

Periodic multiprocessor scheduling

Citation for published version (APA):
Korst, J. H. M., Aarts, E. H. L., Lenstra, J. K., & Wessels, J. (1990). Periodic multiprocessor scheduling.
(Memorandum COSOR; Vol. 9049). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1990

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 24. Aug. 2022

https://research.tue.nl/en/publications/254049f3-0163-4a93-80ca-b0aeac8fd178

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Mathematics and Computing Science

COSOR Memorandum 90-49

Periodic Multiprocessor Scheduling

by

J. Korst, E. Aarts, J.K. Lenstra, J. Wessels

December 1990

Periodic Multiprocessor Scheduling

Jan Korst1, Emile Aans1,2, Jan Karel Lenstra2
,3 and Jaap Wessels2

1. Philips Research Laboratories, P.O. Box 80.000, 5600 JA Eindhoven, the Netherlands

2. Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands

3. CWI, P.O. Box 4079, 1009 AB Amsterdam, the Netherlands

Abstract

A number of scheduling and assignment problems are presented involving the execution

of periodic operations in a multiprocessor environment. We consider the computational

complexity of these problems and propose approximation algorithms for operations with

identical periods as well as for operations with arbitrary integer periods.

Keywords: periodic scheduling, periodic assignment, cyclic scheduling, nonpreemptive sched­
uling

1 Introduction

This paper deals with the problem of scheduling periodic operations, i.e., operations that have

to be repeated at a constant rate over an infinite time horizon. Periodic scheduling problems

naturally arise in such diverse areas as real-time processing, process control, vehicle scheduling,

personnel scheduling and preventive maintenance scheduling; see Section 2 for references. Our

interests in periodic scheduling originate from the field of real-time video signal processing,

where the samples of a video signal have to be processed at a constant high frequency (10 - 100

MHz) on a network of processors. Due to the high frequencies, the processing of successive

samples must overlap in time. The intrinsic periodic natnre of video signal processing gives

rise to a periodic scheduling formulation. This application area poses some specific constraints,

resulting in a class of optimization problems that so far have received little attention in the

literature. In this paper we discuss this class of problems by examining their computational

complexity, introducing approximation algorithms, and indicating relevant results presented in

the literature.

We aim to keep the discussion as general as possible by proposing solution strategies that are

also applicable in other application areas. Many papers on periodic scheduling are concerned

with specific applications, proposing solution strategies that are often strongly tailored to the

application at hand, a notable exception being the paper by Serafini & Ukovich [1989], which

presents a general mathematical model for periodic scheduling problems. However, their em­

phasis is on periodic scheduling subject to precedence constraints. In our paper, the emphasis

is on periodic scheduling subject to resource constraints. In that respect, our work is comple­

mentary to theirs.

1

The organization of the paper is as follows. Section 2 briefly surveys the literature on periodic

scheduling. Section 3 gives a mathematical model of periodic scheduling, from which a num­

ber of interrelated optimization problems are derived. The computational complexity of these

problems is examined in Section 4. Section 5 gives approximation algorithms and bounds on

their worst-case performance, if available. Section 6 contains some concluding remarks.

2 Survey of the Literature

Tn the literature, the notion 'scheduling' refers to planning in time as well as planning in time

and space. Tn this paper. we take the latter interpretation. We divide the literature on scheduling

periodic operations into two main areas of interest, namely

(i) Periodic Scheduling: assigning start times and processors to periodic operations so as to

minimize the number of processors, possibly subject to precedence constraints, and

(ii) Periodic Assignment: assigning processors to periodic operations so as to minimize the

number of processors for periodic operations with fixed start times.

Clearly, periodic assignment is a subproblem in periodic scheduling. Next, we briefly describe

some results obtained in both areas. We do not aim to give a complete overview.

2.1 Periodic Scheduling

Most of the literature on scheduling periodic operations in time is restricted to preemptive

scheduling. Preemptive scheduling allows interruption of an execution on a given processor at

some time and its resumption at the same time on a different processor or at a later time on

any processor.

2.1.1 Preemptive Periodic Scheduling

Preemptive periodic scheduling problems are usually modelled as follows. Given a set of

operations 0 = {01,"" on}. any operation OJ E 0 is periodically requested to be executed

with a given period p(Oj) between two successive requests of operation Oi. Once requested at

time t an execution of 0i is required to be completed at time t + d(oj), called its deadline. The

objective is then to find a feasible schedule that requires a minimal number of processors, where

a schedule is called feasible if all deadlines are met. Leung & Merrill [1980] prove that the

problem of deciding whether a feasible schedule exists on m processors is NP-complete, even

for m = 1. However, this problem can be solved in polynomial time if the deadline of each

execution coincides with the next request for the operation. For m = I, Liu & Layland [1973] and

Labetoulle [1974] prove that, if a feasible schedule exists, then it is obtained by the so-called

deadline driven algorithm, which is a dynamic-priority algorithm that schedules executions

with earliest deadlines as soon as possible. Liu & Layland also give a fixed-priority scheduling

algorithm for m = 1, known as rate-monotonic priority assignment, which is optimal in the sense

that the algorithm finds a feasible schedule whenever a feasible fixed-priority schedule exists.

Dhall & Uu [1978] present two fixed-priority scheduling algorithms for m ~ 1, and discuss

their worst-case performance. Leung & Whitehead [1982] study the complexity of preemptive

fixed-priority scheduling. Lawler & Martel [1981] show that a feasible preemptive schedule

2

exists if and only if a feasible periodic schedule exists with a period equal to the least common

multiple of the periods of the individual operations. Bertossi & Bonuccelli [1983, 1985] consider

preemptive scheduling on multiprocessor systems consisting of 'processors of different speeds'.

