estimate reads �this expression differs from that

given by Umnova et al. �18��,

Kc = 2�
v

2�1 −
1

1 − Ac

� , �32�

where

Ac =
�1 − 	3�

3
+

	2

x2

1 − 1/	 + �x2 − 1/	�tanh��	 − 1�x�/x

1 + tanh��	 − 1�x�/x
.



C. Estimates versus numerical values on spheres and

polyhedrons packings

To compare estimates and numerical values determined

on the two families of periodic media, we successively con-

sider the characteristic parameters:

�i� at low and high frequency in the whole range of po-

rosity,

�ii� in the whole frequency range for a dilute concentra-

tion �=0.7 and an higher concentration �=0.3. In this latter

case, spheres in �SC�, �BCC�, and �FCC� microstructures

overlap.

1. Low frequency

In the quasistatic regime �low frequency�, i.e., when

l /�
v
→0, viscous effects dominate the inertia. The homog-

enization for periodic media enables to establish that Auri-

ault et al. �10�,

H��� �
1

K
+

i��

�

�0

�
, �33�

where K is the intrinsic permeability, and �0 the low-

frequency tortuosity. Expanding the dynamic permeability

estimates at low frequency gives a behavior in conformity to

Eq. �33�. The three intrinsic permeability estimates read �15�

Kp =
R2

3

− 1 +

2 + 3	5

	�3 + 2	5�
� , �34�

K
v

=
R2

18

4

1 − 	

	
− 5

�1 − 	2�2

1 − 	5 � , �35�

Kc =
2R2

45

5 − 9	 + 5	3 − 	6

	
� . �36�

The analytical expressions of �0 which depends on 	 only,

are rather complicated and not presented here.

The Fig. 5�a� shows the evolution of the dimensionless

intrinsic permeability K /Rs
2 of periodic arrays of spheres and

polyhedrons, and the three self-consistent estimates versus

the porosity. For periodic arrays, Rs is an equivalent radius of

the solid inclusion estimated as follows: Rs= �3�1
−��� / �4�n��1/3, where n is the number of inclusions in the

REV. Figure 5�a� underlines the tremendous effect of the

porosity on the intrinsic permeability and that the permeabil-

ity of the periodic arrays is closer to P and C-estimates than

to the V-estimate. For periodic array of polyhedrons, the

agreement with the P and C-estimates is remarkable what-

ever the arrangement �then geometry of the solid inclusion�
in the whole range of porosity. By contrast, we observe that

for periodic arrays of spheres, the computed values slightly

depend on the arrangement �conversely to fibrous media

�13�� when the porosity is larger than 0.6. P and C-estimates

appear as an accurate analytic approximation up to the maxi-

mum packing concentration �Fig. 5�b��. Beyond, the geom-

etry of the flow through overlapping spheres apart signifi-

cantly from the smooth flow in the bicomposite pattern, and

consequently the discrepancies increase.

Figure 6 illustrates the sensitivity of the low-frequency
tortuosity �0 to the morphology of the media. Numerical
values for the array of spheres �SC�, �BCC�, and �FCC�
mainly track the P- and C-estimates when the porosity is
larger than 0.6. Discrepancies are significant at lower poros-
ity, and depend on the type of array. Note the good agree-
ment between numerical values for arrays of polyhedrons
and the P-estimate in the whole range of porosity.

2. High frequency

At high frequency, i.e., when l /�
v
→�, inertial effects

dominate, and viscous effects are confined to a viscous layer.

FIG. 5. �a� Dimensionless permeability K /Rs
2 versus porosity �.

Comparison between estimates: Kp �continuous line�, K
v

�dashed

line�, Kc �mixed line� and numerical results for the different pack-

ings of spheres and polyhedrons �marks�. �b� Ratios Kp /Kc �con-

tinuous line�, K
v
/Kc �dashed line� and numerical values K /Kc.



