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Abstract

A method for detecting and segmenting periodic motion

is presented. We exploit periodicity as a cue and detect peri-

odic motion in complex scenes where common methods for

motion segmentation are likely to fail. We note that periodic

motion detection can be seen as an approximate case of se-

quence alignment where an image sequence is matched to

itself over one or more periods of time. To use this observa-

tion, we first consider alignment of two video sequences ob-

tained by independently moving cameras. Under assump-

tion of constant translation, the fundamental matrices and

the homographies are shown to be time-linear matrix func-

tions. These dynamic quantities can be estimated by match-

ing corresponding space-time points with similar local mo-

tion and shape. For periodic motion, we match correspond-

ing points across periods and develop a RANSAC proce-

dure to simultaneously estimate the period and the dynamic

geometric transformations between periodic views. Using

this method, we demonstrate detection and segmentation of

human periodic motion in complex scenes with non-rigid

backgrounds, moving camera and motion parallax.

1. Introduction

Periodic motion is ubiquitous in the natural world, with

instances ranging from the simple harmonic motion of a

pendulum to the complex movements of an Olympic run-

ner. It has been widely recognized as a powerful cue for

detecting salient objects or gestures in video; see for ex-

ample [20, 16, 12, 5, 13, 21]. The focus of this paper is

on leveraging the periodic motion of objects for a different,

and thus far unexplored, purpose: motion segmentation.

In the conventional motion segmentation problem, one

considers a scene containing moving rigid objects. Then,

Figure 1. Illustration of periodic motion for a runner. The

pose of the person is similar over the periods while the po-

sition relative to the camera is different. Hence, period-

separated views can approximately be treated as stereo

pairs. Matching of corresponding space-time points in

video can be used to derive object-centered alignment of a

video sequence to itself over one or more cycles of periodic

motion.

according to a two- or multi-view geometric relation such

as planar homography H or a fundamental matrix F , each

object emerges as a group by virtue of adhering to a rela-

tion with certain parameters. Some early examples of this

for the case of approximately planar motion layers include

[27, 6]; more recent examples addressing the case of in-

dependently moving 3D objects include [26, 22]. Central

in all of these approaches is the assumption that the mo-

tion of the object relative to the camera be rigid. Without

rigidity, the classical point-to-point and point-to-line rela-

tions are rendered invalid. While a number of recent works

have appeared that attempt to extend motion segmentation

and structure from motion algorithms to the non-rigid case,

e.g., by using rigid basis parts [23, 29], such approaches do

not avail of the special properties of periodic motion when

it is present. The special property in particular that we ex-



ploit in this paper is the following: given a monocular video

sequence of a periodic moving object, any set of period-

separated frames represents a collection of snapshots of a

particular pose of the moving object from a variety of view-

points. This is illustrated in Figure 1. Thus each complete

period in time yields one view of each pose assumed by the

moving object, and by finding correspondences in frames

across neighboring periods in time, one can apply standard

techniques of multi-view geometry, with the caveat that in

practice such periodicity is only approximate.

With this observation in hand, we address two key prob-

lems in this paper: (1) periodic motion detection, and (2)

periodic motion segmentation. Our novelty in both of these

cases is that we do not assume the object has been seg-

mented, tracked and/or stabilized with respect to the cam-

era. By relaxing these assumptions we are able to detect

and segment periodic motion in complex scenes with mo-

tion parallax and non-rigid motion of the background.

The organization of this paper is as follows. In the re-

mainder of this Section, we discuss related work. In Sec-

tion 2, we outline the underlying geometry of 2D views of

3D periodic motion. We describe our approach to solving

the correspondence problem using spatio-temporal interest

points in Section 3. Our experimental results on the prob-

lems of periodic motion detection and segmentation are pre-

sented in Sections 4 and 5. We conclude in Section 6.

1.1. Related work

Periodic motion has been addressed in several works.