Scheduling periodic operations together with 'sporadic time-critical operations' is examined by

Chetto & Chetto [1989].

2.1.2 Nonpreemptive Periodic Scheduling

So far. nonpreemptive periodic scheduling has received little attention in the literature. To

schedule periodic operations nonpreemptively, it is usually assumed that the operations have to

be executed with a fixed time between successive executions of the same operation. Gonzalez &

Soh propose an optimization algorithm for nonpreemptively scheduling periodic operations for

the rather special case that the period of the ith operation is half the period of the (i + l)th one.

Serafini & Ukovich [1989] discuss nonpreemptive periodic scheduling subject to precedence

constraints and show that this problem is NP-complete. Park & Yun [1985] give an ll...P

formulation of a nonpreemptive scheduling problem. They consider a set of independent periodic

operations, where each execution requires a given number of resources during one unit of time,

and aim to minimize the maximum required amount of resources. They show how this problem

can be partitioned into a set of independent subproblems. which can be optimized independently.

The partitioning divides the operations into subsets such that the periods of operations in different

subsets are relatively prime. A problem related to nonpreemptive periodic scheduling is the

problem of inscribing regular polygons in a circle so as to maximize the minimum distance

between two vertices on the circle. Burkard [1986] solves this problem for a set of regular

polygons that includes only two different types of polygons. Vince [1989] presents a more

general approach to this problem.

2.2 Periodic Assignment

Periodic assignment deals with the problem of assigning the executions of periodic operations to

a minimal number of processors, assuming that the executions are fixed in time. As we show in

the next sections, this problem is closely related to that of colouring circular arcs. Circular-arc

colouring has been studied by several authors. Garey, Johnson, Miller & Papadimitriou [1980]

prove that circular-arc graph colouring is NP-hard. Tucker [1975] gives upper bounds on the

number of colours needed to colour various types of circular-arc graphs. Orlin, Bonuccelli &

Bovet [1981] and Shih & Hsu [1989] give efficient algorithms for the polynomially solvable

subproblem of colouring proper circular-arc graphs.

Bartholdi, Orlin & Ratliff (19801 consider the periodic assignment problem under the assumption

that the availability of resources is also periodic. This problem naturally arises in the area

of personnel scheduling, where periodic jobs have to be assigned to persons having periodic

working hours. Bartholdi [1981] proposes a linear programming round-off algorithm and gives

its worst-case deviation from optimum. Orlin [1982] discusses the periodic assignment problem

under the assumption that processors require a setup time sij to switch from execution i to

execution j. This problem naturally arises in the area of vehicle scheduling, where a vehicle

has to be transported from the end point of route i to the starting point of route j before it can

start traversing route j.

3

3 Problem Description

In this section we give a formal description of a number of interrelated periodic scheduling and

assignment problems. We restrict ourselves to nonpreemptive scheduling and do not consider

precedence constraints.

Let 0 = {01, ... , On} be a set of n periodic operations. For each 0 E 0 an execution time

e(o) E 1N and a period p(o) E 1N are given. We assume that p(o) ~ 1 and e(o) ::; p(o) for each

o EO. Once an execution of an operation 0 is started at a time unit t E 7Z, it is completed

without interruption on the same processor. Note that in this paper time is measured in time

units, i.e., time periods of equal length. If an operation 0 with execution time e(o) is said to

start at time unit t, it starts at the beginning of time unit t and completes· at the end of time

unit t + e(0) - 1. Similarly, a time interval [tl, t2] denotes a set of consecutive time units, given

by {t1,t1 + 1, ... ,t2}. The kth execution of operation 0 is denoted by o[k]. If execution o[k]

is started at time unit t, then execution o[k + 1] is started at time unit t + p(o). The set of all

executions is given by

E = {o[k] I 0 EO, k E 7Z}.

So, each operation 0 E 0 is started exactly every p(o) time units. Consequently, if for an

operation 0 the start time of an arbitrary execution is fixed, then all executions of 0 are fixed

in time. Without loss of generality, the executions of operation 0 are uniquely specified by

a start time s(o) , with 0 ::; s(o) < p(o). Hence, a schedule S of the operations in 0 is

uniquely determined by an n-tuple (S(Ol), S(02) , ... ,s(on», with 0 ::; S(Oi) < p(Oi) for all 0i E O.

Furthermore, the operations are considered independent, i.e., there are no precedence constraints

between executions of different operations.

Scheduling periodic operations naturally leads to periodic schedules. A schedule S is called

periodic with period P if for each time unit t E 7Z and each 0 E 0 the following holds:

operation 0 is executed at time unit t if and only if it is executed at time unit t + P.

Clearly, in order for a schedule to be periodic with period P, it is required that p(o) I P, for each

o E O. Consequently, the minimal period P of a schedule is given by 1cm(p(ol), ... ,p(on»,

i.e., the least common multiple of the periods of the individual operations.

Let M denote the set of processors. The processors are supposed to be identical, i.e., each

operation 0 E 0 can be executed on any processor m E M and the time to execute operation

o does not depend on the processor. Furthermore, a processor can only execute one operation

at a time. We aim to minimize the number of processors necessary for the execution of the

operations in O. Given a schedule S, we can define the thickness function T s : 7Z -+ IN which

assigns to each t E 7Z the number of operations that are being executed at that time unit. Since

a processor can only execute one operation at a time, max, T s(t) gives, for a given schedule S,

a lower bound on the number of processors that is required to carry out schedule S. If schedule

S is periodic with period P, then the thickness function T s is also periodic with a period pi, for

which pI I P. Hence, to determine max., Ts(t), it suffices to consider time units t E {l, ... ,P}.