The HPM enables to establish that Auriault et al. �10�,

�

i��
H���� � ���1 +�M

2

�c

i�
� , �37�

where �� is the tortuosity, M is a shape factor and �c is the

critical frequency delimiting the low- and high-frequency do-

mains. This latter, which is obtained by equalizing viscous

and inertial effects of the macroscopic flow, reads

�c =
��

K���

.

Following Johnson et al.�24�, ��M /2���c / i�� may also be

expressed as 2�
v
/�, where � is the characteristic viscous

length of the medium. The high-frequency behavior derived

by expanding the dynamic permeabilities estimates complies

with Eq. �37�. As for the tortuosity, the P, V, and C-estimates

lead to the same value,

��p,v,c = 1 + 	3
/2 =

3 − �

2

 �0v


 �0c 
 �0p. �38�

This is consistent with the fact that, at high frequency, the

viscous effects are much smaller than the inertia. Thus, ��

may be derived from a perfect fluid flow, where the interface

conditions involve only the radial component v ·n, which is

independent on the P-, V- or C-assumption as mentioned

previously. Note also that the perfect fluid problem is iden-

tical to the diffusion problem �Sec. III� where v, p, and

1 / i��, replace, respectively, the flux, the concentration and

the diffusion coefficient �the motionless solid can be consid-

ered of infinite density, i.e., of zero diffusion�. Therefore, in

accordance with Eqs. �13� and �38�,

��p,v,c

�
=

D

D̃
=

3 − �

2�
.

As for the form factors, high-frequency expansions give

Mp = 2
 9	2

2�2�2 �Kp

��R2
, �39�

M
v

= 2
9�	2 + 	6�

2�2 �2 �K
v

��R2
, �40�

Mc = 2
 9	3

2�2�2 �Kc

��R2
. �41�

Figure 7 depicts the dependence of the high-frequency tortu-

osity �� and the form factor M on the porosity. Once again,

the tortuosity of polyhedron arrays is well described by the

self-consistent estimates in the whole range of porosity while

for array of spheres, good agreement is only observed for

porosities larger than 0.6. The same remarks apply to the

form factor M. For polyhedron arrays, M lies in between the

P- and C-estimates. For array of spheres, M presents a maxi-

mum for porosities corresponding to the maximum packing

before overlapping. By comparison with the polyhedron ar-

rays, this result means that the disturbance on the flow due to

the solid percolation induces a large increase in the viscous

dissipation.

Figure 8 shows the evolution of the dimensionless char-

acteristic viscous length � /Rs versus the porosity. Once

again, we observe excellent agreement between the

P-estimate and numerical values of polyhedron arrays in the

whole range of porosity. Numerical values for periodic array

of nonoverlapping spheres lies between the P and

C-estimates. When spheres overlap, as for the intrinsic per-

meability, the P-estimate underestimates numerical values.

3. Whole frequency range

The dimensionless terms K /K and H�� / �i�����
=HK�c /� depend only on the dimensionless frequency

� /�c. Concerning the variation of H versus frequency, it

may also be demonstrated �16� that

dHR

d�
� 0 and

d�HI
/��

d�

 0. �42�

Using the low- and high-frequency limits, the P-, V-, and

C-equivalent media present different critical frequencies,

�ci =
��

Ki���

, i = p,v,c .

Figures 9�a� and 9�b� underline the influence of the morphol-

ogy and of the ratio � /�c on the intensity of the microscopic

velocity field v0 deduced from numerical simulations on 1/16

of body-centered cubic arrays of truncated octahedrons �TO�
and of spheres �BCC� with a porosity �=0.25 and when the

macroscopic gradient G is along z. In both microstructures,

as expected, we observe that by increasing � /�c, inertial

effects dominate and viscous effects are mainly confined to a

FIG. 6. Evolution of low-frequency tortuosity �0 versus the po-

rosity �. Comparison between estimates: �0p �continuous line�, �0c

�dashed line�, �0v
�mixed line� and numerical results for the differ-

ent packing of spheres and polyhedrons �marks�.



thin viscous layer. These figures also clearly highlight that at

low and high frequencies, the intensity of the flow is maxi-

mum in channels almost parallel to the macroscopic gradient

of pressure and minimum �almost zero� otherwise �when the

wall of channels are perpendicular to the flow�. Finally, no-

tice that the flow in the periodic array of spheres �BCC� is

strongly affected by the overlapping areas, and consequently

the dynamic permeability is significantly affected.

