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A survey of cubic minimal surfaces is presented, based 
on the concept of fundamental surface patches and 
their relation to the asymmetric units of the space 
groups. The software Surface Evolver has been used 
to test for stability and to produce graphic displays. 
Particular emphasis is given to those surfaces that can 
be generated by a finite piece bounded by straight 
lines. Some new varieties have been found and a sys-
tematic nomenclature is introduced, which provides a 
symbol (a ‘gene’) for each triply-periodic minimal 
surface that specifies the surface unambiguously. 

‘An experiment is a question which we ask of Nature, 

who is always ready to give a correct answer, provided 

we ask properly, that is, provided we arrange a proper 

experiment.’  
C. V. Boys, Soap Bubbles, 1890 

The Society for Promoting Christian Knowledge, London 
 
WHEN we consider growth and form, morphogenesis, meta-
morphosis and shapes generally, in our three-dimensional 
space, it is necessary to have a vocabulary1. Since classi-
cal times, the fundamental elements have traditionally 
been the five Platonic solids2 (the cube, octahedron, tet-
rahedron, icosahedron and dodecahedron), along with the 
sphere. The 15 books of Euclid culminate in a description 
of how to inscribe each of the Platonic solids in a cube or 
in a sphere. 
 In our culture, the cube dominates. Hugh Kenner, in his 
essay on Buckminster Fuller wrote: ‘Each of us carries  
in his mind a phantom cube, by which to estimate the 
orthodoxy of whatever we encounter in the world of 
space’3. It is not an accident that we prefer the cube  
because its three sets of edges are orthogonal, that is, it 
can be changed in one direction without affecting the 
others. Descartes invented the Cartesian coordinate sys-
tem, the x, y, z coordinates, which permitted the represen-
tation of geometry in space as an algebra of symbols. 
 However, especially for biological purposes, we need 
to consider curved surfaces. The sphere is important; 
typically, it occurs in bubbles, where the physical condi-
tion is that the content should be the maximum for a given 
surface area; but it is only the simplest of all curved  
surfaces. Life begins with the cell or micelle, where a 
limited number of lipid molecules form a bilayer which 

encloses a volume and makes the all-important distinction 
between inside and outside. Next, there may be aggregates 
of cells, foam, where a volume is divided into separate 
regions by curved partitions. Natural foams are usually 
irregular with a spread of cell shapes, but crystallography 
has provided the theory of idealized foams, where all the 
cells are identical. 
 Crystallography has supplied the theory for geometry 
of the regular periodic arrangements of molecules in space. 
In crystals, there are asymmetric ‘motifs’, all identically 
situated, repeated infinitely in three non-coplanar direc-
tions. It was a triumph of 19th-century theory to discover 
that there are exactly 230 different symmetries of such 
arrangements – the 230 space groups4. Geometrically, the 
asymmetric unit may be seen as a simple convex polyhe-
dron containing the asymmetric motif, which is repeated 
by the symmetry operations to fill all space. By curving 
the faces of such a polyhedron, it is possible to make a 
3D jigsaw puzzle piece such that many copies of such a 
piece will fit together in only one way to fill space peri-
odically, with the symmetry of any one of the 230 space 
groups5. Each of the 230 space groups can be specified 
by the shape of such a piece. 
 We are concerned here to fit elements of surface –  
patches – into these units, so that the surface becomes 
continuous through all space, dividing it into two, not 
necessarily equal, sub-spaces by a non-self-intersecting 
two-sided surface. The elements of symmetry act like a 
generalized kaleidoscope on the motif. We thus generate 
two-dimensional manifolds of complex topology and non- 
Euclidean metric embedded in three-dimensional space. 
 Here, we will confine ourselves to the cubic space 
groups, since no parameters are involved and the surfaces 
of this class are of the greatest complexity and interest. 
These surfaces are invariant structures, comparable to the 
five regular solids, in terms of which many naturally-
occurring structures can be understood and described6–9. 
For example, in the structure of sodalite (a mineral zeo-
lite used in water-softening), the silicate cage lies on the 
P-surface. 
 Coxeter and Petrie, when still undergraduates, discov-
ered a number of infinite polyhedra10 (the sodalite net-
work was one), closely related to these periodic minimal 
surfaces (PMS) by relaxing the condition that polyhedra 
had to be convex. Some of the PMS can be obtained by 
curving the faces of such polyhedra and by connecting 
them with catenoidal tunnels. *For correspondence. (e-mail: lord@metalrg.iisc.ernet.in) 
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Minimal surfaces 