With respect to the assignment of executions to processors we consider two different cases,

namely

4

(i) the constrained case, where all executions of an operation 0 have to be assigned to the

same processor, for all 0 E 0, i.e., an assignment from 0 to M is required, and

(ii) the unconstrained case, where each execution o[k] can be assigned to a different processor,

i.e., an assignment from E to M is required.

An assignment of each execution in E to a processor in M may be difficult to specify, since

E is a (countably) infinite set. We therefore restrict ourselves to periodic assignments. An

assignment is called periodic with period P E 1N if for each time unit t E 'ZZ, each 0 EO, and

for each m E M the following holds:

m executes 0 at time unit t if and only ifm executes 0 at time unit t + P.

If for a periodic schedule S with period P the corresponding assignment is periodic with pe­

riod P', then necessarily P I P'. In the constrained case, i.e., if all executions of an operation

are assigned to the same processor, the assignment is necessarily periodic with period pI = P.

For the unconstrained case, restricting oneself to periodic assignments does not lead to the use

of extra processors as long as the length of period pi is not restricted. This is shown in the

following theorem.

Theorem 1 For each periodic schedule S a periodic assignment exists requiring onlymaxt Ts(t)

processors.

Proof We have seen that maxt T 8(t) gives a lower bound on the required number of proces­

sors. Now a finite set of executions can be optimally assigned to maxt T s(t) processors, using

an O(nlogn) algorithm [Hashimoto & Stevens, 1971; Gupta, Lee & Leung, 1979], where n

denotes the number of executions. The algorithm assigns the executions in order of increasing

start times to the first available processor, i.e., to the available processor with the smallest index

number. Let us consider the assignment of a finite set of executions, namely the set of all execu­

tions in the time interval [0, mP - IJ. with m E 1N and P = Icm(p(Ol),' .. ,p(on»' We show that,

if m is chosen sufficiently large. the assignment necessarily becomes periodic with some period

mlp. m' < m. Let us examine the assignment in intervals [IP,(/+I)P-l], with 0 ~ 1< m. The

assignment can attain only a finite set of different solutions in such an interval [IP, (I + 1)P - 1],

since a finite set of executions can be assigned to a finite set of processors. Consequently, if m

is chosen suffiCiently large, then in two intervals [IP, (l + I)P - 1] and [l'p, (I' + 1)P - 1], with

o ~ I < l' < m, the assignment must necessarily be identical. Hence, the assignment necessarily

becomes periodic with period (I' -l)P, using only maxtT8(t) processors, which completes the

proof of the theorem. _

The minimum period for which a periodic assignment uses max, T 8(t) processors may generally

be very large. For reasons of simplicity, we restrict ourselves in this paper to periodic assign­

ments With periods of minimal length, i.e., with a period P = Icm(P(Ol), .•. ,p(on». In this

way, an operation 0 is executed on at most P/p(o) different processors. For the unconstrained

case, an assignment is thus completely specified if the processor is given for P /p(o) successive

executions of each operation 0 E 0, denoted by 0[1],0[2], ... , o[P /p(o)] , where 0[1] is defined

to be the first execution starting at a time unit t 2:: O.

Given the definitions and assumptions described above, we can define the following periodic

assignment problems. We formulate these problems as decision problems.

5

Unconstrained Periodic Assignment (UPA)

Given a schedule S for a set 0 of periodic operations with an execution time e(o) E 1N and a

period p(o) E 1N for each 0 E 0, and an integer k, does an unconstrained periodic assignment

with period P = lcm(p(ot), •.. ,p(on» exist that uses at most k processors?

Constrained Periodic Assignment (CPA)

Given a schedule S for a set 0 of periodic operations with an execution time e(o) E 1N and a

period p(0) E 1N for each 0 EO, and an integer k, does a constrained periodic assignment exist

that uses at most k processors?

Likewise, we define the following periodic scheduling problems.

Unconstrained Periodic Scheduling (UPS)

Given a set 0 of periodic operations with an execution time e(o) E 1N and a period p(o) E 1N

for each 0 E 0, and an integer k, does a schedule exist for which an unconstrained periodic

assignment with period P = lcm(p(ot}, .. . ,p(on» uses at most k processors?

Constrained Periodic Scheduling (CPS)

Given a set 0 of periodic operations with an execution time e(o) E 1N and a period p(o) E lNfor

each 0 EO, and an integer k, does a schedule exist for which a constrained periodic assignment

uses at most k processors?

With respect to CPS the following theorem gives a necessary and sufficient condition for schedul­

ing the executions of two operations on the same processor.

Theorem 2 For CPS, the executions of two periodiC operations OJ and OJ can be scheduled on

the same processor if and only if

(1)

Proof Let g = gcd(p(oj),p(Oj». We first prove that (1) is a sufficient condition. This is shown

as follows. Choosing the start times s(Oj) = 0 and s(Oj) = e(oj), operation OJ is executed in a

subset of the setlj of intervals, defined by [lg,ig+e(oj) -1], I E 1Z. and operation OJ is executed

in a subset of the set Ij of intervals. defined by [lg + e(oj), 19 + e(oj) + e(oj) - 1], I E 'lZ. Hence,

if g ~ e(oj) + e(oj), then no intervals of Ii and Ij overlap, which proves the sufficiency of (1).

We prove the necessity of (1) by showing that, if g < e(oj)+e(oj), operation OJ and OJ cannot be

scheduled on the same processor. So, assume that g < e(oj) + e(oj). Without loss of generality

we may assume that s(Oj) = O. We now have to prove that integers x,y exist for which

or, equivalently,

From elementary number theory it is known that integers w, z exist for which wP(Oj) + zp(Oj) = g.