Figures 10 and 11 present the dependence of the dimen-

sionless real and imaginary part of H on the dimensionless

frequency � /�c, when the porosity is equal to 0.7 and 0.3,

respectively. When the porosity is large, Fig. 8 shows that P

and C-estimates mainly track numerical results of the body-

centered cubic and face centered cubic arrays of spheres and

polyhedrons in the whole dimensionless frequency range.

Discrepancies between numerical results and estimates are

much pronounced for the simple cubic array of sphere and

polyhedrons. When the porosity is small, we still observe on

Fig. 10 an excellent agreement between P and C-estimates

and numerical values for the arrays polyhedrons in the whole

dimensionless frequency range, especially for the arrays and

the arrays of rhombic dodecahedrons �RD�. As expected, for

periodic arrays of spheres, the discrepancies with estimates

are more significant in whole frequency range.

In conclusion, qualitatively, the three estimates describes

rather well the features of the considered periodic arrays.

Quantitatively, the C and P estimates are more accurate in the

whole frequency range. For array of spheres, the accuracy is

fairly good for the four parameters �K, �0, ��, M� when the

sphere do not overlap �porosity larger than 0.6�. For lower

porosity, discrepancy up to a factor of around 2 may be ob-

served. For polyhedron arrays results are in good agreement

with P and C estimates whatever the porosity, consistently

with the intuition that the flow through those arrays is geo-

metrically close to the flow through the bicomposite spheri-

cal pattern.

V. THERMAL PERMEABILITY AND TRAPPING

CONSTANT

Zwikker and Kosten �1� showed that in the harmonic re-

gime the apparent compressibility of a gas in a porous me-

FIG. 7. �a� High-frequency tortuosity �� versus porosity �.

Comparison between estimates: ��p,c,v �continuous line� and nu-

merical results for the different packings of spheres and polyhe-

drons �marks�. �b� Form factor M versus porosity �. Comparison

between estimates: Mp �continuous line�, Mc �dashed line�, M
v

�mixed line� and numerical results for the different packings of

spheres and polyhedrons �marks�.

FIG. 8. Dimensionless viscous length � /Rs versus porosity �.

Comparison between estimates: �p �continuous line�, �
v

�mixed

line� and numerical results for the different packings of spheres and

polyhedrons �marks�.



dium involves local heat transport effects between the gas

and the matrix. This local effect is described macroscopically

by the thermal permeability. In steady state regime, this

problem is closely related to the determination of the trap-

ping constant, widely used for chemical processes in porous

media. It describes the diffusive transport of a solute gener-

ated by a homogeneous source and absorbed instantaneously

by the solid matrix �25�.

A. Thermal permeability derived by homogenization

Homogenization leads to a macroscopic law for a gas sub-

jected to a harmonic acoustic pressure P which has the fol-

lowing form:

div�V� + �C����i��P� = 0,

with

C��� =
1

Pe
1 −
i��eCp

�
�1 −

1

�
������ ,

where equilibrium values are indicated with the superscript
e, � is the thermal conduction coefficient of the gas, �eCp is

its heat capacity at constant pressure, and � is the adiabatic

constant. The coefficient ���� which appears in the dynamic

compressibility C��� is known as the thermal permeability

�4,26�. It originates from the heat transport in the gas in

contact with the isothermal porous matrix, the thermal equi-

librium being not achieved in the pores. Denoting the gas-

solid temperature difference as T0, the local problem is ex-

pressed through the transient Fourier equation in the gas, and

FIG. 9. �Color online� Color on line. Influence of the ratio � /�c

�resp. � /�t� on the microscopic velocity field v0 �respectively, the

local temperature field T0� when the porosity �=0.25 in packing of

polyhedrons �a� �respectively, �c�� and spheres �b� �respectively,

�d��. The intensity varies between 0 �in blue� and a maximum value

�in red�.