Surfaces whose mean curvature H is everywhere zero are 
minimal surfaces – any sufficiently small patch cut from 
a minimal surface has the least area of all surface patches 
with the same boundary. The shapes taken by soap films 
are minimal surfaces. The catenoid, the surface of revolu-
tion of a catenary, is a simple example. It is the shape 
taken up by a soap film hung between two circular rings. 
If the rings are far apart, the only solution is that of two 
isolated flat films covering each ring. If the rings are close 
together, then there are two catenoidal solutions, one sta-
ble and realizable as an actual soap-film, and the other 
unstable. The first is almost a cylinder stretching directly 
from one ring to the other and the second also stretches 
from one ring to the other, but has a waist strongly pin-
ched into a much smaller diameter. Both have H = 0, but 
the first has a smaller area. As the rings are moved apart 
from each other, the two surfaces approach each other 
and at a critical distance they become identical. For greater 
separations, there is no catenoid. Similar phenomena are 
to be found for more complicated minimal surfaces; cate-
noid-like ‘tunnels’ are to be found in most PMS. A variant 
of the catenoid is a minimal surface hung between two 
square frames, which occurs in the structure of the P- 
surface. Varying the distance between the two squares 
corresponds to a sequence of surfaces with tetragonal 
symmetry. 
 The triply periodic minimal surfaces (TPMS) are par-
ticularly fascinating. A TPMS is infinitely extending, has 
one of the crystallographic space groups as its symmetry 
group and, if it has no self-intersections, it partitions 
space into two labyrinthine regions. Its topology is charac-
terized by two interpenetrating networks – its ‘labyrinth 
graphs’. 
 The first TPMS to be discovered and investigated was 
reported by Schwarz in 1856 (ref. 11). He considered a 
soap-film across a quadrilateral frame, the edges of which 
are four of the six edges of a regular tetrahedron and rea-
lized that such a surface could be smoothly continued  
by joining the pieces edge to edge, the edges becoming 
two-fold [diad] axes of symmetry of the resulting infinite 
object. Six such quadrilaterals occur in a cubic unit cell 
of space group Pn 3 m. However, if the two sides of the 
surface are coloured differently, then the cells alternate in 
colour, the repeat distance is doubled and the space group 
becomes Fd 3 m. The surface is known as the D-surface, 
because its labyrinth graphs are four-connected diamond 
networks – the surface can be obtained by taking the 
structure of diamond, where the C atoms are tetrahedrally 
connected, and inflating the bonds until the two sub-spa-
ces become equal. It can also be visualized as the surface 
separating the two distinct networks in the ‘double dia-
mond structure’ of cuprite Cu2O. By an ingenious appli-
cation of a formula of Weierstrass, Schwarz was able to 
obtain an analytic expression for the D-surface, and also 

for the P-surface, whose labyrinth graphs are networks 
consisting of the vertices and edges of a primitive cubic 
lattice. His student Neovius discovered C(P) – the ‘com-
plement’ of P, so-called because P and C(P) have the 
same symmetry group12. 
 The next development in TPMS did not take place  
until the 1960s, when Schoen13 investigated for NASA 
whether surfaces of this type might be of use as space 
structures, and found more than a dozen new examples. 
Those surfaces with cubic symmetry are called (following 
Schoen’s rather eccentric notation) IWP, FRD, OCTO, 
C(D) and G (‘the gyroid’). 
 An intensive search for new possibilities was taken up 
by Fischer and Koch from 1987. In a remarkable seque-
nce of papers14–21, they systematically investigated the 
various ways in which frameworks of diad axes of the 
space groups can be spanned by minimal surfaces. The 
two labyrinths of a TPMS obtained in this way are neces-
sarily congruent, since a two-fold rotation about a diad 
axis embedded in the surface interchanges the two sides 
of the surface. Triply periodic surfaces with congruent 
labyrinths are called balance surfaces. Their symmetry 
properties are described by two space groups: G, the 
symmetry of the surface, and H (a subgroup of G of  
index 2), the symmetry of a single labyrinth. The gyroid 
is unique; it is a balance surface with no embedded diad 
axes – the transformations that interchange the labyrinths 
are inversion centres lying on the surface. Koch and 
Fischer listed exhaustively all pairs of space groups G/H 
which might have associated balance surfaces and found 
a large number of new triply periodic minimal balance 
surfaces (TPMBS). Those with cubic symmetry are cal-
led S, C(Y), ±Y, C(±Y), C(P)/H, C(D)/H and C(Y)/H. 
 In 1990, Gozdz and Holyst22 discovered two more  
cubic TPMS which they called BFY (‘the Butterfly’) and 
CPD. Karcher and Polthier23 indicated how in certain 
cases more complicated variants of known surfaces could 
arise by inserting extra tunnels in their labyrinths. 
 It has now become apparent that the nomenclature for 
minimal surfaces is getting out of hand. What is needed 
is a way of naming a surface so that the structure of  
the name reveals unambiguously which surface is being 
referred to – a system analogous to the Hermann–
Mauguin symbols for space groups, or the ‘inorganic gene’ 
that employs Delaney–Dress symbols to specify triply 
periodic networks24. 
 Some minimal surfaces can be given exact parametric 
expression (x, y, z coordinates of all points in the surface 
expressed in terms of two parameters); but in the cases 
where this can be done, the expressions are complicated 
and involve elliptic functions. Weierstrass provided the 
algebraic method of obtaining these functions25–29. The 
most effective method is to use the engineering methods 
of finite element analysis as provided by Brakke30 in a 
remarkable publicly available program called the Surface 
Evolver, which will minimize either surface area or the 
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integral of H2. Some of the seemingly plausible possibili-
ties for new minimal surfaces turn out to be unstable 
when ‘evolved’ by Surface Evolver; as the area per unit 
volume decreases, a critical configuration arises, indicat-
ing that the surface collapses catastrophically to one with 
a different topology. In such cases, no minimal surface 
exists with the specified symmetry and topology. Emp-
loying the ‘curvature-squared’ option in these cases leads 
to a stable configuration which minimizes the integral of 
H