Time-frequency analysis of image sequences was explored

in [16, 12, 5, 21]. These methods find the period and

classify periodic motion given the tracks of objects over

time. While the methods in [16, 12, 5] rely on object seg-

mentation, tracking and/or camera stabilization, the method

in [21] does not assume segmentation and is more close to

ours. It, however, has not been applied to scenes with mov-

ing camera and dynamic backgrounds. A drawback of all

these methods is the assumption of periodicity in the image

space which can be violated by projective transformations.

Multi-view constraints on periodic views of an object

were explored in [20, 1]. In [20] cyclic motion under affine

camera model was analyzed using pre-segmented trajecto-

ries of corresponding points. In [1] multi-view constraints

were explicitly used to reconstruct periodic motion. Wide

base-line matching of periodic views of an object was made

under assumptions of a simple background and a given

value of the period. In our method we borrow inspiration

from [1] and use periodicity cue for detecting and segment-

ing periodic motion in complex scenes with non-rigid back-

grounds and motion parallax.

Closely related to our work is the problem of sequence

alignment of unsynchronized video from different view-

points in the case of stabilized cameras [4, 17, 24, 3] or

cameras undergoing arbitrary motion [25, 28]. These ap-

proaches aim to discover the relative temporal offset and the

spatial alignment between video streams by leveraging the

epipolar constraint, which holds for corresponding points

once the correct offset and the valid multi-view relation is

found. Our work differs in two main respects. Firstly, due

to deviations from perfect periodic motion in the moving

target (e.g., a pedestrian), the video from one period to the

next is only approximately the same, in contrast to the con-

ventional problem in which each video depicts an identi-

cal event. This factor complicates both the correspondence

problem and the satisfaction of the multi-view geometric

relations. Secondly, while most other methods assume that

both cameras are stationary or stabilized with respect to the

background, here we do not make such an assumption and

consider spatial and temporal alignment of video sequences

obtained by two cameras with independent motion which is

restricted to a constant translation. To our knowledge there

is no prior work addressing spatial alignment of video for

independently moving cameras.

2. Geometry of periodic motion

Periodic motion in space with the period p can be treated

as a collection of rigid 3D configurations C reoccurring with

frequency 1/p. Such a collection is generally influenced

by the rigid geometric transformations originating from the

gross motion of a periodic pattern. When observed by a

camera, periodic views of C are also influenced by the inter-

nal and external camera parameters that may be dynamic.

It follows that the views of a periodic object at times t
and t+p can be approximately treated as a stereo pair. Sub-

sequences of periodic views

Sa = {st, st+1, ...}, Sa ⊂ S
Sb = {st+p, st+p+1, ...}, Sb ⊂ S

(1)

of the same image sequence S can then be treated as two

separate sequences of the same dynamic scene observed by

one real and one virtual camera simultaneously. Hence, the

problem of detecting periodic motion can be addressed in

the framework of sequence-to-sequence alignment.

The general problem of sequence alignment [4, 3, 25] is

a difficult one given that both cameras may move indepen-

dently. In this work we make a simplifying assumption that

both the motion of the camera and the gross motion of the

periodic object is a constant translation. Such an assump-

tion is often satisfied in practice since both the motion of ob-

servers and the motion of periodic objects such as animals

and people often has a translative nature. We also currently

assume static internal camera parameters.

To address the problem of matching periodic motion, in

Section 2.1, we consider alignment of two image sequences



of a dynamic scene observed by two independently trans-

lating cameras. Specific constraints for aligning sequences

with periodic motion are derived in Section 2.2.

2.1. Sequence alignment

Consider two cameras with the time-dependent relative

translation a = a0 + ta1, a ∈ R
3. By associating the origin

with one of the cameras, the canonical form of camera ma-

trices can be written as Pa = Ka[A|a] and Pb = Kb[I|0]1.