FIG. 10. Dimensionless real and imaginary part of H versus

� /�c when the porosity �=0.7. Comparison between estimates:

P-estimate �continuous line�, C-estimate �dashed line�, V-estimate

�mixed line� and numerical results for the different packings of

spheres and polyhedrons �marks�.



the isothermal condition at the solid interface �6,27�, where

T0 is �-periodic,

i�P − i��eCpT0 + ��yT
0 = 0 on �f, �43a�

T0 = 0 on � . �43b�

This scalar problem resembles to the vectorial problem of the

dynamic permeability. By analogy, the solution and the

macro description are expressed in the form,

T0 =
�

�
i�P then �T0	 =

��

�
i�P , �44�

with

� =
1

�f

�
�f

�d� , �45�

where � is the complex valued temperature distribution ob-

tained when i�P /� is unitary, and which therefore satisfies,

1 −
1

�t
2
� + �y��� = 0,

where the �complex� thickness of the thermal boundary layer

is �t=�� / �i��eCp�.
Energy consistency. The energy consistency is derived by

integrating over the pore the product of the local balance

�Eq. �43a�� with the conjugate field T�0�. Using the diver-

gence theorem, one obtains

1

�
�

��f

���yT
0 · n�T0ds + ���yT

0 · �yT
0	 + i��eCp�T0T0	

= i�P�T0	 .

The surface integral vanishes because of the isothermal con-

dition on � and of periodicity on ��−�. Finally, replacing

�T0	 by its expression �44�, we obtain

���yT
0 · �yT

0	 + i��eCp�T0T0	 = �2�
�̄

�
PP̄ ,

which expresses the consistency of the micro �left hand side�
and macro �right hand side� descriptions. Once again this

result explicitly uses the periodicity to state that

�
��f−�

���yT
0 · n�T0ds = 0. �46�

Link with trapping constant problem. The steady state trap-

ping constant problem of a solute �concentration c, diffusion

coefficient D�, generated by an homogeneous source S in the

pores and which is absorbed instantaneously when it comes

in contact with the solid matrix is driven by the set,

S − D�yc
0 = 0 on �f, �47a�

c0 = 0 on � . �47b�

By analogy with the set Eqs. �43a� and �43b�, the mean con-

centration in the pores reads

c0

�
=

��0�

D
S . �48�

Which gives, accounting for the usual definition of the trap-

ping constant,

�D�c0	/� = S, thus, � =
1

��0�
. �49�

FIG. 11. Dimensionless real and imaginary part of H versus

� /�c when the porosity �=0.3. Comparison between estimates:

P-estimate �continuous line�, C-estimate �dashed line�, V-estimate

�mixed line� and numerical results for the different packings of

spheres and polyhedrons �marks�.



B. Self-consistent estimate of the thermal permeability

The estimate of ����, is determined on the bicomposite

spherical pattern presented in Fig. 3. The temperature field �̃
in the shell, 	R
r
R is governed by equations identical to

that treated by HPM Eqs. �43a� and �43b� except for the

periodicity condition replaced here by the consistency con-

straint �Eq. �46��,

1 −
i��eCp

�
�̃ + ��̃ = 0 in �f�	R � r � R� , �50a�

�̃ = 0 on ��r = 	R� , �50b�

�
��f−�

���y�̃ · n��̃¯ds = 0 on � ��r = R� . �50c�

Due to the spherical symmetry of the problem, the solution

only depends on r. Integration of the Helmholtz equation

with a constant forcing term gives the general form of the

solution,

�̃ = �t
2
1 + c

er/�t

r/�t

+ c�
e−r/�t

− r/�t

� .

