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This paper considers model selection and forecasting issues in two closely 
related models for nonstationary periodic autoregressive time series [PAR]. Peri- 
odically integrated seasonal time series [PIAR] need a periodic differencing filter 
to remove the stochastic trend. On the other hand, when the nonperiodic first 
order differencing filter can be applied, one can have a periodic model with a 
nonseasonal unit root [PARI]. In this paper, we discuss and evaluate two testing 
strategies to select between these two models. Furthermore, we compare the rel- 
ative forecasting performance of each model using Monte Carlo simulations and 
some U.K. macroeconomic seasonal time series. One result is that forecasting 
with PARI models while the data generating process is a PIAR process seems to 
be worse than vice versa. 

1 I n t r o d u c t i o n  

Periodic autoregressive [PAR] time series models have proved to be useful in describ- 

ing seasonally observed times series in such areas as water resources, cf. Vecchia & 

Ballerini (1991) and McLeod (1993) and economics, cf. Osborn & Smith (1989) and 

Franses (1994). The key feature of PAR models is that the autoregressive parameters 

take different values in different seasons. In order to use conventional identification 

techniques for univariate seasonal time series, it is necessary to remove one or more 

stochastic trends from the time series before any analysis. Typically, for quarterly 

observed times series one uses the first order (1 - B) filter or the fourth order (1 - B 4) 

filter for this purpose, where the backward shift operator B is defined by Bky t  = Yt-k,  

cf. Box & Jenkins (1970). For periodic times series processes one may opt for a third 
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possibility, i.e. that  the differencing filter varies with the seasons, like, e.g., (1 - asB) 
4 Ot under the nonlinear restriction l-Is=l s = 1, cf. Osborn (1988). In the latter case 

a seasonal t ime series is called a periodically integrated autoregression, denoted by 

PIAR, see Boswijk & Franses (1994) for a formal definition of the concept of periodic 

integration [PI]. Recent studies as Osborn (1988) and Franses & Paap (1994) suggest 

that  P IAR models can be useful for modelling quarterly observed times series. Notice 

that  periodic integration implies that  in the long run shocks in different seasons have 

different impact,  since the as values are not all equal to each other. In contrast, when a 

PAR t ime series requires the (1 - B) filter to remove the stochastic trend, such shocks 

have the same impact across seasons. In this paper we denote the latter model by 

PARI. In practice, it is found that  for the P IAR model the as values in the periodic 

differencing filter take values that  are typically close to unity. Additionally, P IAR 

models are somewhat more complicated since the periodic differencing filter has to be 

determined using a nonlinear estimation method. Therefore, we focus in this paper on 

the selection between PIAR and PARI models. 

We compare two selection strategies for univariate quarterly observed times series, 

which differ with respect to the sequence of tests. The first strategy, which is applied in 

Franses &~ Pa~p (1994) starts with a test for periodic integration. Next, one proceeds 

with a test whether the periodic differencing filter reduces to the (1 - B) filter. The 

second strategy, advocated by Ghysels & Hall (1993), tests whether the (1 - B) filter 

is applicable in a periodic model straightaway. The theoretical implications of both 

testing strategies are discussed in detail and their power and size properties are inves- 

tigated using Monte Carlo experiments. We further study the effect on the forecasting 

performance in case the wrong differencing filter is applied using Monte Carlo experi- 

ments. Finally, both the test strategies and the forecast comparison are considered for 

a set of real life macroeconomic U.K. seasonal t ime series. 

The outline of the paper is as follows. In section 2 we discuss some properties of 

PAR models. Although we confine ourselves to quarterly t ime series in this paper, we 

wish to stress that  all tests and methods can also be applied to e.g. monthly t ime 

series. In section 3 we analyse the two testing strategies to distinguish between PIAR 

and PARI and apply them to seven U.K. macroeconomic t ime series. Section 4 deals 

with a comparison in forecasting performance using Monte Carlo simulations and the 

same seven t ime series. The final section provides some concluding remarks. 

2 P r e l i m i n a r i e s  

Periodic autoregressive models are characterised by periodically varying parameters  in 

the autoregressive part  of the model. In other words, the dynamic structure varies 
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with the seasons. A periodic autoregressive model of order p, PAR(p), for a quarterly 

observed t ime series, yt, t = 1, ..., n = 4N can be written as 

4 p 4 

s=l i=l s=l 

where et is standard white noise, Dst represent seasonal dummies,  t a t ime trend and 

s equals 4 if (t mod 4) = O and (t mod 4) otherwise. The r are seasonally varying 

autoregressive parameters.  An extension to periodically varying variances is straight- 

forward, i.e. by including e~t instead of et. 

The  simplest model, which is useful to illustrate the properties of P IAR and PARI 

models, is the PAR(2) model given by 

Yt = r  "Jr r "~ s (2) 

where s equals 4 if (t mod 4) = 0 and (t mod 4) otherwise, which we will use in the 

remaining of the paper. To analyze stochastic trend properties of yt it is useful to 

transform (2) into a model with constant parameters.  Let YT = (Y~T, Y2T, Y3T, Y4T)' 

consist of the quarterly yt observations, stacked in an annual vector, i.e. YsT is the 

observation in season s in year T. Then, (2) can be written in a Vector Autoregressive 

(VAR) representation 

AoYT = A1YT-1 + eT (3) 

with 

1 

A0 ~- 

0 0 0 
1 O 0 

-r -r 1 0 
0 --(~24 --r 1 

and A1 = 

0 0 r r 

0 0 0 r 
0 0 0 0 
0 0 0 0 

, (4) 

where the index T runs from 1 to N = n / 4  and eT is a (4xl) vector containing the 

stacked et, see Gladyshev (1961). 