Projection of a 3-d point using Pa, Pb results in image

points with homogeneous coordinates xa,xb satisfying the

well-known epipolar constraint x⊤
a Fxb = 0 with the funda-

mental matrix F = K−⊤
a AK⊤

b [KbA
⊤
a]× [7]. By expand-

ing a, it follows that the time-corresponding views obtained

with Pa, Pb are related by the dynamic fundamental matrix

that is a time-linear matrix function of the form

F (t) = K−⊤

a AK⊤

b [KbA
⊤(a0 + ta1)]× = F0 + tF1. (2)

Given 3-d points on a plane (n, d)2, their projections sat-

isfy a stronger relation given by xa = Hxb with the homog-

raphy H decomposed as H = Ka

(

A − an
⊤/d

)

K−1

b [7].

For the case when the plane distance d = d0 + td1 is chang-

ing with respect to both cameras, we note that the homog-

raphy as a homogeneous quantity is defined up to a scalar.

Hence, we cancel the time-dependent term d in the denom-

inator of H and obtain a time-linear expression3

H(t) = Ka

(

d0A − a0n
⊤ + t(d1A − a1n

⊤)
)

K−1

b . (3)

This proves the following proposition:

Proposition 2.1 The homography induced by a plane and

relating time-corresponding views of two constantly trans-

lating cameras is a time-linear matrix function of the form

H(t) = H0 + tH1.

The idea of time-linear homography is illustrated in Fig-

ure 2. Note that the alignment of point trajectories us-

ing static homography in Figure 2(d) fails while the time-

dependent homography gives robust alignment disregarding

noise in Figure 2(e).

2.2. Periodic motion alignment

To detect periodic motion in a sequence S, we wish to

find a period p and a transformation F (t) or H(t) that en-

able alignment of subsequences Sa, Sb (1). By assuming

1Here Ka, Kb are 3 × 3 matrices with internal, static camera parame-

ters, A is a static rotation matrix of the first camera and I is an identity.
2 Here n ∈ R

3 is the plane normal and d is the distance between the

plane and the origin in the 3-d space.
3 The time-dependent term d can be canceled since for any correspond-

ing points xa,xb at time t H(t) is a constant matrix.

(a)

(b) (c)

(d) (e)

Figure 2. (a): A point (blue) moves on a planar circle

(red) and is observed by two independently translating cam-

eras Pa and Pb. (b)-(c): Trajectories of a point observed

by the moving cameras Pa and Pb. Trajectories of an ob-

served point depend on the camera motion. Given a few

space-time point correspondences, the trajectories in both

sequences can be aligned using an SVD estimation of the

time-linear homography H(t) of the proposition 2.1. Using

this method, the alignment of the noise-corrupted trajectory

in (b) to the noise-corrupted trajectory in (c) is shown in (e).

If using constant homography, the alignment of trajectories

fails as illustrated in (d).

the constant relative velocity v between the periodic object

and the camera, subsequences Sa and Sb correspond to one

real and one virtual camera with identity rotation matrices

I , the same internal camera parameters K and a constant

relative offset pv. By associating the origin with one of

the cameras, the projection matrices become Pa = K[I|pv]
and Pb = K[I|0]. From (2) it follows that the fundamental

matrix F (t) is constant for all periodic views of Pa, Pb and

can be further simplified as

Fper = [Kpv]×. (4)

Since Fper is a homogeneous quantity, it has only two de-

grees of freedom and can be estimated from only two space-

time point correspondences in Sa, Sb. This makes the es-

timation of Fper highly over-constrained as will be demon-

strated in Section 4. Given the constancy of F and the fact

that x⊤[Kpv]×x = 0 for any x, all corresponding periodic

points will be on the same epipolar line as illustrated in Fig-

ure 3(b) and Figures 4(b),(d),(f).



For periodic motion on the plane, the time-linear ho-

mography in proposition 2.1 can be simplified as follows.