2. Surface Evolver can thus deal readily with the class 
of unstable surfaces. The answers are physically rather 
than mathematically conclusive, but there are tests for the 
stability, or otherwise, of a solution. Having plotted a 
surface, it can then be more simply expressed as the sur-
face for which the sum of various Fourier terms is zero, 
i.e., as a nodal surface. The simplest example is the P-sur-
face which, to a first approximation, can be described as 
the surface for which cos(x) + cos(y) + cos(z) = 0. The 
exact G-surface is very close to the nodal surface sin(x) 
cos(y) + sin(y)cos(z) + sin(z)cos(x) = 0. The programm-
ing system Mathematica has provision for plotting such 
surfaces most conveniently, and von Schnering and Nesper

 

have listed a number of useful expressions31. The Fourier 
terms correspond to structure-factor amplitudes and are to 
be found tabulated in The International Tables for Crys-

tallography
4. 

Fundamental units and surface patches 

A ‘fundamental region’ or ‘asymmetric unit’ of a given 
space group is a polyhedron which, when copied by  
applying all the transformations of the group, produces  
a tiling of space, such that the only transformation of  
the group that leaves a tile invariant is the identity. The 
International Tables for Crystallography lists the vertices 
and faces of a unit for each group. Obviously, the whole 
group is generated by the set of transformations that  
relate a unit to the units immediately surrounding it, shar-
ing a face or part of a face. The importance of this con-
cept lies in the fact that an asymmetric unit for a space 
group G contains a smallest repeating unit of any triply 
periodic structure with symmetry G. A crystal structure  
is described by giving the positions of atoms in such a 
unit. Here, we insert into the asymmetric unit of a parti-
cular cubic space group, a patch or element of surface  
of zero mean curvature, which is then repeated round, as 
in a kaleidoscope, to give a non-self-intersecting surface 
dividing all space into two regions. Inserting a piece of 
tube would generate 3D knots or weaves which should, 
as well as the surfaces, have engineering applications. 
The patch of surface may be inserted in several different 
ways and may or may not be capable of refinement, so 
that its mean curvature should become everywhere zero. A 
number of configurations may have to be tested to see 
whether they refine to a TPMS. Some candidates may be-

come stuck in a stable local minimum and others may 
collapse in various ways. 

Description of surfaces: an ‘inorganic gene’ 

The Delaney–Dress symbol, developed for tiling theory, 
provides a notation which can be used for enumerating 
networks. It gives a unique linear symbol to each network 
and an arbitrary symbol can be identified as correspond-
ing (or not) to a valid network. We shall describe here a 
method of encoding TPMS. Each such surface can be 
denoted by a string of symbols – a ‘gene’ – that unambi-
guously specifies the topology and symmetry of the sur-
face. The symbols we use are the standard Wyckoff 
letters employed in The International Tables for Crystal-

lography. For visualization of the surface denoted by a 
particular string of Wyckoff letters, an actual picture of 
the asymmetric unit of the group is necessary. The rele-
vant figures, for the groups we shall encounter, are given 
in Figure 1. As an introduction to this nomenclature, we 
illustrate it by means of a few examples of non-balanced 
surfaces. 
 Figure 2 shows a fundamental region for the group 
Pm 3 m – a tetrahedron of mirrors. The curvilinear penta- 
gon is a boundary for a fundamental patch of a triply  
periodic surface. The whole surface is produced by repea-
ting the units by application of the reflections. Clearly, a 
smooth surface without self intersections must cut the 
mirror planes orthogonally. The minimal surface with this 
symmetry and topology is unique. It is, in fact, Schoen’s 
OCTO. It can be uniquely specified by the sequence of 
Wyckoff positions4 around the vertices of the fundamen-
tal patch. Thus, OCTO can be denoted by the symbol 
(Pm 3 m) hifj

2 . 
 This symbol specifies the symmetry and the topology 
of the surface unambiguously. It should be noted, however, 
that the diad rotation about the axis x, 1/4, x , belonging 
the supergroup Im 3 m is an automorphism on the group 
Pm 3 m. The asymmetric unit is unchanged, but the  
Wyckoff labels undergo the permutation (ab)(cd)(ef)(ij) 
(kl). Therefore, OCTO can alternatively be denoted by 
(Pm 3 m)hjei

2 . The symbol strings hifj
2  and hjei

2  could, 
of course, be cyclically permuted or written in reverse 
order. For uniqueness, we adopt the convention of choos-
ing the string that heads the list when all possible strings 
are listed in alphabetical order. 
 Figure 3 a illustrates a fundamental patch of a surface 
that may be denoted as (Pm 3 m)eifj. But the minimal  
surface with this description has higher symmetry, 
Im 3 m, and so should be designated (Im 3 m)ehih (Figure  
3 b). It is Schoen’s IWP. Observe that the vertex i lies  
on a ‘free’ diad axis (i.e. a diad axis not lying in a mirror 
plane), so that hi is necessarily followed by a second  
h. The symbol for IWP may therefore be abridged to 
(Im 3 m)ehi. 
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 Gozdz and Holyst’s CPD is (Pm 3 m)hig
2, Schoen’s 

FRD is (Fm 3 m)efbgh and P,FRD is (Fm 3 m)efbhi
2.  