The determination of the constants c and c� requires two

boundary conditions, which are the isothermal condition on

the solid sphere �Eq. �50b��, i.e., �̃�	R�=0, and the consis-

tency condition �50c�. This latter simply reads

�4�R2���̃��R��̃¯�R� = 0.

As a consequence, �̃��R�=0. The alternative �̃�R�=0 would

introduce an artificial isothermal condition not consistent

with the local physics. The substitution of the expression for

�̃ into �̃�	R�=0 and �̃��R�=0, leads to a simple linear sys-

tem, the solution to which allows us to determine �. Integra-

tion of this field over the volume of the pores gives the

following estimate of the thermal permeability:

�sc��� = �t
2�1 − 	3 +

3	

x2 
	x
1 + x tanh�x�	 − 1��

x + tanh�x�	 − 1��
− 1�� ,

�51�

where x=R /�t. The properties of �sc��� are very similar to

those of the dynamic permeability which were discussed in

the previous section. We also note the similarity of the ana-

lytical functions involved in �sc and Kc. This stems from the

close relationship between the scalar problem of thermal per-

meability and the vectorial problem of the dynamic perme-

ability. For the spherical geometry, the condition of zero vor-

ticity has an exact analog in the condition of zero thermal

gradient, which allows to relate analytically the velocity and

temperature fields.

C. Features of the thermal permeability

At low frequencies, i.e., when l /�t→0, conduction domi-

nates, and the gas is in the quasi-isothermal regime. The

HPM enables to establish that

���� � ��0��1 −
i��eCp

�
��0��0� , �52�

where ��0� is the static thermal permeability and �0 is the

corrector coefficient for the low-frequency heat capacity. Ex-

panding the thermal permeability estimates at low frequency

gives a behavior in conformity to Eq. �52�. The static thermal

permeability and the trapping constant estimates are directly

linked to the intrinsic permeability Kc given by Eq. �36�,

�sc�0� =
1

�sc

=
3Kc

2�
.

The analytical expressions of �0, which depends on 	, only is

written,

�sc0 =
5�1 + 	 + 	2��35 + 49	 + 30	2 + 10	3 + 2	4�

7�5 + 6	 + 3	2 + 	3�2
.

At high frequencies, i.e., when l /�t→�, inertia dominates

and the gas is in the quasi-adiabatic regime. Conductive ef-

fects are confined to the thermal boundary layer, implying

that

�

i��eCp����
� 1 +�Mt

2

�t

i�
,

where �t is the critical frequency separating the low- and

high-frequency domains. This is obtained by equating con-

ductive effects �i.e., the low-frequency real part� and inertial

effects �i.e., the high-frequency imaginary part� in ����,

�t =
�

��0��eCp

.

Mt is a form factor whose self-consistent estimate is

Mtsc =
6�1 − 	�3	3�5 + 6	 + 3	2 + 	3�

5�1 − 	3�3
.

Moreover, from Champoux and Allard �28�,

�Mt

2

�t

i�
=

2�t

�t

,

where �t is the characteristic thermal length in the medium,

which, relative to the size of the solid sphere, has a self-

consistent estimate of

�tsc

Rs

=
2�

3�1 − ��
.

Finally, in the whole frequency range, ���� /��0� only de-

pend on the dimensionless frequency � /�t. Also, following

the same reasoning as for the dynamic permeability, it can be

shown that

d��−1�R

d�
� 0,

d���−1�I
/��

d�
� 0.



D. Estimates versus numerical values on spheres

and polyhedrons packings

As for dynamic permeability, to compare the thermal per-

meability estimates and the numerical values determined on

the two families of periodic media, we successively consider

the parameters at low and high frequency for the whole range

of porosity and the whole frequency range �for �=0.7 and

�=0.3�.
Figures 12–15 depict the influence of the morphology of

the media and the porosity on the effective parameters at low

and high frequencies, i.e., ��0� /Rs
2, �0, Mt, and �t /Rs, re-

spectively. These figures appeal similar comments to the dy-

namic permeability. Numerical results on arrays of polyhe-

drons are well described by the consistent estimate whatever

the arrangement �then geometry of the solid inclusion� in the

whole range of porosity. Conversely, large discrepancies oc-

cur between numerical results on array of spheres and self-

consistent estimate when the porosity is lower that 0.6, i.e.,

before that spheres overlap.