If we choose x = lw and y = -I:, with I E 1Z, it suffices to show that for some integer I

6

Clearly, this must be the case since the free intervals between the intervals [/g,lg + e(oj) - 1],

I = 0,1, ... , are of length g - e(oj), while the intervals [S(Oj) , s(Oj) + e(oj) - 1] are of length

e(oj). Hence, the assumption that g < e(oj)+e(oj) implies that some integer 1 necessarily exists

for which [lg,lg + e(oj) - 1] and [s(Oj),s(Oj) + e(oj) - 1] overlap. This completes the proof of

the theorem. -

A similar condition can be derived for CPA, as is shown in the following theorem.

Theorem 3 For CPA, two periodic operations OJ and OJ with given start times s(Oj) and s(Oj),

can be executed on the same processor if and only if

(2)

where g = gcd(p(oj),p(Oj».

Proof Without loss of generality we may assume that s(Oj) = O. This is true since, if s(Oj) =I 0,

then the start times of OJ and OJ can be shifted such that s(Oj) becomes zero, without affecting

possible overlap. The sufficiency of (2) is shown as follows. Let us consider time intervals

[0 + kg,g 1 + kg], with k E 'Zl. The first e(oj) time units of each of these intervals can be

allocated for executions of OJ, and the remaining g - e(oj) time units for executions of OJ. Now,

if (2) holds, then the allocated time units surely suffices to execute OJ and OJ. The first e(oj) time

units of the intervals are only used to execute OJ once every p(Oj)/g intervals. The remaining

g - e(oj) time units are only (partly) used to execute OJ once every p(Oj)/g intervals.

The necessity of (2) is shown as follows. Let us again consider the time intervals [0 + kg,g-

1 + kg], with k E 'Zl. If (2) does not hold then the execution of OJ overlaps the first e(oj) time

units once every p(Oj)/ g time intervals. We have already seen that the first e(oj) time units of

the intervals are used for the execution of OJ once every p(Oj)/g time units. Now, by definition,

gcd(p(oj)/g,p(Oj)/g) = 1. Hence, if (2) does not hold, then operations OJ and OJ cannot be

executed on the same processor. This completes the proof of the theorem. -

Note that Theorem 2 can be considered a corollary of Theorem 3, since (1) directly follows

from (2). In the next section we examine the computational complexity of the problems defined

above.

4 Computational Complexity

To examine the complexity of the periodic assignment problems CPA and UPA, we focus our

attention on the subset of problem instances for which p(o) = p for all 0 E O. Note that

under this restriction CPA and UPA are identical. If we prove that this subset of instances is

NP-complete, then both CPA and UPA have been proved to be NP-complete.

Theorem 4 CPA and UPA are NP-complete.

Proof It is easily verified that CPA and UPA are in NP. Now the NP-completeness is proved

by a reduction from circular-arc colouring, which has been shown to be NP-complete by Garey,

Johnson, Miller & Papadimitriou [1980]. We first define circular-arc colouring. Let a set of cir­

cular arcs A = {al, ... ,an} be given, where each arc aj. specified by an ordered pair (lj,r;), with

7

Ij,rj E {O, 1, ... ,2n - I}, is an arc on a circle with circumference 2n that stretches clockwise

from point Ii to point rj. containing both endpoints, and let an integer k be given. The problem

is now: is A k-colourable, i.e., does a function f : A -;. {I, ... , k} exist such that fiaj) =I fia,)

whenever aj and aj overlap? Any instance of circular-arc colouring can be transformed to a

periodic assignment instance as follows. For each arc aj we define a periodic operation with

period p(Oj) = 2n, start time s(Oj) = lit and execution time e(oj) = rj - Ii + 1 if rj ;::: Ii and

e(oj) = ri -I; + 2n + 1 if rj < Ij. Now two periodic operations can be assigned to the same

processor if and only if the corresponding circular arcs can be coloured with the same colour.

Consequently, the circular arcs can be coloured using k colours if and only if the periodic

operations can be assigned to k processors. Evidently, this is a polynomial-time transformation,

which completes the proof of the theorem. _

Note that the transformation from circular-arc colouring defines an equivalence between circular­

arc colouring and the problem of assigning operations with identical periods, which we will use

in Section 5.1.

To consider the complexity of CPS and UPS we again focus our attention on the subset of

problem instances for which p(o) = p for all 0 E O. Again notice that this subset is in the

intersection of the CPS and UPS problem instances.

Theorem 5 CPS and UPS are NP-complete in the strong sense.

Proof It is easily verified that CPS and UPS belong to NP. We now prove the NP­

completeness by a reduction from bin packing, which is NP-complete in the strong sense

[Garey & Johnson, 1979]. An instance of bin packing is specified as follows. Let a finite set

A = {a1, ... , an} of items be given, with for each item aj E A a positive integer size 3(0;), a

positive bin capacity B and a positive integer k. Can A be partitioned into k disjoint subsets

A I, •.• ,Akt such that the sum of the sizes in each subset Aj does not exceed the bin capacity

B? Any instance of bin packing can be directly transformed into an instance of CPS or UPS

as follows. For each item aj we define a periodic operation OJ with execution time e(oj) = s(aj)

and period p(Oj) = B. Clearly, a number of periodic operations can be executed on the same

processor if the corresponding items can be packed in one bin, and vice versa. Hence, the items

a1, ... ,an can be packed into k bins if and only if the operations 01, .. . ,On can be scheduled

on k processors. Since the above transformation is polynomial, CPS and UPS are both NP­

complete in the strong sense. _

An alternative reduction from 3-partition can be constructed, showing that the problems remain

NP-complete in the strong sense for the case that only one processor is available. Hence, this

gives a stronger result. We have chosen, however, to give the reduction from bin packing

since this reduction defines an equivalence between bin packing and the problem of scheduling

periodic operations with identical periods, which we will use in Section 5.1.