In these latter cases, it is necessary to distinguish two 
segments of the threefold axis ( f) that are inequivalent 
under the action of the group (Fm 3 m) – that is, ac and 
bc of Figure 1 a, which we denote by fa and fb. They are 
interchanged by the reflection m 1/4, y, z, which belongs 
to the supergroup Pm 3 m and induces the permutation 
(ab)(hi) of Wyckoff labels. 

Survey of cubic TPMBS 

The various surfaces are extremely difficult to visualize 
and they may be seen at three levels: (1) the fundamental 
patch associated with an asymmetric unit of the space 
group – the smallest repeating unit; (2) a structural unit, 
or generating patch, usually bounded by straight lines, 
which may, for example, be a skew polygon or two skew 
polygons united by catenoid-like tunnels or a set of skew 

 
Figure 1. Asymmetric units for various cubic space groups. The bounding cube is 1/8 of a cubic unit cell, except 
for Ia 3 d, where the asymmetric unit is displayed in 1/64 of a unit cell. Letters marking special points and line seg-
ments are the Wyckoff labels given in The International Tables for Crystallography. Asymmetric units displayed 
are the ones given in The International Tables for Crystallography,  except for  Ia 3 d. 

 

a b c 
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polygons interconnected by a branching catenoidal tunnel 
system and (3) the complete structure in the primitive 
cubic unit cell or a rhombic dodecahedron (for a face-cen-
tred cubic space group) or the 14-faced ‘Thompson tetra-
kaidecahedron’, which can be repeated to fill all space 
for the body-centred cubic space groups. 
 We have asked ourselves the question: what possibilities 
exist if we ask for TPMBS with cubic symmetry gene-
rated by structural units that span finite boundaries all of 
whose edges are straight lines (diad axes)? In their 1996 
paper, Fischer and Koch20 completed their classification 
of minimal surfaces ‘generated from skew polygons that 
are disc-like spanned, from catenoid-like surface patches, 
from branched catenoids, from multiple catenoids, or from 
infinite strips’. They went on to say: ‘It may, however,  
be possible to find 3-periodic minimal surfaces without 
self-intersection which contain straight lines and are gene-
rated from surface patches other than those described . . .’. 
The present work is an exploration of these other possi-
bilities. It can be regarded as a sequel to an earlier paper32 
which described some new possibilities for TPMBS with 
non-cubic symmetries, and in which our method of app-
roach based on ‘asymmetric units’ was set out in detail. 

The P-family 

The framework I of diad axes illustrated in Figure 4  
results from applying the operations of the m 3 m at ver-

tex a of Figure 1 b to the diad segment cd. Notice that  
it consists of the diagonals of all the hexagonal faces  
of a truncated octahedron. Notice also that it has six  
octagonal circuits and twelve quadrilateral circuits. The 
framework II in Figure 4 is obtained similarly by apply-
ing the 4/mmm symmetry at a point b. It consists of two 
of the octagons and four of the quadrilaterals. When all 
the octagons and quadrilaterals are spanned by minimal 
surfaces, we get a pair of saddle polyhedra. (They are 
named by Pearce33 ‘the saddle cube dodecahedron’ and 
‘the augmented universal hexahedron’). They fit together 
in a space-filling arrangement. If only the quadrilaterals 
are spanned, we get the P-surface (Im 3 m)cdh. The qua-
drilateral patch is a generating patch consisting of four of 
the fundamental patches. If only the octagons are spanned, 
we get Neovius’s C(P), (Im 3 m)cde. The edge cd of the 
fundamental patch is a portion of a (free) diad axis  
embedded in the surface. It is expedient to indicate this 
important feature in the symbol string; we do this by 
capitalizing the Wyckoff letter associated with an embed-
ded axis. That is, we write (Im 3 m)hI and (Im 3 m)eI for 
P and C(P), respectively. The skew octagon is a generat-
ing patch for C(P) (the Neovius surface); each octagonal 
patch consists of eight fundamental patches. More com-
plicated configurations are possible. Framework I can be 
‘minimally spanned’ by connecting all the quadrilaterals 
by tunnels with a junction around the centre of the figure. 
Since the centre is a Wyckoff position a, we call this sur-
face Pa. Similarly, the C(P) octagons can be tunnelled  
to the centre. We can similarly connect either the four 
quadrilaterals of framework II by tunnels, or connect the 
two octagons by a ‘catenoid-like’ neck. The various names 

 
 

Figure 2. Fundamental patch for Schoen’s OCTO. 

 

 
Figure 3. Fundamental patch for Schoen’s IWP. 

 

a b 

 
 

Figure 4. Diad frameworks for IM 3 m–Pm 3 m. 
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for these four TPMBS, together with the genetic specifi-
cations, are: 
 
 Pa (Im 3 m) efI (‘Schoen’s Batwing’34) 

 Pb (Im 3 m) egI (‘Schoen’s C21(P)’34) 

 C(P)a (Im 3 m) fhI (Gozdz and Holyst’s ‘Butterfly’22 

  ‘Schoen’s Manta’34) 

 C(P)b (Im 3 m) ghI (Koch and Fischer’s C(P)/H20, 

  ‘Schoen’s C15(P)34) 
 
The same frameworks I and II shown in Figure 4 can be 
spanned in other ways, giving TPMBS with different  
G–H symmetries. The quadrilaterals of framework II can 
be connected in pairs by a catenoidal tunnel. We have 
named the resulting surface P2b. It is (Pm 3 n)fhJJ, with 
symmetry Pm 3 n-Pm 3 . 
 Framework I can be regarded as a structure built from 
four dodecagonal circuits – each dodecagon is a re-entrant 
polygon formed from three quadrilaterals with a common 
vertex. Linking these four 12-gons by a tetrahedral tunnel 
junction gives the surface P3a, (Pn 3 m)ecgIJ, with sym-
metry Pn 3 m-P 4 3m. 