The vector process in (3) is stationary if the roots of the characteristic equation 

] Aoz - A1 ]= z2(z 2 - r - r = 0, (5) 

are inside the unit circle, see Lfitkepohl (1991), where r and r are nonlinear functions 

of the r parameters  in (2). The process Yt in (2) is then said to be periodically 

stationary. When one of the solutions to (5) is equal to one, which implies 

r 1 6 2  1, (6) 

and all other solutions are inside the unit circle, there are three cointegration relations 
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between the elements of YT in the VAR representation (3). It is easily understood that  

these cointegration relations can be writ ten a s  Y1T--"~IY4T, Y2T-"~2Y4T and Y3T--~3Y4T, 

and hence that  Y1T -- a l  Y4T , Y2T -- a2Y1T , Y3T - ot3Y2T and implicit ly Y4T - o~4Y3T with 

a4 = 1 / ( a l a 2 a 3 )  are stat ionary variables, where the ai  parameters  are functions of 

7/. Hence, when YT has one unit root, the appropriate  differencing filter for Yt equals 

(1 - a , B )  under the restriction that  a~a2a3a4 = 1. In that  case (2) can be wri t ten as 

( y , . -  - + (7) 

w i t h  OtlOt20t30t 4 = 1 and a0 = or4 if s = 1. The a ,  and fl, are functions of the r 

parameters.  Given (7) and al~2r = 1, the characteristic equation (5) becomes 

I Aoz  - A1 I = z2( z - axC~2a3a4)(z - flxfl2fl3fl4) = 0 

= z2(z  - 1)(z -/~f12f13f14) = 0 (8) 

It is clear from (8) that  YT has a single unit root, which concern the values of a , .  

Two interesting situations can occur in the case of a single unit root in YT. Firstly, 

when a ,  = 1 Vs, the differencing filter (1 - a , B )  reduces to (1 - B).  Notice that  this 

corresponds to the parameter  restriction r + r = 1 in (2). In that  case model  (7) 

reduces to a PAR( l )  model for the first order differenced series A y t  = Yt -- Yt-1,  

A y t  = fl, A y t - 1  + et, (9) 

which we will denote as a periodic autoregression for an integrated t ime series [PARI]. 

Note that  a PARI model is a special case of a P IAR model. The characterist ic equation 

is equal to (8) with a ,  = 1 Vs. On the other hand, when a ,  = - 1  Vs, the series yt 

contains the seasonal unit root - 1  at the bi-annual frequency, see Hylleberg et al. 

(1990). In this case the (1 + B) filter is needed to remove the stochastic t rend and this 

corresponds to the parameter  restriction r - r = 1 in (2). Notice that  a ,  = - 1  

Vs results again in the characteristic equation (8). In this paper we will not consider 

such a seasonal unit  root. Secondly, when at least two a ,  differ from 1 and, the 

periodic differencing filter (1 - a , B )  with a l a 2 a 3 a 4  = 1 is required to obtain periodic 

stationarity,  we call Yt periodically integrated [PI], and the PAR model in (7) is then 

called a periodically integrated autoregressive model of order 2 [PIAR(2)] 1. Notice 

that  a PARI model  is a special case of a P IAR model. The key difference between a 

P IAR and a PARI model is that  periodic integration implies that  shocks in different 

1Notice that the conjecture in Ghysels & Hall (1993, footnote 3) that in the model Yt = 6syt-1 + 
)-'~-'~ 0jsAyt-j + et the restriction I-i,4=, ~f, = 1 implies periodic integration is not correct, unless p 
equals 1. 
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seasons have a different impact on the long run pattern of the time series. In fact, 

the stochastic trend may change the seasonal pattern of the series permanently, where 

the seasonal pattern is defined by the sequence of Y~T ranging from highest to lowest 

within year T. In contrast to PIAR models, in PARI models shocks have the same 

impact on each Y~T in the long run. 

Finally, we discuss one more aspect of a PIAR model. Since a P IAR assumes 

the adequacy of a periodic differencing filter, one may want to consider fourth order 

differences in order to get rid of the periodic variation in removing the stochastic trend. 

For example the model in (7) with the restriction a l a 2 a 3 a 4  = 1 can be rewritten in 

the following form 

A4Yt : ]~sA4Yt-1 -t- TIt, (10) 

where A4Yt  = Yt - Yt-4 and T/t is a periodic moving average [MA] process defined by 

~t = s -~- 0/sCt-1 -~- 0/s0/s-l~t-2 3 t- 0/sOls-10/s-3~t-3 with a-2  = 0/2, 0/ - -1  : O[3 and 0/0 = 0/4. 

If one neglects the periodic MA process, the representation in (10) suggests that  a 

P IAR process is observationally equivalent to a process that is so-called seasonally 

integrated, see Hylleberg et al. (1990). Notice that this equivalence would amount to 

having 1 unit root in the YT process in the PIAR case and 4(!) such unit roots in the 

A4 case. However, when one writes the ~/t process in a stacked form, it can be shown 

that (10) becomes 

f l ( B ) ( Y T  - -  Y T - , )  = OoeT + 0 leT- l ,  (11) 

where f l ( B )  is a (4 x 4) matrix with polynomials in B, and I O0z + Ol I= 0 has three 

solutions on the unit circle. In other words, an application of the A4 to a P IAR process 

implies overdifferencing since three redundant unit roots appear in the moving average 

part of the model for A4yt. Additionally, assuming all a ,  = 1 in a P IAR process, which 

amounts to the PARI process, it is even more obvious that PIAR, PARI and seasonally 

integrated processes are not observationally equivalent. 

3 M o d e l  S e l e c t i o n  

Now we turn to the issue of model selection in PAR models. This involves a determi- 

nation of the order of the PAR and tests for the most appropriate differencing filter. 

D e t e r m i n a t i o n  of  t h e  Order  p 

A first model selection step concerns the decision on the order p of the periodic autore- 

gression. This step can be based upon the Schwarz and Akaike and other Information 

criteria, on F-tests for parameter restrictions on the parameters of the highest lag, 



38 

and on LM tests for (periodic) autocorrelation in the residuals. An LM type test for 

first order periodic autocorrelation in a PAR(p) model boils down to an F-test  for the 

significance of the four lagged Dst~t in the following auxiliary regression 

4 p 

~, = ~_,[,~:D:, + O,D,tt + ~_, r -4- p.D:,~t_,] -4- ~. (12) 
s = l  i = 1  

After the appropriate order p has been determined, one can test whether the period- 

ically varying coefficients differ significantly from each other, using a standard F-test .  