8

5 Approximation Algorithms

All problems presented in Section 3 are NP-complete. This means that, unless P = NP. efficient

optimization algorithms do not exist for these problems. We therefore focus our attention on

approximation algorithms, i.e., algorithms which do not guarantee to find an optimal solution

for every instance but attempt to find near-optimal solutions. In the remainder of this paper

we present approximation algorithms for the periodic scheduling and assignment problems

presented in Section 3 and, to some extent, analyse their performance. An interesting subclass

of problems arises if we assume that the operations all have identical periods. We first consider

approximation algorithms for this subclass of problems.

5.1 Periodic Operations with Identical Periods

In Section 4 we already indicated the equivalence between bin packing and the problem of

scheduling periodic operations with identical periods. Hence, approximation algorithms for bin

packing can be directly applied to this problem. A large number of approximation algorithms

exist for bin packing, ranging from simple approximation algorithms called first fit and first fit

decreasing, which have asymptotic performance ratios of ~~ and Ii, respectively, to approxima­

tion schemes. An extensive survey of the literature on approximation algorithms for bin packing

is given by Coffinann, Garey & Johnson [1984]. A bin packing algorithm gives a partitioning

of the operations into subsets such that the operations in the same subset can be assigned to the

same processor. A feasible schedule can then easily be obtained by scheduling the operations in

each subset one after the other, in some arbitrary order. The wealth of approximation algorithms

for bin packing provided by the literature surely suffices to effectively handle this subclass of

periodic scheduling problems.

To present approximation algorithms for the assignment of periodic operations with identical

periods we refer to its equivalence with the problem of colouring circular arcs, as indicated

in Section 4. To the best of our knowledge, Tucker [1975] is the only author who considers

the subject of approximation algorithms for colouring circular arcs, in order to give an upper

bound on the number of colours necessary for colouring circular arcs. Elaborating on this re­

sult, we present the following 2-step approximation algorithm for colouring circular arcs, called

sort&match.

1. Partition the set of arcs into two subsets A and B. where A contains all arcs that cover one

specific point t E {O, 1, ... ,2n - I} for which the thickness function attains a minimum

value, and B contains all remaining arcs. Consequently. IA I = mint T s(t). Now the arcs

in B can be optimally assigned using the assignment algorithms of Hashimoto & Stevens

[1971] or Gupta, Lee & Leung [1979] using maxt T s(t) colours: the arcs Qi in B are sorted

in order of their starting point Ii and they are assigned in this order to the first available

colour, Le., the available colour with the smallest index number.

2. Determine a maximum subset AI of arcs in A which can be coloured with a colour that is

already used in step 1 to colour arcs in B. This problem can be formulated as a maximum­

cardinality matching problem in a bipartite graph, which can be solved efficiently using

9

an augmenting path algorithm [Edmonds, 1965; Hopcroft & Karp, 1973]. Finally, each

remaining arc in A - AI is given a different free colour.

Tucker [1975] only considers the first step of the algorithm presented above. Qearly the

algorithm requires at most maxr T s(t) + m.int T s(t) colours. Since maxt T s(t) is a lower bound

on the number of required colours, sort&match has a worst-case performance ratio of 2. This

worst-case performance ratio already holds for the first step of the algorithm (assuming that

all arcs in A are given a different free colour), which Tucker already showed. The worst-case

performance bound can be shown to be tight [Korst, Aarts, Lenstra & Wessels, 1991]. The

average-case performance of sort&match is much better. Experimental results indicate that

the algorithm almost always finds solutions that are within 10% of the optimum for randomly

generated instances [Korst, Aarts, Lenstra & Wessels, 1991].

5.2 Periodic Operations with Arbitrary Periods

In this subsection we discuss possible approximation algorithms for the UPA, CPA, UPS and

CPS problems, for the case that operations have arbitrary integer periods.

Approximation Algorithm for UPA

Sort&match, presented in Section 5.1, can also be used as an apprOximation algorithm for

UPA by associating an arc with each execution that is contained in a time window of length

P = 1cm(p(ol), ... ,p(OIl»' Note, however, that here the number of arcs is not polynomially

bounded by the number of operations. The performance bound of sort&match clearly remains

unaffected. Circular arcs can be efficiently coloured if they are proper, ie., if no arc is completely

contained in another arc [Odin, Bonuccelli & Bovet, 1981;Shih & Hsu, 1989]. Hence, ifperiodic

operations all have identical execution times, they can be optimally assigned to processors in a

time that is polynomial in the number of executions.

Approximation Algorithms for CPA

Using Theorem 3 we can easily determine for each pair of periodic operations whether they

can be assigned to the same processor. Consequently, we can define a graph 9 = (V, f), where

each Vj E V is associated with a periodic operation OJ. Two vertices Vj and Vj are adjacent if

the associated operations OJ and OJ cannot be assigned to the same processor. The resulting

graph 9 is called a periodic-interval graph. Now it is easy to see that solving a CPA instance is

identical to colouring the vertices of the corresponding periodic-interval graph with a minimum

number of colours. A periodic-interval graph can be considered to be a generalization of a

circular-arc graph in the case that all periods are identical. To the best of our knowledge no

graph colouring algorithms are presented in the literature that are tailored to colouring periodic­

interval graphs. However, approximation algorithms for colouring arbitrary graphs might give

satisfactory results in practice.

Approximation Algorithms for UPS

Experimental results indicate that sort&match is able to find solutions for UPA that are often

close to maxtTs(t). It therefore seems tempting to handle UPS using the following two-step

approach:

1. first determine start times for the operations such that maxr T set) is minimized, and

10

2. next use sort&match to find a feasible assignment.