The D-family 

The two frameworks III and IV of Figure 5 are constructed 
from the diad axes of the space group Pn 3 m. Framework 
III can be seen as the set of diagonals of all the square 
faces and of four of the hexagonal faces of a truncated 
octahedron tetrahedrally disposed with the symmetry 
4 3m. Framework IV consists of two of the dodecagons 
and six of the quadrilaterals, and we again get a saddle 
polyhedron, here of symmetry 3 m, by spanning these 
circuits. The two saddle polyhedra together constitute a 

space-filling pair. The quadrilaterals are generating 
patches for D (Pn 3 m)HI and the dodecagons are generat-
ing patches for C(D) (Pn 3 m)ecHI. Minimally spanning 
the frameworks III and IV in other ways gives rise to six 
more TPMS with the same symmetry Pn 3 m-Fd 3 m as D 
and C(D): 
 
 Da (Pn 3 m)ebecgHI 

 C(D)a (Pn 3 m)ebgHI (Brakke’s Starfish (ref. 34)) 

 Dc (Pn 3 m)ecHIjec 

 C(D)c (Pn 3 m)HIjd (Koch and Fischer’s C(D)/H20) 

 D2a (Pn 3 m)ebecHI 

 D3a (Pn 3 m)ecgHI 
 
A generating patch for C(D)a is a pair of C(D) dodecagons 
connected by a catenoidal tunnel. Observe that three D 
quadrilaterals of framework III share a common vertex. 
Four of these quadrilateral triples can also form an un-
connected framework which we name III*. Two ways  
of spanning III* are D′a (Pn 3 m)ebgecHI and D3′a 
(Pn 3 m)ecgIH. However, experimentation with Evolver 
shows these configurations to be non-minimal. 
 The surface D2c has the symmetry P4232-F4132. It is 
obtained by connecting three pairs of D-quadrilaterals  
by a tunnel junction around the centre of framework IV. 
It is more easily visualized as a pair of C(D) dodecagons 
joined by tunnels at three of their common 90° vertices 
(Figure 6). It is (P4232)dgcJKKIl. 

The F surface 

Framework V shown in Figure 7 has eight skew hexagonal 
circuits. Each hexagon has six right angles and symmetry 
3 m. It is the ‘Petrie polygon’ of a cube. It is a generating 
patch for the-D surface, consisting of 12 fundamental pat-
ches. Spanning all eight of the hexagons gives a space- 
filling saddle polyhedron (Pearce’s ‘bcc octahedron’). In 
the D-surface just four of the hexagons of Figure 7 are 
spanned, giving a configuration with symmetry 4 3m. 

 
 

Figure 5. Diad frameworks for Pn 3 m–Fd 3 m. 

 

 
 

Figure 6. Generating unit for the surface D2c. 
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The centres of the four hexagonal films can be drawn toge-
ther and joined by a tetrahedral tunnel system to give  
the surface (F 4 3m)egH, which we shall name F, with 
symmetry P 4 3m-F 4 3m. It is the simplest member, after 
D itself, of the unnamed sequence displayed on Brakke’s 
website. 

P–D hybrids 

Framework VI in Figure 8 is made up of the diad axes  
of Fd 3 m. It can be understood as the set of diagonals of 
the hexagonal faces of a truncated tetrahedron (Friauf 
tetrahedron). It has six quadrilateral circuits and four 
hexagonal circuits. All angles of these skew quadrilater-
als and skew hexagons are 60°. The skew quadrilateral is 
the Petrie polygon (PP) of a tetrahedron and the hexagon 
is the PP of an octahedron. Spanning all the circuits pro-
duces a space-filling polyhedron33. The quadrilateral patch 
is a generating patch for D, consisting of eight fundamen-
tal patches. The hexagonal patch is a generating patch for 
P, consisting of 24 fundamental patches. Two new TPMS 
with symmetry Fd 3 m-F 4 3m can be obtained by spann-
ing the framework in alternative ways. Either the quadri-
lateral circuits or the hexagonal circuits can be joined by 

a tunnel junction around the centre of the framework, 
giving 
 
 DPa (Fd 3 m)ecebH 

 PDa (Fd 3 m)efH 

The Y family 

The rather curious Figure 9 is formed from the diad axes 
of I4132. The centre is at the point with point symmetry 
32. It has two nonagon circuits (the skew nonagon has 
three edge lengths, in the ratio of 1 : 3 : 2√2 and the angles 
that are alternately 90 and 60°) and three hexagonal cir-
cuits. The labels on the vertices are coordinates referred 
to a unit cell of edge length eight centred at the 32  
position b. The nonagon is a generating patch for Koch 
and Fischer’s C(Y), which in our system is described as 
(I4132)eFHcHd (where Hc and Hd refer to the short and 
long segments ca and ad of the diad axes h) or, simply, 
(I4132)eFHH. The hexagon generates Y, (I4132)FHHg, 
which turns out to be D in disguise35. Connecting the two 
nonagon circuits by a catenoidal tunnel gives Fischer and 
Koch’s C(Y)/H20, which in our nomenclature would be 
called C(Y)b. We get one more new surface Yb (Figure 10) 
by connecting the three hexagons by a Y-shaped junc-
tion. The G/H symmetry of C(Y), C(Y)b and Yb is I4132-
P4332. 