In Boswijk and Franses (1994) it is shown that  such an F-test  asymptotically follows 

a standard F distribution. If the null hypothesis of no periodicity cannot be rejected, 

one can proceed with testing for (non)seasonal unit roots in a nonperiodic model along 

the lines of Hylleberg et al. (1990). Otherwise one proceeds with testing for unit roots 

in periodic models. In case one expects there to be only a single stochastic trend, as 

we assume in the present paper, there are two possible strategies to follow. The first 

strategy is that  one starts with a test for the restriction ~1~2a3~4 = 1 and then check 

whether the periodic differencing filter can be simplified to the (1 - B) filter. The 

second strategy tests the adequacy of the (1 - B) filter straightaway. 

Two Separate Tests 

Franses & Paap (1994) opt for the approach to test first whether O~10~20/3OL 4 = 1 in a 

general PAR(p) model written in a format like (7), and then test whether all a ,  = 1. 

For simplicity we explain this two-step strategy in the PAR(2) model (7). Exten- 

sions to higher order PAR models are straightforward and do not change asymptot ic  

distributions of the tests. We begin testing the following parameter  restriction in (7), 

4 

H0: 7r = H a ,  = 1, (13) 

see (8), against the alternative r < 1. This H0 can be tested using the studentized 

version of a Likelihood Ratio statistic 

i L/G = sign(~" - 1) nlog \ S - - ~ J '  (14) 

where SSRa corresponds to the sum of squared residuals in the unrestricted linear PAR 

model (2) and SSRo to the sum of squared residuals of the nonlinear model like (7) 

with ala2a3a4 = 1 obtained after nonlinear least squares. Under the null hypothesis 

of a single uni t  root, the L / L  follows a standard Dickey-Fuller distribution denoted by 

r ,  see Boswijk & Franses (1994). In case one includes four seasonal dummies and/or  
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four seasonal trends 2 in the test equation, one should use the distr ibutions for T, and 

r~ tabulated in Fuller (1976, table 8.5.1). 

If one rejects the hypothesis in (13), the series yt is periodically stationary. If the 

null hypothesis cannot be rejected, i.e. (1 - ~ B )  is the appropria te  differencing filter 

for yt,  one can proceed with testing for the adequacy of the (1 - B) filter in the series 

Yr. Given I-I~4=1 a ,  = 1, a test for (~s = 1 Vs amounts to three restrictions in the 

P IAR model. These restrictions can easily be tested using a s tandard F- tes t  which 

is asymptot ical ly  F distr ibuted as proved in Boswijk ~z Franses (1994). If a ,  = 1 Vs 

cannot be rejected, we have a PARI model  as in (9), otherwise we have P IAR model. 

Addit ional ly a test for a ,  = 1 for some though not all s ,  i .e.  the (1 - B)  filter is 

applicable in a few seasons, can also be performed using F- tes ts .  

Table 1. Simulated fractiles of t-tests for the significance of lagged periodically differ- 
enced t ime series in a PAR(2) process based on 5000 replications. The effective sample 
size is 120 observations. 

DGP 1 

O~ 1 0~' 2 OE 3 OL' 4 

U / R  a fractiles 
5% 10% 20% 50% 80% 90% 95% 

1.053 0.888 1.071 0.999 U -1.65 -1.21 -0.78 0.07 0.90 1.38 1.74 
R -1.64 -1.26 -0.79 0.05 0.91 1.33 1.70 

0.957 1.022 1.032 0.991 U -1.61 -1.20 -0.76 0.06 0.92 1.39 1.77 
R -1.61 -I.23 -0.78 0.01 0.92 1.37 1.73 

0.744 1.021 1.371 0.960 U -1.64 -1.26 -0.78 0.06 0.89 1.34 1.71 
R -1.63 -1.24 -0.79 0.05 0.91 1.34 1.74 

1The DGP is Yt = ctsyt_~ + et with a4 = 1/ (a lOt2ot3)  and et ~ N(0, 1). The table shows the  

empirical fractiles oft-tests for the significance of the/~, parameters in the model (Yt - a ,y , - l )  = 
&(Yt-1 - a , - l y t - 2 )  + e, with the restriction a4 = 1/(c~la2as) imposed (R) and without this 
restriction (U). 

A final step in this model selection strategy can involve a test for the significance of 

parameters  like the fl~ in the PAR model (7). Given that  (1 -c~sB)yt  is a (periodically) 

s tat ionary process, one may expect  that  t-tests for the significance of the fl~ asymp- 

totically follow a s tandard normal distribution under the null hypothesis. However, 

since the or, have to be est imated,  one may expect slightly biased distr ibutions in small 

samples. Table 1 shows simulated fractiles of a t-test for the significance of one of the 

second order terms, while the DGP is a PIAR(1) for a sample size of 120 observations. 

These t-tests are performed in a PAR(2) model (7) with and without the parameter  

restriction of periodic integration, 4 1-I,=1 c~, = 1. On the left hand side of the empirical  

2 It is easy to see that one always should include four seasonal dummies and four seasonal trends in 
the  regression since the model y t - l J -  rt = r  r ( t - 1 )  ) +et implies yt = I-t, + v,t + r  +et 
w h e r e  #~ = p - Csp + r  and r, = (1 - r 
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distribution the fractiles closely match their asymptotic values, while on the right hand 

side the fractiles are only slightly larger. 