By projecting the relative velocity v on the plane normal

n, we note that the dynamic distance d between the plane

(n, d) and the origin can be expressed as d = d0 + td1 =
d0 − tn⊤

v. Using projection matrices Pa = K[I|pv],
Pb = K[I|0] the expression in (3) can be re-written as

Hper(t) = I − Kpvn
⊤K−1/d0 − tn⊤

vI/d0 (5)

with only one time-dependent parameter in the last term.

Note, that if camera is translating parallel to the plane,

i.e., n
⊤
v = 0, the time-dependent term vanishes and the

homography is reduced to a static one with the form Hper =
I −Kpvn

⊤K−1/d0. If we further assume the plane (n, d)
is perpendicular to the camera, i.e., n = (0, 0, 1)⊤, Hper(t)
in (5) is reduced to a matrix function of the form

H̃per =

(

1 h1

1 h2

h3

)

+ t

(

h4

h4

h4

)

(6)

with four unknowns h1, ..., h4 that can efficiently be es-

timated using two space-time point correspondences only.

We use (6) for segmenting periodic motion in Section 5.

We note that the alignment of periodic views according

to Fper (4) and Hper(t) (5) is a necessary but not a sufficient

condition for periodic motion in video sequences. Indeed,

subsequences Sa, Sb (1) obtained for any constantly trans-

lating rigid object could be aligned using some Fper (4) and

any value of period p. Sufficient conditions for the presence

of periodic motion will be discussed in the next Section.

3. Space-time image features

To estimate the dynamic F (t) and H(t) matrices of Sec-

tion 2, we can take advantage of time linearity and apply

SVD-based methods that are commonly used for estimating

static F,H from two views [7]. Unlike the static case, how-

ever, estimation of F (t),H(t) requires correspondences of

space-time points in two image sequences. We find these

correspondences by directly matching points in space-time.

The advantage of this method is that it is independent of

tracking and segmentation used in previous methods for se-

quence alignment [4, 17].

To estimate corresponding points in two sequences, we

consider space-time interest points with significant vari-

ation of local motion and shape. Such points or Local

Space-Time Features (LSTF) can be detected by maximiz-

ing the local variation of the image function over space and

time [9]. Given the distinctive spatio-temporal properties of

such points, correspondence can be estimated from the sim-

ilarity of their local spatio-temporal neighborhoods. Due to

the space limitations we refer the reader to [9, 10] for the

details of this method. Figure 3 illustrates LSTF points de-

tected for a sequence containing a jogging person. Close

similarity of spatio-temporal neighborhoods of matching

periodic points can be confirmed in Figure 3(c).

The detector in [9] delivers a rather sparse set of points

that is sufficient for the detection of periodic motion de-

scribed in Section 4. Segmentation of periodic motion in

Section 5, however, requires a denser set of points that en-

able more accurate alignment of periodic views. To detect

such points, we relax the assumption of local extrema of

the image variation over time and detect Weak Local Space-

Time Features (WLSTF) by applying a standard static in-

terest point detector [14] restricted to the regions of non-

constant motion [11]. For each detected point we then com-

pute a local spatio-temporal descriptor according to [10].

Examples of WLSTF points detected for pairs of periodic

frames are illustrated in Figures 5(a)-(b) and Figure 1.

The advantage of LSTF and WLSTF points in the con-

text of this work is twofold. Firstly, they contain dis-

tinctive motion information and greatly disambiguate the

search for space-time correspondences required for estimat-

ing Fper (4) and Hper(t) (5). Secondly, LSTF and WLSTF

are insensitive to constant translation in images and dis-

able periodic matching of sequences with trivial translative

motion. Hence, the alignment of such points by Fper and

Hper(t) provides a sufficient condition for the presence of

periodic change of appearance in image sequences.