S and G 

The surface S is (Ia 3 d)aGLGS. The subscripts L and S 
refer to the long and short portions − length ratio 3 : 1 − of  

 
 

Figure 7. Diad framework for P 4 3m–F 4 3m. 

 

 
 

Figure 8. Diad framework for Fd 3 m–F 4 3m. 

 

 
 

Figure 9. Diad framework for I4132–P4332. 
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Table 1. Nomenclature and data for cubic TPMBS 
        
        
Space groups G–H and 
diad frameworks 

 
Surface name and references  

Fundamental 
patch 

Labyrinth 
s 

Area per cubic 
unit cell of G 

 
−χ 

Flat points and  
‘special’ points 

 
Order 

        
        
Im 3 m-Pm 3 m 
 

     c, d 1, 0 

(1) P 
Schwarz11 

hI E 2.345 4 h (x, x, 0) 0.325 0 I, II 

(2) C(P) 
Neovius12 

eI H 3.52564 16 e (x, 0, 0) 0.410 2 

        
(3) Pa 
‘Schoen’s Batwing’34 

efI H, bf 5.022 48 f (x, x, x) 0.127 
e (x, 0, 0) 0.165 

1 
2 

 

I 

(4) C(P)a 
Gozdz and Holyst’s BFY  
(Butterfly)22; ‘Schoen’s Manta’34 

 

fhI E, bf 4.964 36 h (x, x, 0) 0.139 
f (x, x, x) 0.106 

0 
1 

(5) Pb 
‘Schoen’s C21(P)’34 

 

egI H, ag 3.678 40 g (½, x, 0) 0.173 
e (x, 0, 0) 0.408 

0 
2 

II 

(6) C(P)b 
Koch and Fischer’s C(P)/H20 

 

ghI E, ag 3.607 28 g (½, x, 0) 0.023 
h (½, x, x) 0.16 

0 
0 

Pn 3 m-P4 3 m 
(bc)(ij) 

     b, f 1, 0 

I (7) P3a 
(new) 

ecgIJ abc, baec 4.629 32 e (x, x, −x) 0.132 
g (x, 0, 0) 0.250 

 

1 
2 

Pm 3 n-Pm 3       c, d, e 
 

0, 0, 1 

II (8) P2b 
(new) 

 

fhJJ bah 3.615 28 f (½, ½, x) 0.0612 
h (x, ½, 0) 0.3395 

2 
0 

Pn 3 m-Fd 3 m 
(bc)(ij) 
 

     b, d, f 1, 0, 0 

(9) D 
Schwarz11 

 

HI Ec 1.920 4   III, IV 

(10) C(D) 
Schoen13 

 

ecHI acI 3.9548 36 e (x, x, −x) 0.200 4 

(11) Da 
(new) 

ebecgHI ak, ebk
Icg 4.817 92 g (x, 0, 0) 0.407 

e (x, x, x) 0.168 
e (x, x, −x) 0.131 

 

0 
1 
4 

III 

(12) C(D)a Brakke’s 
Starfish31 (ref. 34) 

ebgHI akg, ckI, Ec 4.723 60 g (x, 0, 0) 0.141 
e (x, x, x) 0.173 

0 
1 

        
        

(Table 1. Contd.) 

the diad axes consisting of Wyckoff positions g. A dode-
cagonal generating patch for S is obtained by applying 
the 3  symmetry centred at a to the fundamental patch. 
C(S), the ‘complement’ of S, (Ia 3 d)dGLGS, with an octa-
gonal generating patch, turns out to be P in disguise35. 
Schoen’s gyroid G (Y* in the nomenclature of Koch and 
Fischer) has no embedded diad axes at all; it is a balance 
surface by virtue of the inversion centres a and centres of  
4  symmetry d, that lie on the surface. It is (Ia 3 d)adg.  
The symmetries of S and G are, respectively, Ia 3 d-I 4 3d  
and Ia 3 d-I4132. The nodal surface C(Y*) of von Schner-
ing and Nesper also has G–H symmetry Ia 3 d-I4132. A  
corresponding minimal surface may exist. We were unable  
to discover any other TPMS with Ia 3 d symmetry. 

±
Y and C(±

Y) 

Finally, the surfaces ±Y and C(±Y) span three non-intersect-
ing families of diad axes and have the symmetry Ia 3 -

Pa 3 . There are no closed circuits of diad axes for this 
system but we mention it for, we hope, completeness21. 
 

 
 

Figure 10. Generating unit for the surface Yb. 
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Column 1: The space group pair G–H, the permutation of Wyckoff letters that corresponds to an automorphism of the group G (and thus gives rise 
to alternative but equivalent notations for the fundamental patches), and the framework that is to be spanned by the generating unit of the surface. 
Koch and Fischer14 have given, for every G–H pair, a list of the Wyckoff positions that necessarily lie on any balance surface with that G–H  
symmetry. From the data it is not difficult to deduce that the frameworks I–VII, the non-connected III*, and the S-dodecagon VIII exhaust the  
possibilities for the boundaries of a generating unit. 
 