A J o i n t  Tes t  

An alternative to the previous, what one can call a LR,. two-step method, is to start 

testing whether a (1 - B) filter is appropriate straightaway. One approach may be 

to test e.g. in model (2) whether r + r = 1, using a standard F-test.  This test 

is however not asymptotically F distributed, because the number of unit roots under 

the null hypothesis is different from the number of unit roots under the alternative 

hypothesis. Instead, one may use the tests proposed by Ghysels • Hall (1993). Rewrite 

the PAR(p) model in (1) in the following form 

p-1 

Ayt = tSsYt-1 + p, + r~t + ~ OsjAyt_j + et, (15) 
j=l 

where 6s, p,, 7"~ and 08j for j = 1, ..,p - 1 vary with the season and et "~ N(O, a2). A 

first order differencing filter (1 - B) for Yt corresponds to 

H0 : 68 = 0 for all s. (16) 

This hypothesis is tested against the alternative 

H~ : ~, # 0 for at least some s, (17) 

which implies that Yt can be either periodically integrated or periodically stationary or 

even explosive. This can be viewed as a drawback since under H,  we still do not know 

whether Yt has a stochastic trend or not. The hypothesis in (16) can be tested using a 

Wald test. This Wald test can be expressed as 

W / 4 -  N _ ~-~t2 (18) 
n -- k ~" 

where is, represents the t-value for the test 6, = 0, k is the number of regressors in 

(15) and i = 1,2,3 in case (15) contains, 1: no seasonal dummies and no trends, 2: 

only four seasonal dummies and 3: four seasonal dummies and four seasonal trends. 

For a similar reason as in footnote 2, we have to include four seasonal dummies and 

four seasonal trends. Boswijk ~: Franses (1994) prove that the asymptotic distribution 

of the Wald test in (18) is the sum of a X2(3) and the square of the Dickey-Fuller 

distribution, indicating that Wi4 amounts to a joint test for a single unit root in YT 

and for ~, = i Vs. We simulated some critical values of the tests, see table 2. These 

critical values will be used in the empirical part of this paper. 
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Table 2. Critical values of the Wi4 tests based on 10000 Monte Carlo replications 1'2. 
sample W14 W24 W34 

size 20% 10% 5% 20% 10% 5% 20% 10% 5% 

40 1.74 2.35 2.90 2.63 3.37 4.17 3.61 4.63 5.62 
80 1.62 2.15 2.62 2.36 3.01 3.59 3.12 3.84 4.51 

120 1.62 2.13 2.60 2.35 2.95 3.52 3.03 3.71 4.33 
160 1.59 2.06 2.51 2.30 2.86 3.40 2.97 3.67 4.27 

1The DGP is yt = yt-1 + et with et ~ N(0, 1) and the model to be estimated is Ayt = 6oYt + tit, 
including seasonal dummies and trends if necessary. 
2W14 corresponds to the test statistic in (18) when the test equation contains no seasonal dummies 
and trends, W24 with seasonal dummies and W34 with seasonal dummies and trends. 

In order to test the validity of the (1 - B) filter in a PAR(p) model, another possi- 

bility is to modify the Dickey-Fuller t-test for periodic autoregressions by considering 

p--1 

A y t  = tSyt-1 "4- #8 + r t  + ~ Os jAy t_ j  + f-t (19) 
j=l 

and a t-test for the significance of $, TpADF , i.e. a periodic Augmented Dickey-Fuller 

test [PADF]. Under the null hypothesis, this t-test follows a standard Dickey-Fuller 

distribution, tabulated in Fuller (1976, table 8.5.1), see Ghysels & Hall (1993). Note 

that they only allow for a nonseasonal trend term as in (19). If one cannot reject the 

hypothesis using the TpADF test the series contains a unit root at the zero frequency. 

In case one rejects the null hypothesis, there are again several possibilities. The series 

can be periodically integrated, stationary or even explosive. Note that not every PIAR 

model of order p can be written in the form (19) with 6 # 0 due to the restriction that 

6 is not periodically varying, so not all P IAR processes are captured in the alternative 

hypothesis. Hence, the TPADF is in a sense more restrictive than the Wi4 test. 

S o m e  S i m u l a t i o n  R e s u l t s  

To compare the two-step and joint model selection strategies we set up a Monte Carlo 

study. The performance of the test statistics is investigated using six data generating 

processes [DGPs]. Table 3 shows the DGPs we consider in our simulations. Table 

4 shows the outcome of the Monte Carlo simulations. The first block displays the 

relative number of cases a decision is made if the test equations do not contain any 

deterministic components, the second if the test equations contain seasonal dummies 

and the last block if the test equations contain seasonal dummies and seasonal trends 

except for (19), where we include a nonseasonal trend. We first concentrate on the 
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Table 3. The parameters  of the DGPs, used in the Monte Carlo studies 1. 
DGP a 1 ~2 a3 a4 ~1 f12 ~3 ~4 

I P IAR 1.053 0.888 1.071 0.999 -0.253 -0.352 -0.081 0.331 
II P I A R  0.957 1.022 1.032 0.991 0.009 -0.649 -0.398 -0.646 
III P IAR 0.744 1.021 1.371 0.960 -0.302 -0.539 -0.118 -0.365 
IV PARI 1 1 1 1 -0.315 -0.657 -0.211 0.127 
V PARI 1 1 1 1 -0.037 -0.554 -0.283 -0.663 
VI PARI 1 1 1 1 -0.354 -0.334 -0.027 -0.436 

1Each DGP is (yt-aoyt-1) = ~,(yt-l-c~,-lyt-2)+et, with a4 = 1/(aia2ct3) and et ~ N(0, 1). The 
chosen values of the autoregressive parameters are based upon parameter estimates of a second order 
PIAR and a first order PARI model for three U.K. macroeconomic time series, Total Investment, 
Exports and Trade Balance, see Osborn (1990) for a complete description of the data and Franses 
& Paap (1994) for additional details. 

Table 4. Performance of the test strategies, based on 5000 replications. The sample 
size is 120. The cells report  the relative frequencies that  a certain decision is made 
based on the proposed test s trategy 1. All tests are evaluated at a 5% significance level. 