Now the problem of finding a schedule such that maxt T set) is minimized can be shown to be

NP-complete. This immediately follows from the fact that UPS remains NP-complete for the

single processor case. Consequently, we can restrict ourselves to constructing an approximation

algorithm for the problem of finding start times that minimize max, T set). Note that for a set 0'

of periodic operations with gcd(p(oj),p(Oj» = 1 for all OJ,Oj EO', we have maxtTs(t) = 10'1
for any possible choice of start times. This is a corollary of Theorem 2; see also [park &

Yun, 1985]. Consequently, the set of periodic operations 0 can be partitioned into a number of

disjoint subsets Ot, 02, ... ,01 such that gcd(p(Oj),p(Oj» = 1 for each pair of operations OJ, OJ

that have been assigned to different subsets, and maxt T S(Oj)(t) can be minimized independently

for each subset OJ. The total thickness maxt T set) is then given by Lo
i
max, T S(Oj)- This

partitioning approach will reduce the size of the problem.

We now restrict ourselves to minimizing maxt T set) for a given subset OJ. This can be done

as follows. First select a subset 01' of OJ, for which gcd(p(oj),p(Oj» = 1 for all OJ,Oj E OJ''

such that OJ' is as large as possible. This is done by using some independent set heuristic. The

operations in 0i' are given arbitrary start times. Next, the remaining operations must be given

start times subject to the start times of the operations in 0 i' _ If the number of operations in

OJ - 0;, is small, an enumeration is most appropriate. Otherwise, some constructive or local

search approach can be used.

Approximation AJgorithm for CPS

In the case of CPS we observe the following. If one or more periodic operations are assigned

to a processor, then the time that the processor remains idle can be expressed as one or more

periodic intervals, each with a period and a duration. For example, if a periodic operation 0i

with period p(Oj) and execution time e(oj) is assigned to an idle processor, then the remaining

idle time can be expressed as a periodic interval with period p{o;) and a duration p(Oj) - e(oj).

We can thus consider the problem of assigning periodic operations to processors as the problem

of assigning periodic operations to periodic intervals. For reasons of simplicity we denote a

periodic operation OJ with period p(Oj) and execution time e(oj) by the ordered pair (Pi' ej) and

a periodic interval with period Pj and duration dj by the ordered pair [Pj' dj]. From Theorem 2

we derive that a periodic operation (Ph ei) can be assigned to a periodic interval [Pj' dj] if and

only if gcd(Pi,Pj) 2: ei+(Pj-dj). Let g = gcd(Pi'P) and ej = Pj-dj; then by assigning periodic

operation (Pi' ei) to periodic interval [Pj' dj], the remaining idle time can be expressed as a set

of periodic intervals in a number of alternative ways. We assume that a periodic operation is

always started at the begin of the periodic interval to which it is assigned. Consequently, the

remaining idle time can be expressed as one of the following three alternatives.

11

1. pdg - 1 periodic intervals [Pj,g - ej],

Pj/g - 1 periodic intervals [Pbej], and

1 periodic interval [Pi,g - ej - ejll

2. pdg -1 periodic intervals [Pi,ei],

Pj/g-1 periodic intervals [Pj' ej]. and

1 periodic interval [g,g - ej - ejll

3. pdg - 1 periodic intervals [Pj, ejll,

Pj/g -1 periodic intervals [Pj,g - eill, and

1 periodic interval [Pj,g - ei - ej]

In all three cases the number of periodic intervals is given by

Pi +Pj -1.

gcd(pj,Pj)

Note that. if Pi = Pj' the three alternatives are identical. leading to only one periodic interval.

Otherwise, if P/iPi or PjlPj, then the three alternatives reduce to two essentially different ones.

Based on this observation, we propose the following iterative approximation algorithm. In each

iteration all possible assignments of periodic operations to periodic intervals are considered and

the one that is considered best is selected to be scheduled. The 'goodness' of an operation­

to-interval assignment is defined by the amount of idle time that remains after assigning the

periodic operation to the periodic interval. In each iteration the assignment of (Ph ei) to [Pj' djll

is selected for which dj / Pj - ej / Pj is minimal, provided that the assignment is feasible. Clearly,

the amount of idle time that remains after assigning an operation (Pi' ej) to an idle processor is

given by 1 - e;jpj. Consequently, the algorithm will not assign a periodic operation to an idle

processor as long as the periodic operation can be assigned to a periodic interval of a processor

that is already in use. After each iteration, the remaining idle time is expressed as one or more

periodic intervals using one of the three alternatives mentioned above. Which alternative is

selected is determined by considering how well the unassigned operations fit in the periodic

intervals. This can be considered as a maximum-weight matching problem on a bipartite graph,

which can be handled efficiently.

A detailed analysis of the algorithm is beyond the scope of the paper. We mention that, in the

case of periodic operations with identical periods, solutions are found that are identical to the

ones obtained by first fit decreasing for bin packing.

6 Conclusions

A number of closely interrelated optimization problems have been discussed from the field

of nonpreemptive periodic scheduling. The complexity of these problems has been examined.

We have derived Necessary and sufficient conditions for executing two periodic operations on a

single processor. Finally, approximation algorithms have been proposed for periodic scheduling

and periodic assignment problems, for the constrained case as well as the unconstrained case.

The material presented in this paper leaves the following open problems:

12

- Which constraints do we have to impose on the problems discussed in this paper to allow

for efficient optimization algorithms?

- Do approximation algorithms exist for colouring periodic-interval graphs that have a con­

stant worst-case performance ratio?

- Do approximation algorithms exist for colouring circular-arc graphs with a worst-case

performance ratio smaller than two?

- Is it possible to give a constant worst-case performance ratio for the approximation algo­

rithms for CPS and UPS?

Bibliography

Bartholdi. J.J. [1981], A guaranteed-accuracy round-off algorithm for cyclic scheduling and set covering,

Operations Research 29, 501-510.