4. Periodic motion detection

We formulate a RANSAC procedure for simultaneous

estimation of (i) the period of periodic motion p, (ii) the

fundamental matrix Fper (4) and (iii) the space-time points

of periodic motion. We begin with the detection of pairs of

corresponding LSTF points based on the similarity of their

local descriptors. In each RANSAC iteration we randomly

select two pairs of matching LSTF points with similar tem-

poral delay ∆t and estimate fundamental matrix Fper (4)
using a standard SVD approach [7]. We then score the

estimates of Fper and ∆t by the number of point pairs

(x1,x2) that (i) have similar descriptors, (ii) satisfy the

epipolar constraint x
⊤
2 Fperx1 ≈ 0 and (iii) have temporal

offset |t2 − t1| ≈ ∆t. A large number of consistent point

pairs indicates correctness of the estimated motion period

p = ∆t and the fundamental matrix Fper. The best esti-

mates p, Fper are chosen after a fixed number of iterations.

Application of this method to the detection of periodic

motion of people is illustrated in Figures 3-4. For a jog-

ging person, in Figure 3(b) we show a few groups of pe-

riodic LSTF points found by the algorithm. Points within

each group have similar local neighborhoods (Figure 3(c))

and correspond to the similar body points of the person at

period-separated moments of time. Each group of points



(a) (b)

1. 2. 3. 4.

(c)

Figure 3. Detection of periodic motion. (a): Circles indicate spatial position of LSTF points detected for a sequence with a jogging

person. The features are time-projected onto one frame of a sequence. (b): Result for periodic motion detection. Four selected groups

of corresponding periodic points are connected by epipolar lines 1, ..., 4. (c): Space-time image neighborhoods corresponding to the

points in (b). Note the similarity of neighborhoods corresponding to the features on the same epipolar line.

(a) (b) (c) (d)

(e) (f) (g)

Figure 4. Detection of periodic motion. (a),(c),(e): Detected LSTF points. (b),(d),(f): Results for periodic motion detection. Period-

corresponding features of periodic motion are located on similar epipolar lines. LSTF points originating form non-periodic motion

in the background are suppressed. (g): Results for dominant motion estimation for a sequence with a moving camera in (e) using

quadratic motion model [15]. The outlier regions of dominant motion (black) correspond to a moving person as well as to the motion

of other static structures in the background due to motion parallax.

is located on the same epipolar which verifies the correct

estimation of Fper.

Periodic motion detection for more complex scenes is

shown in Figure 4. In Figures 4(a)-(b) we observe that the

method converged to a correct estimate of inlier features

corresponding to the periodic motion of a walking person

while all outliers originating from motion in the background

(e.g. from the train) were correctly rejected. Epipolar lines

correctly indicate the direction of motion of a person, while

the estimated value of the period p = 24.6 has been manu-

ally verified as correct.

Using RANSAC we can easily detect multiple instances

of periodic motion in the same sequence. For this purpose

we ignore periodic features found in the previous runs of

the algorithm and check the presence of additional instances

of periodic motion within the remaining features.4 In Fig-

ure 4(c)-(d) this method separates periodic motion of two

persons with different motion directions and slightly differ-

ent periods of the gait.

While the camera in previous examples was stationary,

in the example of Figures 4(e)-(f) the camera was inside a

car driving toward a walking person. As illustrates in Fig-

ure 4(f), our algorithm correctly detected a person and her

motion direction. The result of dominant motion estima-

tion in this example (see Figure 4(g)) indicates the poten-

tial problem for motion-based segmentation methods due

to motion parallax. Unlike previous methods for periodic

4 Using this method, multiple instances of periodic motion can be sep-

arated provided their difference in the motion direction given by Fper ,

period vale p or both.



motion detection [5, 16], our approach does not rely on seg-

mentation. This property can be valuable in applications

such as automatic car navigation and driving assistance.

Regarding other applications, the presented method

could be combined with the recognition of human actions

and used to extend [19] with the recognition of multiple

periodic actions performed simultaneously in scenes with

possibly complex background motion.

5. Periodic motion segmentation

We consider the problem of segmenting periodic motion

in image sequences. Motion is commonly recognized as

a strong cue for separating objects from the background

(e.g. using camera stabilization followed by the estimation

of residual motion). Complex scenes with motion parallax

and multiple independent motions in the background, how-

ever, often make this approach problematic.