DGP 
strategy decision P IAR PARI 

I II III  IV V VI 

no constants and no trends 
LR~ PI 94.74 95.18 95.18 94.14 94.62 94.68 
L /G 2-step PI  ~z no A 75.00 26.76 95.14 4.90 4.34 4.94 
LR~ 2-step PI  & A 19.74 68.42 0.04 89.24 90.28 89.62 
W14 test A 24.22 76.80 0.04 94.68 94.50 93.96 
PADF /X 91.96 95.12 92.76 94.80 94.58 94.32 

constants and no trends 
LR~ PI 94.94 95.28 95.00 95.40 95.14 95.04 
L /G 2-step PI  & no ZX 50.14 11.60 94.66 5.02 5.10 4.80 
L /G 2-step PI  & zk 44.80 83.68 0.34 90.38 90.04 90.24 
W24 test ~X 55.66 91.19 0.32 94.62 94.36 94.96 
PADF A 93.78 96.42 95.70 95.50 96.40 95.56 

constants and trends 
LR~ PI 96.02 96.20 96.74 95.62 96.48 95.80 
L /G 2-step PI  & no zh 26.20 7.40 93.52 5.10 5.60 4.80 
LR~ 2-step PI  & A 69.42 88.80 3.22 90.52 90.88 91.00 
W34 test A 81.16 93.60 4.34 96.08 94.60 94.24 
PADF A 94.88 93.06 77.56 93.92 97.06 96.30 

IThe DGPs are displayed in table 3. 
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results for the first three DGPs, where the series are periodically integrated. The lag 

order p in the test regressions is set equal to 2 as in the DGP except for the PADF 

case in equation (19) which can suffer from serial correlation in the residuals because 

of the constant ~ parameter. In that case we add lagged Ay t with periodically varying 

parameters to this equation until there is no significant periodic serial correlation in 

the residuals using the LM test based on (12). We see that the LR~. test performs as 

expected, i.e. the relative number of cases that is rejected equals about the significance 

level of 5%. The PADF test has very low power against periodic integration, since it 

almost always opts for the (1 - B) filter except for DGP III  in case seasonal dummies 

and a trend are included in the test equation. The test strategies have difficulties with 

the second DGP, where the a ,  are near unity and almost no difficulties with the third 

DGP, where some of the a8 differ substantially from unity. The L / ~  two-step strategy 

chooses the inappropriate (1 - B) filter less frequently than the Wi4 and PADF tests, 

especially for the first two DGPs. The relative frequency that the test strategies select 

a (1 - B) filter increases if we include deterministic elements in the test equations. 

When the DGPs are PARI processes (the last three DGPs in table 3) the overall 

results for the empirical size of the LP~ test do not change. The PADF and the Wi4 

test provide in about 959{ of the cases the right decision, which corresponds to the 

chosen level of significance. Note that now we have set the order p of the regression 

(19) equM to 2 without a priori testing, since the auxiliary regression corresponds to 

the DGP. The LR, two-step method suffers from the fact that we have to perform two 

tests and hence only in about 90% of the cases we make the right decision. The results 

do not change if we include deterministic components in the test equations. 

In sum, the empirical performance of the model selection strategies in case the 

DGP is PARI seems similar. The LR, two-step strategy seems to opt for the (1 - B) 

filter less frequently than the W~4 test in case the DGP is PIAR. The PADF test has 

no power against periodic integration whatsoever. The main theoretical advantage of 

the LR~ two-step strategy method is that  one obtains information on the stochastic 

trend properties in case (1 - B) is rejected, while a rejection using Wi4 tests does not 

lead to any concrete decision. The practicM advantage of the two-step strategy comes 

from the fact that in case in the first step ala2a3a4 = 1 cannot be rejected, we can 

test for the significance of the deterministic components using standard F tests, before 

continuing with the second step, i.e. testing for a (1 - B) filter, which can increase 

the power of the test strategy. Under the restriction ala2asa4 = 1, these F tests are 

asymptotically F distributed. 
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Empirical Results 

The two test strategies have been applied to seven log transformed U.K. macroeconomic 

t ime series. A detailed report  of the first stages of the model selection procedure, 

including determinat ion of model order p and testing for periodicity can be found in 

Franses & Paap (1994). It turns out that  all series can be described by a periodic 

model. Table 5 displays the outcomes of the LP~ two-step strategy and the W24, 

W34 and PADF tests. The LP~r two-step method results suggest that  all series are 

periodically integrated,  i.e. the (1 - B)  filter is not applicable. Results are the same if 

we add seasonal trends in the test equations, see Franses & Paap (1994). The periodic 

ADF test indicates that  the (1 - B)  filter is always useful. This conclusion does not 

change if we include a determinist ic t rend in the test equations. Using the W24 test  we 

find that  (1 - B)  is not appropriate  for all series. If we however include four seasonal 

determinist ic  trends in the test equation, the W34 test  cannot reject the hypothesis of 

the presence of a (1 - B) filter except for Imports.  

Table 5. The test statistics for the LP~r two-step strategy and the outcomes of the 
W24, W34 and PADF test for seven lo$ transformed U.K. macroeconomic t ime series 1. 

series 2 order 3 L /G F~ lags 3 PADF lags 3 W24 W34 

Imports  1 0.105 4.772** 1 -0.351 3.778** 6.126"* 
Workforce 1 0.584 9.499** 1,4 -0.110 10.257"* 0.461 
Nond. Cons. 1 0.586 31.235"* 1,4 -0.358 24.857** 1.818 
Exports  2 -1.074 6.292** 1 -0.764 1 5.561"* 2.570 
Total Inv. 2 -1.414 10.155"* 1,4 -0.724 1 8.925** 1.113 
Private Inv. 1 -0.146 4.467** 1 -0.019 3.591"* 2.338 
Total Cons. 1 1.108 26.768** 1,4 0.831 28.910"* 1.093 

** significant at a 5% level. 
1The samples are 1955.1-1988.4, except for Private Investment, 1962.1-1988.4. 
2Each model .contains four seasonal dummies and four seasonal trends for W34 case. The model for 
Workforce contains a dummy variable for 1959.2, for Exports in 1967.4 and 1968.1 and for Total 
Consumption for 1979.3 and 1980.2 to capture outlying observations. The results do not change 
much when we exclude these dummy variables. 
3Order denotes the order of the PAR, model, which is used to test for periodic integration. Lags 
denote which lagged Ayt are used in the test regression while testing for the (1 - B) filter using the 
PADF and the Wi4 tests. The number of lags is determined using LM type diagnostics for periodic 
autocorrelations in the residuals. 
4Fz~ denotes the outcomes of an F-test for the validity of a (1 - B) filter in a PIAR model. This 
FA test asymptotically follows a standard F distribution. 