FIG. 12. �a� Dimensionless static thermal permeability ��0� /Rs
2

versus porosity �. Comparison between estimate �sc�0� �continu-

ous line�, and numerical results for the different packings of spheres

and polyhedrons �marks�. �b� Ratio ��0� /�sc�0� versus porosity �.

FIG. 13. Corrector for the low-frequency heat capacity �0 versus

porosity �. Comparison between estimate �sc0 �continuous line� and

numerical results for the different packings of spheres and polyhe-

drons �marks�.

FIG. 14. Form factor Mt versus porosity �. Comparison be-

tween estimate Mtsc �continuous line� and numerical results for the

different packings of spheres and polyhedrons �marks�.



Figures 16 and 17 present the dependence of the dimen-

sionless real and imaginary part of ���� on the dimension-

less frequency � /�t, when the porosity is equal to 0.7 and

0.3, respectively. All the comments already made in the case

of the dynamic permeability remain valid for the thermal

permeability. Whatever the porosity, Figs. 16 and 17 show

rather good agreement between numerical results for arrays

of polyhedrons �in particular �TO� and �RD�� and the self-

consistent estimate. For periodic arrays of spheres, the dis-

crepancies with estimate are more significant in whole fre-

quency range and increase when the porosity decrease.

Note that the general trend is that the relative dispersion

of the thermal permeability results is larger than for the dy-

namic permeability. This may be roughly explained by the

fact that the isotropy of the scalar variable �the temperature�
better surveys the microstructure than the oriented vectorial

variable �the mass flux�. This feature is illustrated in Figs.

9�c� and 9�d� which underline the influence of the morphol-

ogy and of the ratio � /�t on the intensity of the microscopic

temperature field T0 deduced from numerical simulations on

1/16 of body-centered cubic arrays of truncated octahedrons

�TO� and of spheres �BCC� with a porosity �=0.25. As for

the flow, we observe that �i� in both microstructures by in-

creasing � /�t, inertial effects dominate and viscous effects

are mainly confined to a thin viscous layer, and �ii� that the

temperature field in the periodic array of spheres �BCC� is

strongly affected by the overlapping areas. Moreover, theses

figures also clearly underline that the microscopic tempera-

ture field �intensity and distribution� is, by contrast to the

flow, independent of the orientation of the channel, and can

be view as the superposition of the flow fields in the three

main directions.

VI. CONCLUSION

This paper exploits complementarily the homogenization

of periodic media and the self-consistent scheme based on a

bicomposite spherical pattern. This study emphasizes the

common physical assumptions sustaining both approaches.

By replacing the periodicity condition by a zero flux and

energy through the surface of the pattern, the consistent so-

lutions can be considered as geometrical approximations of

the local problem derived through HPM, for periodic media

of simple morphology. It is worth mentioning that the peri-

odic and the substituted conditions are not equivalent. This is

clearly evidenced by the fact that, conversely to the unicity

of the solution provided by HPM, the SCM scheme leads in

FIG. 15. Dimensionless viscous layer thickness �t /Rs versus

porosity �. Comparison between estimate �tsc �continuous line�
and numerical results for the different packings of spheres and poly-

hedrons �marks�.

FIG. 16. Dimensionless real and imaginary part of � versus

� /�t when the porosity �=0.7. Comparison between estimate

�continuous line� and numerical results for the different packing of

spheres and polyhedrons �marks�.



principle to two solutions �one of them could be nonphysi-
cal�. Despite this drawback the reliability of this procedure
has been demonstrated on three different problems of trans-
port. It can also be extended to other physics �29�, for in-

stance to assess the Klinkenberg effect, the inner heat trans-

port with conducting skeleton, the diffusion with adsorption,

the static or transient trapping coefficient, the permeability to

linear viscoelastic saturating fluids, etc.