Bartholdi. J.J., J.B. Orlin, and H.D. Ratliff [1980], Cyclic scheduling via integer programs with circular

ones, Operations Research 28, 1074-1085.

Bertossi, A.A. and M.A. Bonuccelli [1983], Preemptive scheduling of periodic jobs in unifonn multipro­

cessor systems, Information Processing Letters 16, 3-6.

Bertossi, A.A. and M.A. Bonuccelli [1985], A polynomial feasibility test for preemptive periodic schedul­

ing of unrelated processors, Discrete Applied Mathematics 12, 195-201.

Burkard, R.E. [1986], Optimal schedules for periodically recurring events, Discrete Applied Mathematics
15, 167-180.

Chetto, H. and M. Chetto [1989], Scheduling periodic and sporadic tasks in a real-time system, Informa­
tion Processing Letters 30, 177-184.

Coffmann, E.G., Jr., M.R. Garey, and D.S. Johnson [1984], Approximation algorithms for bin packing­

an updated survey, in: G. Ausiello, M. Lucertini, and P. Serafini (Eds.), Algorithms Design and

Computer System Design, CISM Courses and Lectures 284, Springer, Vienna, 49-106.

DhaII. S.K. and C.L. Liu [1978], On a real-time scheduling problem, Operations Research 26, 127-140.

Edmonds, J. [1965], Paths, trees and flowers, Canadian Journal of Mathematics 17, 449-467.

Garey, M.R. and D.S. Johnson [1979], Computers and Intractability: A Guide to the Theory of NP­
Completeness, W.H. Freeman and Co., San Francisco.

Garey, M.R., D.S. Johnson, G.L. Miller, and C.H. Papadimitriou [1980], The complexity of coloring

circular arcs and chords, SIAM Journal on Algebraic and Discrete Methods 1,216-227.

Gonzalez, MJ. and J.W. Soh [1975], Periodic job scheduling in a distributed processor system, IEEE

Transactions on Aerospace and Electronic Systems 12, 530-536.

Gupta, U.I., D.T. Lee, and J.Y.-T. Leung [1979], An optimal solution for the channel-assignment prob­

lem, IEEE Transaction on Computers 28, 807-810.

Hashimoto, A. and J. Stevens [1971], WIre routing by optimizing channel assignment with large apertures,

Proceedings of the 8th Design Automation Conference, 155-169.
Hopcroft, J.E. and R.M. Karp [1973]. An n5{2 algorithm for maximum matchings in bipartite graphs,

SIAM Journal on Computing 2, 225-231.

Korst, J.H.M., E.H.L. Aarts, J.K. Lenstra, and J. Wessels [1991], Periodic Assignment and Gmph Colour­

ing, Philips Research Manuscript.
Labetoulle, J. [1974], Some theorems on real time scheduling, in: E. Gelenbe and R. Mahl (Eds.), Com­

puter Architecture and Networks, North-Holland, Amsterdam, 285-293.

Lawler, B.L. and C.U. Martel [1981], Scheduling periodically occurring tasks on multiple processors,

Information Processing Letters 12, 9-12.

Leung, J.Y.-T. and M.L. Merrill [1980], A note on preemptive scheduling of periodic, real-time tasks,

Information Processing Letters 11, 115-118.

13

Leung, J. Y.-T. and J. Whitehead [1982], On the complexity of fixed-priority scheduling of periodic, real­

time tasks, Performance Evaluation 2, 237-250.

Liu, C.L. and J.W. Layland [1973]. Scheduling algorithms for multiprogramming in a hard real-time

environment, Journal of the Association for Computing Machinery 20. 46-61.

Orlin. J.B. [1982], Minimizing the number of vehicles to meet a fixed periodic schedule: an application

of periodic posets. Operations Research 30, 760-776.
Orlin, J.B., M.A. Bonuccelli, and D.P. Bovet [1981], An O(n2) algorithm for coloring proper circular arc

graphs, SIAM Journal on Algebraic and Discrete Methods 2, 88-93.

Park, K.S. and D.K. Yun [1985], Optimal scheduling of periodic activities, Operations Research 33,
690-695.

Serafini, P. and W. Ukovich [1989], A mathematical model for periodic scheduling problems, SIAM
Journal on Discrete Mathematics 2, 550-581.

Shih, W.-K. and W.-L. Hsu [1989]. An O(nl.s) algorithm to color proper circular arcs, Discrete Applied
Mathe7lUltics 25, 321-323.

Tucker, A [1975], Coloring a family of circular arcs, SIAM Journal on Applied Mathematics 29, 493-552.

Vmce, J. [1989], Scheduling periodic events, Discrete Applied Mathe7lUltics 25, 299-310.

14

]NDHOVEN UNIVERSITY OF TECHNOLOGY

)cpanment of Mathematics and Computing Science

'ROBABILITY THEORY, STATISTICS, OPERATIONS RESEARCH AND SYSTEMS

'JlEORY

.0. Box 513

600 MB Eindhoven - The Netherlands

ccretariate: Dommelbuilding 0.03

c1cphone: 040 - 47 3130

---_.... _-------_ _--_ ----

ist of COSOR·memoranda - 1990

umber Month Author Tille

190-01 January U.B.F. Adan Analysis of the asymmetric shonest queue problem

1. Wessels Pan 1: Theoretical analysis

W.H.M.Zijm

90-02 January D.A. Overdijk Meetkundige aspecten van de productie van kroonwielen

90-03 February I.J.B.F. Adan Analysis of the assymmetric shonest queue problem

J. Wessels Pan II: Numerical analysis

W.H.M. Zijm

90-04 March P. van der Laan Statistical selection procedures for selecting the best variety