Table 6 shows the parameter  est imates of the P IAR models for the seven series 

together with some diagnostic test statistics. The test for serial correlation in the 

residuals in the nonlinear P IAR models are computed using the Gauss-Newton re- 
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Table 6. Parameter estimates of the PIAR models a for seven U.K. macroeconomic time 
series. 

par. Imports Workf. 2 N. Cons. Exports 2 Tot. Inv. Priv. Inv. T. Cons? 

#, 0.347 0.568 -0.141 0.390 -0.506 0.573 -0.432 
(0.138) (0.116) (0.082) (0.126) (0.192) (0.237) (0.098) 

#2 -0.229 -0.189 0.762 0.086 0.817 0.302 0.912 
(0.140) (0.123) (0.076) (0.130) (0.182) (0.237) (0.089) 

#3 0.267 -0.564 -0.297 -0.384 -0.528 -0.632 -0.573 
(0.134) (0.119) (0.083) (0.133) (0.218) (0.249) (0.099) 

#4 -0.261 0.155 -0.341 -0.086 0.270 -0.252 0.058 
(0.139) (0.112) (0.081) (0.104) (0.210) (0.234) (0.093) 

a l  0.965 0.944 1.004 0.957 1.053 0.925 1.033 
(0.014) (0.011) (0.008) (0.013) (0.022) (0.026) (0.009) 

as 1.038 1.019 0.932 1.022 0.888 0.972 0.918 
(0.015) (0.012) (0.007) (0.016) (0.019) (0.264) (0.008) 

aa 0.974 1.056 1.030 1.032 1.071 1.073 1.057 
(0.014) (0.012) (0.008) (0.015) (0.017) (0.028) (0.009) 

/3a 0.009 -0.253 
(0.143) (0.214) 

/32 -0.649 -0.351 
(0.166) (0.137) 

/33 -0.398 -0.080 
(0.124) (0.160) 

/34 -0.646 0.331 
(0.153) (0.237) 

diagnostic test statistics 3 

J-B 1.000 1.353 5.521 2.211 0.599 2.067 4.280 
(0.606) (0.508) (0.063) (0.331) (0.741) (0.356) (0.112) 

LM1 1.966 0.268 0.050 3.200 0.764 3.417 0.324 
(0.163) (0.605) (0.823) (0.076) (0.384) (0.068) (0.570) 

LM4 1.286 2.168 1.400 0.795 2.068 2.075 0.891 
(0.279) (0.077) (0.238) (0.531) (0.090) (0.090) (0.472) 

1The models are yt = ~'~=t Oat[a,yt-x +~, +~,(Y~-I -a,- iyt-2)]  +et with cqa2aacq = 1, where 
Ds~ represent seasonal dummies (standard errors between brackets). 
~We include dummy variables for Workforce in 1959.2, for Exports in 1967.4 and 1968.1 and for 
Total Consumption for 1979.3 and 1980.2 to capture outlying observations. 
aJ-B is the Jarque-Bera normality test, LM1 the F-version of a test on first order serial correlation 
in the residuals and LM4 the same test for first-to-fourth order serial correlation (p-values between 
brackets). The LM tests are calculated using (21). 
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Table 7. Parameter estimates of the PARI models 1 for seven U.K. macroeconomic time 
series. 

par. Imports Workf. 2 N. Cons. Exports 2 Tot. Inv. Priv. Inv. T. Cons?  

~1 0.010 0.002 -0.076 -0.027 -0.006 - 0.102 -0.056 
(0.007) (0.001) (0.017) (0.008) (0.014) (0.009) (0.014) 

#2 0.039 0.001 -0.008 0.029 -0.038 0.055 - 0.016 
(0.007) (0.001) (0.016) (0.007) (0.009) (0.009) (0.013) 

#3 0.015 0.003 0.034 0.005 0.012 0.026 0.034 
(0.009) (0.001) (0.008) (0.008) (0.012) (0.009) (0.007) 

#4 -0.013 -0.000 0.019 0.026 0.042 0.067 0.038 
(0.007) (0.001) (0.008) (0.006) (0.017) (0.009) (0.011) 

/~la -0.221 0.563 0.161 0.037 -0.216 0.226 
(0.172) (0.212) (0.152) (0.150) (0.218) (0.250) 

/~12 -0.320 -0.354 -0.233 -0.554 -0.590 - 0.421 
(0.164) (0.158) (0.160) (0.146) (0.130) (0.154) 

/313 -0.009 -0.110 -0.292 -0.283 -0.113 - 0.375 
(0.165) (0.118) (0.113) (0.126) (0.116) (0.110) 

/~14 -0.257 -0.022 0.323 -0.663 0.134 0.044 
(0.172 (0.132) (0.191) (0.159) (0.206) (0.139) 

fl4x 0.334 0.279 0.185 0.436 
(0.142) (0,160) (0.132) (0.160) 

f14~ 0.039 0.691 0.528 0.557 
(0.125) (0.102) (0.109) (0.102) 

/~43 0.615 0.119 0.631 0.287 
(0.142) (0.206) (0.217) (0.168) 

]344 0.193 0.490 0.207 0.128 
(0.201) (0.158) (0.211) (0.016) 

diagnostic test statistics 3 

J-B 0.061 6.700 1.399 0.300 6.076 1.155 10.630 
(0.970) (0.035) (0.497) (0.861) (0.048) (0.561) (0.005) 