Given the difficulty, it is still possible to use motion as

an informative cue for segmentation if the type of motion

of particular objects is different from the type of motion

in the rest of the scene. Here we use this idea and aim to

separate objects with a specific periodic motion from com-

plex backgrounds. To simplify the problem, we assume

that the periodic motion is on the plane. We further as-

sume that the object, observer or both are translating con-

stantly with respect to each other and use the time-linear

homography H̃per(t) (6) to align periodic views of the ob-

ject. For this purpose we detect and match WLSTF points

introduced in Section 3 and apply RANSAC procedure to

estimate H̃per(t) and p simultaneously.

As an example sequence we considered a dynamic scene

from the movie “Run Lola Run” illustrated in Figure 5. The

sequence has substantial motion parallax since the camera is

translating backward. The person is approaching the cam-

era with periodic running motion, hence, her periodic views

are affected by translation and linear scale changes; see Fig-

ures 5(a)-(b). The detected WLSTF points cover the body of

the person rather densely and allow for accurate estimation

of the homography between corresponding views. Feature

matches that are consistent with the estimated homography

are illustrated in Figure 5(c). The result of alignment in

Figure 5(d) visually confirms the correct estimation of the

homography and of the period of motion despite only partial

and approximate correspondence of periodic views.

Using period-aligned views of the object we obtain an

object-centered camera stabilization (as opposed to back-

ground camera stabilization used in other methods). With

such a representation, the segmentation of periodic motion

can be approached by evaluating the quality of alignment

in different image regions. Evaluating alignment in terms

of image values directly, however, has shown to be prob-

lematic due to many homogeneous image regions. As an

alternative approach, we note that two object-aligned pe-

riodic frames will usually have low disparity for the object

and large disparity for the background. We use this observa-

tion and apply stereo-matching to estimate the disparity for

each point of the sequence. Using graph-cut implementa-

tion of stereo-matching [8] we estimated disparity for time-

separated views with the time delays ∆t = p, 2p, 3p. The

average disparity map obtained with such a method for a

frame in Figure 5(b) is illustrated in Figure 5(e). Finally, us-

ing disparity estimates as a likelihood measure, we applied

a binary graph-cut segmentation [2] to obtain the segmenta-

tion mask of the periodic object illustrated in Figure 5(f).

We also considered a scene with non-rigid background

motion caused by the motion of cars (see Figure 6). For

comparison, we first show results of dominant motion esti-

mation in Figure 6(b). As can be seen, this approach is not

able to separate the motion of the person from the motion

of cars in the background. Using our method, the periodic

motion of a person in this sequence was successfully seg-

mented as illustrated in Figure 6(d).

Although the results of segmentation in this example are

not perfect, the resulting regions could be useful for exam-

ple to initiate or to re-initialize a tracker or to recognize the

class of periodic motion in a complex scene. We believe

that more accurate segmentation can be obtained by apply-

ing additional methods such as in [18].

6. Conclusion

We presented a method for detecting and segmenting pe-

riodic motion in video sequences. The particular advantage

of the proposed method is that it can be applied to complex

scenes, but does not rely on camera stabilization, on seg-

mentation nor on tracking. Our solution is formulated in the

framework of sequence alignment. In this respect we (i) in-

vestigated a general case of sequence-to-sequence align-

ment for independently translating cameras and (ii) showed

how this approach applies to the detection and segmentation

of periodic motion in complex video sequences with motion

parallax and non-rigid motion of the background.

One limitation of our approach is the assumption of con-

stant translation. To address the general class of motion

while preserving linear estimation of F (t) and H(t), one

could consider piecewise linear or polynomial approxima-

tions of F (t),H(t). Another direction for future investi-

gation concerns alignment of non-periodic motion in dif-

ferent video sequences using the framework of point-wise

sequence alignment developed here.
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frame alignment disparity map segmentation
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Figure 5. Matching, alignment and segmentation of periodic motion. (a)-(b): Two periodic views selected from the same video

sequence and separated in time by three values of a period. Black dots show locations of detected WLSTF points for each frame.