From the three treated examples, it appears that the bi-

composite sphere estimates provide excellent analytical ap-

proximations of the effective parameters of periodic packing

of polyhedrons on the whole range of porosity, especially for

the array of truncated octahedrons �TO� and the array of

rhombic dodecahedrons �RD�. This stems from the fact that

the geometry of the flow around polyhedrons is quite similar

to the flow occurring on the bicomposite spherical pattern.

As for the array of spheres, when ��0.6, the agreement

with estimates is excellent, and is still reasonable otherwise.

The increasing discrepancies for lower porosity is related to

the change in the flow pattern, passing from a “smooth” field

around nonoverlapping spheres, to a “highly” variable field

through the corrugated channels in between the overlapping

spheres. This phenomenon does not exist for polyhedrons

packing, which explain the better agreement.

Meanwhile the bicomposite spherical pattern is an ex-

tremely simple and regular 3D pore geometry, the results

underline the sensitivity of the macroscopic parameters to

the morphology of the medium. This is illustrated on Fig. 18

for two values of the porosity. The parameters associated to

the thermal flow ���0�=1 /�, Mt� are more sensitive to the

morphology than those related to the viscous flow �K ,M�,
the less sensitive being those involve in inertial effects ��0,

��, �0�.
Nevertheless such a geometry is not sufficient to capture

the all complexity of the flow in actual geometry as illus-

trated by the effect of overlapping spheres. For this reason,

the estimates may apply to porous media whose pores are

sufficiently regular, but should be used cautiously otherwise.

FIG. 17. Dimensionless real and imaginary part of � versus

� /�t when the porosity �=0.3. Comparison between estimate

�continuous line� and numerical results for the different packing of

spheres and polyhedrons �marks�.

FIG. 18. �Color online� Dimensionless effective parameters �nu-

merical value/consistent estimate� versus the morphology. �a� �

=0.2, �b� �=0.8. With Dd=D / D̃, Kd=K /Kc, �0
d=�0 /�0c, Md

=M /Mc, ��
d =�� /��c, �d�0�=��0� /�sc�0�, �0

d=�0 /�0sc, Mt
d

=Mt /Mtsc.



�1� C. Zwikker and W. Kosten, Sound Absorbing Materials

�Elsevier, Amsterdam, 1949�.
�2� M. Biot, J. Acoust. Soc. Am. 28, 168 �1956�.
�3� D. Johnson, J. Koplik, and L. Schwartz, Phys. Rev. Lett. 57,

2564 �1986�.
�4� J.-F. Allard, Propagation of Sound in Porous Media �Elsevier

Applied Science, England, 1993�.
�5� J.-L. Auriault and E. Sanchez-Palencia, J. Mec. 16, 576

�1977�.
�6� E. Sanchez-Palencia, Lectures Notes in Physics �Springer-

Verlag, Berlin, 1980�, Vol. 127.

�7� J.-L. Auriault, Int. J. Eng. Sci. 18, 775 �1980�.
�8� A. S. Sangani and A. Acrivos, Int. J. Multiphase Flow 8, 193

�1982�.
�9� A. Chapman and J. Higdon, Phys. Fluids A 4, 2099 �1992�.

�10� J.-L. Auriault, L. Borne, and R. Chambon, J. Acoust. Soc. Am.

77, 1641 �1985�.
�11� M.-Y. Zhou and P. Sheng, Phys. Rev. B 39, 12027 �1989�.
�12� I. Malinouskaya, V. Mourzenko, J. Thovert, and P. Adler, Phys.

Rev. E 77, 066302 �2008�.
�13� A. L. Berdichevsky and Z. Cai, Polym. Compos. 14, 132

�1993�.
�14� M. Thiery and C. Boutin, Poromechanics II, edited by J. Au-

riault et al. �Balkema, The Netherlands, 2002�, pp. 575–581.