LMa 0.011 0.388 1,373 3.821 0,032 2.953 0,022 
(0.916) (0.535) (0.244) (0.053) (0.858) (0.089) (0.883) 

LM, 0.904 0.325 1.228 2.153 0.473 0.098 1.152 
(0.464) (0.861) (0.303) (0.078) (0.756) (0.258) (0.336) 

4 1The models are Ay, _-- E .= I  D.,~.+E~-~ ,6i.AY,-i]+e,, where D., represents seasonal dummies. 
~We include dummy variables for Workforce in 1959.2, for Exports in 1967.4 and 1968.1 and for 
Total Consumption for 1979.3 and 1980.2 to capture outlying observations. 
aJ-B is the Jarque-Bera normality test, LMa the F-version of a test on first order serial correlation 
in the residuals and LM4 the same test for first-to-fourth order serial correlation (p-values between 
brackets). 
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gression, see Davidson & MacKinnon (1993). Write the PIAR model in the following 

form 

Yt = xt(r + et, (20) 

where xt(r denotes the explanatory part of the PIAR model and r a parameter 

vector containing say (/ts, c~s,/3, Vs). Testing for serial correlation of order one in the 

et process boils down to testing whether p differs significantly from zero using a F-test 

in the following linear regression 

~t = X,(r + P~t-1 + ~t, (21) 

where Xt(r is a vector containing the first derivatives of the regression function xt 
with respect to the elements of r evaluated at the ML estimates ~. The diagnostic 

test results in table 6 indicate that the PIAR models do not seem to be misspecified. 

Furthermore, note that the a ,  are estimated close to unity indeed. Finally, we do not 

restrict some/3~ values to zero for illustrative purposes. 

Table 7 shows the PARI models we have estimated for the seven series together with 

tests for serial correlation and normality of the residuals. For comparability purposes, 

we only include four seasonal dummies in the PARI models, similar to what we do for 

the PIAR models. We will use the estimates in table 7 for our forecasting experiment 

in the next section. Note that we often need the fourth lag of Ayt to get rid of serial 

correlation in the residuals. In the following section we investigate whether the imposed 

restriction (1 - B) as in a PARI model has implications for forecasting using Monte 

Carlo simulations and forecasts generated by the empirical models constructed in this 

section. 

4 A Forecasting Comparison 

In the previous section we considered model selection strategies for PAR models. We 

now turn to the question whether it matters for forecasting if one selects either one of 

the models. A Monte Carlo experiment can give some insight in this subject matter. 

We also investigate how PIAR and PARI models perform in practice when comparing 

the forecasting performance of the models for the seven U.K. series analysed in the 

previous section. 

M o n t e  C a r l o  R e s u l t s  

First, we set up a Monte Carlo experiment to analyze the forecasting performance of 

both models when the DGP is either the PARI or the PIAR process. We use the six 
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Table 8. Forecasting performance of PIAR and PARI models, based on 5000 repli- 
cations. The cells report the relative frequencies that a P IAR model forecasts better  
than a PARI model, based on the MSPE of the one-step ahead forecasting errors. The 

sample size used for estimation is 120. 
DGP 1 number of quarters all 

forecasts I I II III IV quarters 

P IAR 2 II 

96 53.62 90.76 51.80 61.80 86.96 

48 49.74 82.66 47.44 60.18 82.58 

12 54.66 45.12 65.04 47.40 73.20 

96 64.44 50.38 46.90 40.52 51.20 

48 62.62 51.98 46.62 42.68 52.42 

12 56.76 51.52 46.90 45.72 52.74 

96 97.80 96.64 90.40 83.24 99.90 
III 48 92.16 91.56 76.16 74.92 99.50 

12 69.36 70.98 53.18 57.76 94.38 

IV 

PARI 2 V 

VI 

96 42.16 42.96 43.64 42.26 17.76 

48 45.54 45.20 46.48 46.36 25.30 

12 48.38 48.68 48.74 48.06 37.58 

96 40.94 42.92 40.78 43.74 17.42 

48 43.82 45.54 44.82 46.18 25.76 

12 48.02 47.68 48.78 49.30 39.22 

96 41.56 43.32 42.00 42.18 17.22 
48 45.20 46.08 45.78 44.54 25.48 
12 48.54 48.90 48.92 48.14 37.20 

1In each replication 216 observations are generated using the DGPs displayed in table 3. The first 
120 observations are used to estimate a PIAR and a PARI model, while the last 96 observations 
are used to evaluate the one-step ahead forecasts based on the estimated models. 
2When the DGP is PARI(1), we estimate a PIAR(2) and PARI(1) model, while when the DGP is 
PIAR(2) we estimate a PIAR(2) and a PARI model of order k, where the order k is the smallest 
order for which the model does not contain periodic serial correlation in its residuals based on the 
periodic LM test, see (12). 
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DGPs of table 3 to generate 216 observations. The first 120 observations are used to 

est imate a P IAR and a PARI model and the last 96 are used to evaluate forecasts. 

Table 8 shows the outcomes of the simulations. The cells of the table show the relative 

frequency that  the P IAR model forecasts bet ter  than the PARI model. The comparison 

is based upon the mean squared of one-step ahead forecasting errors [MSPE] in each 

season separately and over all seasons. Hence, the cells of table 8 show the relative 

number of times that  the MSPE of the P IAR forecasts is smaller than that  of the PARI 

forecasts. So, it  is possible that  the forecasting performance of the PARI model  in each 

season separately is bet ter  than in the four quarters together and vice versa. 

The first three DGPs correspond with a P IAR process. Especially for DGP I and 

III, where one of the as differs substantial ly from 1, we observe that  it mat ters  if 

one selects the wrong model. The outcomes of the simulations depend on the chosen 

parameters.  For the third DGP the P IAR model forecasts bet ter  in more than 90% of 

the cases, while for the second DGP, where the a ,  values are near 1, there is not so 

much difference in forecasting performance. 