Column 2: The commonly accepted nomenclature for previously known TPMBS and our proposed names for the new varieties, a numbering system 
for the 26 cases, and references. 
 
Column 3: The boundaries of the fundamental patches. 
 
Column 4: The labyrinth graphs. Upper-case letters denote edges and consecutive pairs of lower-case letters denote edges of the labyrinth graphs. 
Symbols are to be understood with reference to the labelling of the asymmetric units in Figure 1. A superscript indicates the action of a symmetry; 
for example, under (11) Da, k is a vertex lying on a mirror face of Figure 1 d – conveniently chosen to be (3/8, 1/8, 1/8) – and kI-is its image under 
the action of the diad rotation about axis I. 
 
Column 5: The area of the portion of the surface in a cubic unit cell of the group G. 
 
Column 6: – χ, where χ is the Euler characteristic of the portion of the surface in a primitive unit cell of the group H. The genus of the surface 
is g = 1 – χ/2. 
 
Column 7: Positions of the flat points36 and ‘special’ points. Special points are those where the surface cuts a diad axis. 
 
Column 8: The order β of the flat points. β = 0 indicates a ‘special’ point. 

(Table 1. Contd.) 
        
        
Space groups G–H and 
diad frameworks 

 
Surface name and references  

Fundamental 
patch 

Labyrinth 
s 

Area per cubic 
unit cell of G 

 
−χ 

Flat points and  
‘special’ points 

 
Order 

        
        
 (13) D3a 

(new) 
 

ecgHI ak, gckI 3.877 60 g (x, 0, 0) 0.205 
e (x, x, −x) 0.1024 

0 
1 

 (14) D2a 
(new) 

 

ebecHI ak, ckIeb 4.693 68 e (x, x, x) 0.156 
e (x, x, −x) 0.110 

1 
4 

IV (15) Dc 
(new) 

ecjecHI akj, ckI 4.10925 84 j (¼ + x, ¼, x – ¼) 
0.19 
e (x, x, −x) 0.21 

 

0 
1 

 (16) C(D)c 
Koch and Fischer’s C(D)/H20 

 

djHI Ec, ak, jkI 4.109 52 j (¼ + x, ¼, x – ¼) 
0.15 

0 

P4232-F4132 
(bc)(kl), (ij)(ef) 
 

     b, d, e, f 1, 0, 0, 0 

IV (17) D2c 
(new) 

dgcJKKIl alf, clea
K 4.047 32 g (x, x, x) 0.02 

l (¼, ¼ + x, x – ¼) 0.2 
 

1 
0 

P 4 3m-F 4 3m 
(ab)(cd)(e1e2)(fg) 
 

     c, d 0, 0 

V (18) F 
Brakke34 

 

e1gH E2, ag 2.594 16 e (x, x, x) 0.10 
g (½, ½, x) 0.21 

1 
0 

Fd 3 m-F 4 3m 
(ab)(cd) 
 

     c, d 1, 1 

(19) DPa 
(new) 

 

eaceabH  F, eacb 5.882  20 e (x, x, x) 0.054 
e (x, x, − x) 0.066 

1 
1 

VI 

(20) PDa 
(new) 

 

efH Eab, eacb 5.985 24 e (x, x, x) 0.045 
f (x, 0, 0) 0.091 

1 
0 

I4132-P4332 
(ab) (cd) (gh) 
 

     a, c, d 1, 0, 0 

VII (21) C(Y)14 eFHH bgLe 
 

4.43 24 e (x, x, x) 0.08 1 

 (22) Yb 
(new) 

 

gSegSFHH eebgL 4.57 48 gS (− x, x, 0) 0.075 
e (x, x, x) 0.052 

0 
1 

 

(23) C(Y)b 
Koch and Fischer’s C(Y)/H20 

gSgLgSFHH bgLgS 4.58 40 gS (−x, x, 0) 0.015 
gL (x, −x, 0) 0.015 

 

0 
0 

Ia3d-I 4 3d      a, b 1, 1 
 

VIII (24) S (ref. 14) aGG bf f d 5.44 20   
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Figure 11. Non-self-intersecting configuration obtained from three 
planes through a line, by ‘tunnelling’. 

 

Summary 

Table 1 gives data for each of the surfaces we have discus-
sed. We believe that the 24 surfaces listed here, together 
with the infinite sequences mentioned in the following 
section, are all possibilities for minimal TPMBS with 
cubic symmetry that can be generated from a finite unit 
whose boundary consists entirely of diad axes. 

Higher genus sequences 

Higher genus varieties of some of the surfaces we have 
described are possible. Some of the possibilities have 

been explored by Schoen and Brakke and have been  
displayed on Brakke’s website. They belong to sequences 
of surfaces, with increasing genus, that appear to converge 
in the limit to self-intersecting surfaces which may have 
embedded axes of 3-fold or 4-fold rotational symmetry, 
as well as embedded diads. Consider the self-intersecting 
surfaces (Im 3 m)EFIG. Non-intersecting balance sur-
faces can be obtained by replacing the lines of self- 
intersection by rows of tunnels, as in Figure 11. In this 
way, we get the non-intersecting surfaces (Im 3 m)ep

f
q
Ig

r.  
(Im 3 m)ef

q
I is the ‘Batwing’ sequence and (Im 3 m) 

g
r
eI are ‘Schoen’s C(P) surfaces’. We shall simply list, 

without further comment, all such sequences of cubic 
balance surfaces for which the existence of minimal sur-
faces with the suggested symmetry and topology seems 
plausible along with – χ, where χ is the Euler characteris-
tic (Table 2). For reasons of space, we omit our criterion 
of ‘plausibility’. We make no claim that minimal surfaces 
exist in all cases! However, it seems likely that Tables 1 
and 2 contain all possible TPMBS with cubic symmetry 
that can be generated by units bounded only by straight 
edges. 
 