�15� C. Boutin, Eur. J. Mech. A/Solids 19, 603 �2000�.

�16� C. Boutin and C. Geindreau, J. Acoust. Soc. Am. 124, 3576

�2008�.
�17� V. Tarnow, J. Acoust. Soc. Am. 100, 3706 �1996�.
�18� O. Umnova, K. Attenborough, and K. M. Li, J. Acoust. Soc.

Am. 107, 3113 �2000�.
�19� J.-L. Auriault, Int. J. Eng. Sci. 29, 785 �1991�.
�20� Z. Hashin, J. Compos. Mater. 2, 284 �1968�.
�21� R. M. Christensen and K. H. Lo, J. Mech. Phys. Solids 27, 315

�1979�.
�22� J.-P. Boelher, Applications of Tensor Functions in Solid Me-

chanics, CISM Courses and Lectures �Springer-Verlag, Wien,

NY, 1987�.
�23� T. Levy, Int. J. Eng. Sci. 17, 1005 �1979�.
�24� D. L. Johnson, J. Koplik, and R. Dashen, J. Fluid Mech. 176,

379 �1987�.
�25� S. Torquato, Phys. Rev. Lett. 64, 2644 �1990�.
�26� D. Lafarge, P. Lemarinier, J. F. Allard, and V. Tarnow, J.

Acoust. Soc. Am. 102, 1995 �1997�.
�27� C. Boutin, P. Royer, and J.-L. Auriault, Int. J. Solids Struct.

35, 4709 �1998�.
�28� Y. Champoux and J.-F. Allard, J. Appl. Phys. 70, 1975 �1991�.
�29� J.-L. Auriault, C. Boutin, and C. Geindreau, Homogenization

of Coupled Phenomena in Heterogeneous Media �Wiley-ISTE,

London, 2009�.

http://dx.doi.org/10.1121/1.1908239
http://dx.doi.org/10.1103/PhysRevLett.57.2564
http://dx.doi.org/10.1103/PhysRevLett.57.2564
http://dx.doi.org/10.1016/0020-7225(80)90025-7
http://dx.doi.org/10.1016/0301-9322(82)90029-5
http://dx.doi.org/10.1016/0301-9322(82)90029-5
http://dx.doi.org/10.1063/1.858507
http://dx.doi.org/10.1121/1.391962
http://dx.doi.org/10.1121/1.391962
http://dx.doi.org/10.1103/PhysRevB.39.12027
http://dx.doi.org/10.1103/PhysRevE.77.066302
http://dx.doi.org/10.1103/PhysRevE.77.066302
http://dx.doi.org/10.1002/pc.750140207
http://dx.doi.org/10.1002/pc.750140207
http://dx.doi.org/10.1016/S0997-7538(00)00174-1
http://dx.doi.org/10.1121/1.2999050
http://dx.doi.org/10.1121/1.2999050
http://dx.doi.org/10.1121/1.417233
http://dx.doi.org/10.1121/1.429340
http://dx.doi.org/10.1121/1.429340
http://dx.doi.org/10.1016/0020-7225(91)90001-J
http://dx.doi.org/10.1177/002199836800200302
http://dx.doi.org/10.1016/0022-5096(79)90032-2
http://dx.doi.org/10.1016/0022-5096(79)90032-2
http://dx.doi.org/10.1016/0020-7225(79)90022-3
http://dx.doi.org/10.1017/S0022112087000727
http://dx.doi.org/10.1017/S0022112087000727
http://dx.doi.org/10.1103/PhysRevLett.64.2644
http://dx.doi.org/10.1121/1.419690
http://dx.doi.org/10.1121/1.419690
http://dx.doi.org/10.1016/S0020-7683(98)00091-2
http://dx.doi.org/10.1016/S0020-7683(98)00091-2
http://dx.doi.org/10.1063/1.349482