(c): Matches of WLSTF points in (a)-(b) that are consistent with the estimated dynamic homography H̃per . (d): Result of alignment

of the frame (b) to the frame (a). The sum of the frame (a) and the transformed frame (b) is shown. (e): Estimated disparity map

with low values corresponding to regions with good alignment of periodic frames. (f): Final result of segmentation.

original frame dominant motion

(a) (b)

disparity map segmentation

(c) (d)

Figure 6. Segmentation of periodic motion for a scene with non-rigid background. (a): Original frame. (b): Dominant motion

estimation using quadratic motion model [15]. (c): Estimated disparity for the frame in (a). (d): Final result of segmentation.



References

[1] S. Belongie and J. Wills. Structure from periodic mo-

tion. In First International Workshop on Spatial Co-

herence for Visual Motion Analysis, Prague, Czech

Republic, May 2004.

[2] Y. Boykov and V. Kolmogorov. An experimental

comparison of min-cut/max-flow algorithms for en-

ergy minimization in vision. IEEE-PAMI, 26(9):1124–

1137, September 2004.

[3] R.L. Carceroni, F.L.C. Padua, G.A.M.R. Santos, and

K.N. Kutulakos. Linear sequence-to-sequence align-

ment. In Proc. CVPR, pages I:746–753, 2004.

[4] Y. Caspi and M. Irani. Spatio-temporal alignment of

sequences. IEEE-PAMI, 24(11):1409–1424, Novem-

ber 2002.

[5] R. Cutler and L.S. Davis. Robust real-time periodic

motion detection, analysis, and applications. IEEE-

PAMI, 22(8):781–796, August 2000.

[6] T. Darrell, S. Sclaroff, and A. Pentland. Segmentation

by minimal description. In Proc. ICCV, pages 112–

116, 1990.

[7] R.I. Hartley and A. Zisserman. Multiple View Geome-

try in Computer Vision. Cambridge University Press,

2000.

[8] V. Kolmogorov and R. Zabih. Multi-camera scene re-

construction via graph cuts. In Proc. ECCV, page III:

82 ff., 2002.

[9] I. Laptev and T. Lindeberg. Space-time interest points.

In Proc. ICCV, pages 432–439, 2003.

[10] I. Laptev and T. Lindeberg. Local descriptors for

spatio-temporal recognition. In First International

Workshop on Spatial Coherence for Visual Motion

Analysis, 2004.

[11] T. Lindeberg, A. Akbarzadeh, and I. Laptev. Galilean-

corrected spatio-temporal interest operators. In

Proc. ICPR, 2004.

[12] H. Liu, T.H. Hong, M. Herman, and R. Chellappa.

Motion-model-based boundary extraction and a real-

time implementation. CVIU, 70(1):87–100, April

1998.

[13] Y. Liu, R.T. Collins, and Y. Tsin. Gait sequence anal-

ysis using Frieze patterns. In Proc. ECCV, 2002.

[14] D.G. Lowe. Object recognition from local scale-

invariant features. In Proc. ICCV, pages 1150–1157,

1999.

[15] J.M. Odobez and P. Bouthemy. Robust multiresolu-

tion estimation of parametric motion models. JVCIR,

6(4):348–365, December 1995.

[16] R. Polana and R.C. Nelson. Detection and recognition

of periodic, nonrigid motion. IJCV, 23(3):261–282,

June 1997.

[17] C. Rao, A. Gritai, M. Shah, and T. Syeda-Mahmood.

View-invariant alignment and matching of video se-

quences. In Proc. ICCV, pages 939–945, 2003.

[18] C. Rother, V. Kolmogorov, and A. Blake. Grabcut -

interactive foreground extraction using iterated graph

cuts. In Proc. SIGGRAPH, 2004.
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