L.R. Verdooren

90-05 March W.H.M.Zijm Scheduling a flexible machining centre

E.H.L.B. Nelissen

90-06 March G. Schuller The design of mechanizations: reliability, efficiency and flexibility

W.HM. Zijm

90-07 March W.HM. Zijm Capacity analysis of automatic transpon systems in an assembly fac-

tory

umber Month Author Tille

90-08 March GJ. v. HouLUm Com putational procedures for stochastic multi-echelon production

W.H.M.Zijm systems

(Revised version)

90-09 March P.J.M. van Production preparation and numerical control in PCB assembly

Laamoven

W.H.M. Zijm

90-10 March F.A.W. Wester A hierarchical planning system versus a schedule oriented planning

J. Wijngaard system

W.H.M.Zijm

90-11 April A. Dekkers Local Area Networks

90-12 April P. v.d. Laan On subset selection from Logistic populations

90-13 April P. v.d. Laan De Van Dantzig Frijs

90-14 June P. v.d.Laan Beslissen met statistische seJectiemethoden

90-15 June F. W. Steutel Some recent characterizations of the exponential and geometric

distributions

~0-16 June 1. van Geldrop Existence of general equilibria in infinite horizon economies with

C. Withagen exhaustible resources. (the continuous time case)

m-17 June P.C. Schuur Simulated annealing as a Lool to obtain new results in plane geometry

)0-18 July F. W. Slcutel Applications of probability in analysis

'0-19 July J.J.B.F. Adan Analysis of the symmetric shortest queue problem

J. Wessels

W.H.M.Zijm

0-20 July J.J.B.F. Adan Analysis of Lhe asymmetric shortest queue problem with Lhreshold

1. Wessel.s jockeying

W.H.M. Zijm

lumber Month

1 90-21 July

190-22 July

190-23 July

90-24 July

90·25 July

90-26 July

90-27 August

90-28 August

90-29 August

90-30 August

~0-31 August

;>0-32 August

Author

K. van Ham

F. W. Steutel

A. Dekkers

J. van der Wal

A. Dekkers

J. van der Wal

D.A. Overdijk

J. van Oorschot

A. Dekkers

I. van Oorschot

A. Dekkers

D.A. Overdijk

A.W.l. Kolen

J .K. Lenstra

R. Doornbos

M. W.I. van Kraaij

W.Z. Venema

J. Wessels

1. Adan

A. Dekkers

F.P.A. Coolen

P.R. Menens

M.J. Newby

Title

On a characterization of the exponential distrihution

Pcrfomtance analysis of a volume shadowing model

Mean value analysis of priority stations without preemption

Benadering van de kroonwielnan.lc met behuJp van regeloppervlakken

in kroonwieloverbrengingen met grote overbrengverhouding

Cake. a concurrent Make CASE tool

Measuring and Simulating an 802.3 CSMNCD LAN

Skew-symmetric matrices and the Euler equations of rotational

motion for rigid systems

Combinatorics in Operations Research

VerdeIing en onafban.lcelijk.heid van kwadratensommen in de

van antie-anal yse

Suppon for problem solving in manpower planning problems

Mean value approximation for closed queueing networks with mulli

server stations

A Bayes-Competing Risk Model for the Use of Expert Judgment in

ReliabiUty Estimation

-lumber, Month

0190-33 September

if Y()..34 September

t 9Q.3.5 Sepr.cmber

f 90-36 Sepr.ember

f 90.37 October

190·38 October

190-39 October

I 9040 October

90-41 November

90-42 November

90-43 November

90-44 November

AuLbor TiLle

B. Velll1lan Multiprocessor Scheduling wiLh Conununication Delays

BJ.Lageweg

1.K. Lalstra

U.B.F. Ad.an flexible assembly and shorteSt queue problems

I. Wessels

W.H.M.Zijm

F.P.A. Coolen A noLI: on &.be usc of the product of spacings in Bayesian inference

MJ.Newby

A.A. StOOlVogei Robust stabilization of systemS wifll multiplicative penurb:ltions

A.A. SlDOlVOgei The singular m.i.nimwn entropy H _ canuel problem

Jan H. van Gddrop General equilibriwn and imemational trade with natUral exhaustible

C=sA.A...\1. resources

Witilagen

LJ.B.F. Adan Analysis of the s.bo.rtest queue problem

J. Wessels (Revised version)

W.H.M.Zijm

M.W.P. Savelsbergh An Algoritlun for Lbe Vehicle RouLing Problem wiLb SlOCbastic

M. GoeLSChalckx. Demands

Gerard Klndervater

Jan Karell.enstra

Manin SavcJ.sbergh

P.W. Steute!

A.A. Stoorvoqel

H.L. Trentelman

J.e. Willems

Sequeruial and parallei local search for the Wne-alnstraincd trave!i.ng

salesman problem

The set of geomeuically in.ti.niLely divisible disuibutions

The Singular linear quadraeic Gaussian conerol problem

The dissipation inequality and the algebraic

Riccati equation

90-45 November A.C.M. Ran Linear quadratic problems with indefinite cost for

H.L. Trentelman discrete time systems

90-46 November A.A. Stoorvogel The disturbance decoupling problem with measurement

J.W. van der

Woude

feedback and stability for systems with direct feed­

through matrices

?-lumber .\1om:.h

M 90-47 December

M90-48 December

M90-49 December

Author

I.J.B.F. Adan
J. Wessels
W.H.M. Zijm

L.J.J. van der Bruggen
J.K. Lenstra
P.C. Schuur

J. Korst, E. Aarts
J.K. Lenstra,
J. Wessels

Titl.e

An er:::or ::m "A generating-function analysis

of multiprogramming queues",

A variable depth approach for the single­
vehicle pickup and delivery problem with

time windows.

Periodic Multiprocessor Schedul,ing.