A gallery of minimal surfaces 

 
‘A gallery of minimal surfaces’, consisting of six colour 
plates, presents illustrations of the generating units and 
unit cells for a selection of surfaces referred to in the 
text. These graphic representations were produced using 
Brakke’s ‘Surface Evolver’. 

Table 2. Families of non-intersecting balance surfaces with cubic symmetry 
    
    
Im 3 m-Pm 3 m    

epf qI 4(− 5 + 9p + 8q) p = 1: Batwings 
ephf qI 4(1 + 9p + 8q)  
f phqI 4(− 5 + 8p + 6q) q = 1: Mantas 

I 

f pehqI 8(2 + 4p + 3q) 
 

 

gphqI 4(− 5 + 6p + 6q) II 
gpeqI 4(− 5 + 6p + 9q) 

q + 1: Schoen’s C(P) surfaces 
q + 1: Schoen’s C(P) surfaces 

    
Pn 3 m-P 4 3m    

ec
p  eb

q    IJ 4(1 + 4p + 4q)  I 
ec

p  geb
q  IJ 16(1 + p + q)  

    
Pm 3 n-Pm 3     

gphqJJ 4(1 + 3p + 3q)  II 
gpf hqJJ 4(4 + 3p + 3q)  

    
Pn 3 m-Fd 3 m    

eb
p  gqHI 4(1 + 8p + 6q) Brakke’s Starfish III 

eb
p  ecg

qHI 4(9 + 8p + 6q) 
 

 

III* eb
p  ec

qHI 8(1 + 4p + 4q)  
 eb

p  gec
q  HI 32(4 + p + q)  

    
P 4 3m-F 4 3m    
V epgqH 4(− 3 + 4p + 3q) p = 1: Brakke’s unnamed sequence 
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A gallery of minimal surfaces  

  I, II          III, IV      V      VI        VII 
 

The space filling saddle polyhedra obtained by minimally spanning the frameworks I to VII. 
 

The twelve generating patches of P spanning circuits of 
framework I, and the extension of the configuration to a 
unit cell. 

 

The generating units for Pb and C(P)b and 
below, the unit cells for Pb and C(P)b. 

 

Neovius’ surface C(P) 
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Fundamental patch of Pa, and 1/8 unit cell. 
Below: A cubic unit cell of Pa, and the gene-
rating unit (framework I minimally spanned), 
viewed along a threefold axis, and a pair of 
fundamental patches indicating the reason 
for the name ‘batwing’. 
 

The generating patch and the unit cell of Pb 
 

The generating unit for Da and below, the portion 
of the surface inside a rhombic dodecahedron six 
of whose faces are mirror planes, and six contain 
diads. 
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A pair of generating units for D3a and below, 
the non-minimal balance surface D3’a 
(obtained by using Surface Evolver to mini-
mize the squared integrated mean curvature). 
 

Portion of D2c consisting of four generating units 
 

Four dodecagonal patches of Schoen’s C(D) 
 

A stereo pair of images of the unit cell of Schoen’s C(D). 
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Generating units for Dc, D2c and D2a 
 

Two generating units for D3a. Observe the space 
filling truncated octahedral building blocks, related 
by diad rotations about their face diagonals. 
 

Four generating units of C(D)c 
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F. The infinite sequence of surfaces to 
which this belongs can be viewed on 
Brakke’s website. 
 

Dpa and PDa 
 

Koch and Fischer’s C(Y) and C(Y)/H (in 
our nomenclature C(Y)b) and on the 
right, the generating unit for Yb inside a 
unit cell. 
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Below we illustrate a few examples of cubic minimal surfaces whose generating units are not bounded entirely by 
straight edges. 
 

Koch and Fischer’s C(± Y) can be generated by a pair
of nonagons each with three straight edges. This 
corresponds to 1/8 of a unit cell and is illustrated, 
along with the unit cell. Below for ± Y, two nonagons 
are linked by a tunnel. 
 

A non-balanced surface: A unit cell of 
Schoen’s FRD. Generated by reflections in 
the faces of 1/8 of the unit cell, which con-
tains a patch with tetrahedral symmetry: 
 

1/8 unit cell of a minimal balance surface with the 
same symmetry as P and C(P). The patch shown has 
the same topology of Costa’s (non-periodic) minimal 
surface. 
 

A new non-balanced minimal surface generated by 
reflections: unit cell, and 1/8 unit cell containing six 
fundamental patches. There exists a wide variety of 
non-balanced TPMS. Their classification remains an 
unexplored problem. 
 

A ‘double diamond’ surface. A pair of surface of 
constant mean curvature belonging to the family of 
surfaces to which D (zero mean curvature) belongs. 
The triply periodic structure is generated by reflec-
tions in the faces of the rhombic dodecahedron. 
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