These results are in contrast to those for the last three DGPs, which are PARI 

processes, i.e. the outcomes for each DGP are roughly the same. A P IAR model 

forecasts bet ter  in each quarter in about 45% of the cases. However, the forecasting 

performance of P IAR models decreases the more forecasts one evaluates. Notice further 

that  when we evaluate the forecasts within each season, we get a different picture than 

when we consider the forecasting performance in the four seasons together. In that  case 

the P IAR model may be bet ter  only in between 17% and 40% of the cases, depending 

on the number of forecasts. 

Empirical Results 

Another evaluation of the relative forecasting performance of both models can be ob- 

tained using the models for the U.K. series discussed previously in tables 6 and 7. 

We assume three different forecasting horizons. The first part  of the sample is 

used to est imate the model, while the second part  is used to evaluate the forecasts. 

From table 9 we see that  for the separate quarters in 20 of the 84 cases the MSPE of 

the P IAR models is significantly smaller than the MSPE of the PARI models, using 

nonparametr ic  sign test at a 10% level. In 13 cases it is the other way around. In 

51 cases there is no significant difference in forecasting performance, although the 

P IAR model forecasts bet ter  in 27 of these 51 cases. Especially, in the third quarter 

the P IAR model produces bet ter  forecasts than the PARI model. When we look at 

the forecasting performance of the four quarters together, we see that  in 5 cases the 

P IAR models forecast significantly bet ter  and in 2 cases the PARI model. The balance 
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Table  9. F o r e c a s t i n g  c o m p a r i s o n  of  P I A R  v e r s u s  P A R I  mode l s .  T h e  cells r e p o r t  

w h e t h e r  t h e  M S P E  of o n e - s t e p  a h e a d  fo recas t s  f r o m  t h e  P I A R  m o d e l  is s m a l l e r  ( - )  or  

l a rge r  ( + )  t h a n  t hose  f r o m  t h e  P A R I  m ode l .  S igni f icant  differences a re  checked  u s i n g  

a n o n p a r a m e t r i c  s i g n - t e s t .  
ser ies  n u m b e r  of  q u a r t e r s  t o t a l  

f o r ecas t s  I I I  I I I  I V  

72 - + - - - 

I m p o r t s  48 - - §  - - 

24 - - *  +* - * *  +*  

W o r k  force  

72 + + - * *  - - * *  

48 + + - * *  - + 

24 +* + - *  + + 

N o n d u r a b l e  C o n s u m p t i o n  

72 - - *  + +** 

48 - + - - 

24 §  § - - * *  

E x p o r t s  

72 - + - *  +** § 

48 - +*  - *  + + 

24 - +*  - +*  + 

To ta l  I n v e s t m e n t  

72 + -F* - - § 

48 + + + - *  § 

24 + -F -F* - *  § 

P r i v a t e  I n v e s t m e n t  

72 -{- -{- -F d-* -t-* 

48 - *  -F - *  - * *  - * *  

24 - *  § - * *  - * *  - * *  

To ta l  C o n s u m p t i o n  

72 - - - +*  § 

48 - *  . . . .  * 

24 - * *  -F - *  - - * *  

* significant at 10% and ** significant at 5% using a two sided nonparametrie sign-test. 
1The models are estimated until 70.4, 76.4 and 82.4, while forecasts are generated for 1971.1-1988.4 
(72), 1977.1-1988.4 (48) and 1983.1-1988.4 (24), respectively. 
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between + and - signs is roughly equal. The number of cases that the P IAR model 

forecasts (significantly) better is larger when the forecasting horizon is smaller. The 

forecasting performance of the PARI model is slightly better when the oil crisis in 1973 

is included in the forecasting evaluation period i.e. for 72 out of sample forecasts, 

while the PIAR model forecasts significantly better when the crisis period is in the 

estimation sample. 

To summarize, on the basis of Monte Carlo experiments we conjecture that in 

general, forecasting with PARI models, when the DGP is PIAR, is worse than vice 

versa, especially when at least one of the as parameter differs substantially from unity. 

The empirical results in table 9 are however not as convincing as the Monte Carlo 

results. 

5 C o n c l u s i o n  

In this paper we considered model selection and forecasting issues of two restricted 

periodic autoregressive models. The first is a periodic model in first differences, the 

second a periodically integrated model, which contains a stochastic trend with an 

impact that  varies with the seasons. The impact of a shock in the latter model depends 

on the quarter in which the shock occurs and the impact is different for each season. In 

the former model shocks have the same impact on each quarter of the series in the long 

run. Therefore, the choice between the two models becomes relevant if one wants to 

make forecasts based on an estimated model. Since a periodic model in first differences 

is a special case of a periodically integrated model, a possible selection strategy is to 

test for periodic integration first and then to test whether the periodic differencing 

filter can be simplified to a first difference filter. In case one is only interested in the 

question whether the series contains a unit root at the zero frequency, one can start 

directly with testing for such a unit root. A drawback of this approach is that, in case 

of rejection one obtains no insight into the possible presence of stochastic trends. Of 

course, such a result may complicate the construction of multivariate models since this 

typically involves aspects as cointegration and common stochastic trends. 

The two model selection strategies and the forecasting performance of both models 

have been compared using both Monte Carlo simulations and empirical time series. The 

main recommendation is that we strongly suggest not to use the periodic ADF test due 

to its low power against periodic integration. The LR+ two-step strategy seems to opt 

less frequently for the (1 - B) filter in case the DGP is P IAR than the Wi4 test. The 

theoretical disadvantage of the Wi4 test is the lack of information on the (stochastic) 

trend in case the presence of the (1 - B) filter is rejected. Besides, the LR: two-step 

strategy gives opportunities for testing for the significance of deterministic components 
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after the hypothesis of a periodic stochastic trend cannot be rejected, which can give 
some increase in power. For the forecasting performance of the models it seems that 

forecasting with a periodic model in first differences when a periodically integrated 

model is appropriate is worse than vice versa. This is especially the case when (one 

of) the parameters in the periodic differencing filter differs substantially from unity. 
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