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Abstract 

A number of scheduling and assignment problems are presented involving the execution 

of periodic operations in a multiprocessor environment. We consider the computational 

complexity of these problems and propose approximation algorithms for operations with 

identical periods as well as for operations with arbitrary integer periods. 

Keywords: periodic scheduling, periodic assignment, cyclic scheduling, nonpreemptive sched­
uling 

1 Introduction 

This paper deals with the problem of scheduling periodic operations, i.e., operations that have 

to be repeated at a constant rate over an infinite time horizon. Periodic scheduling problems 

naturally arise in such diverse areas as real-time processing, process control, vehicle scheduling, 

personnel scheduling and preventive maintenance scheduling; see Section 2 for references. Our 

interests in periodic scheduling originate from the field of real-time video signal processing, 

where the samples of a video signal have to be processed at a constant high frequency (10 - 100 

MHz) on a network of processors. Due to the high frequencies, the processing of successive 

samples must overlap in time. The intrinsic periodic natnre of video signal processing gives 

rise to a periodic scheduling formulation. This application area poses some specific constraints, 

resulting in a class of optimization problems that so far have received little attention in the 

literature. In this paper we discuss this class of problems by examining their computational 

complexity, introducing approximation algorithms, and indicating relevant results presented in 

the literature. 

We aim to keep the discussion as general as possible by proposing solution strategies that are 

also applicable in other application areas. Many papers on periodic scheduling are concerned 

with specific applications, proposing solution strategies that are often strongly tailored to the 

application at hand, a notable exception being the paper by Serafini & Ukovich [1989], which 

presents a general mathematical model for periodic scheduling problems. However, their em­

phasis is on periodic scheduling subject to precedence constraints. In our paper, the emphasis 

is on periodic scheduling subject to resource constraints. In that respect, our work is comple­

mentary to theirs. 
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The organization of the paper is as follows. Section 2 briefly surveys the literature on periodic 

scheduling. Section 3 gives a mathematical model of periodic scheduling, from which a num­

ber of interrelated optimization problems are derived. The computational complexity of these 

problems is examined in Section 4. Section 5 gives approximation algorithms and bounds on 

their worst-case performance, if available. Section 6 contains some concluding remarks. 

2 Survey of the Literature 

Tn the literature, the notion 'scheduling' refers to planning in time as well as planning in time 

and space. Tn this paper. we take the latter interpretation. We divide the literature on scheduling 

periodic operations into two main areas of interest, namely 

(i) Periodic Scheduling: assigning start times and processors to periodic operations so as to 

minimize the number of processors, possibly subject to precedence constraints, and 

(ii) Periodic Assignment: assigning processors to periodic operations so as to minimize the 

number of processors for periodic operations with fixed start times. 

Clearly, periodic assignment is a subproblem in periodic scheduling. Next, we briefly describe 

some results obtained in both areas. We do not aim to give a complete overview. 

2.1 Periodic Scheduling 

Most of the literature on scheduling periodic operations in time is restricted to preemptive 

scheduling. Preemptive scheduling allows interruption of an execution on a given processor at 

some time and its resumption at the same time on a different processor or at a later time on 

any processor. 

2.1.1 Preemptive Periodic Scheduling 

Preemptive periodic scheduling problems are usually modelled as follows. Given a set of 

operations 0 = {01,"" on}. any operation OJ E 0 is periodically requested to be executed 

with a given period p(Oj) between two successive requests of operation Oi. Once requested at 

time t an execution of 0i is required to be completed at time t + d(oj), called its deadline. The 

objective is then to find a feasible schedule that requires a minimal number of processors, where 

a schedule is called feasible if all deadlines are met. Leung & Merrill [1980] prove that the 

problem of deciding whether a feasible schedule exists on m processors is NP-complete, even 

for m = 1. However, this problem can be solved in polynomial time if the deadline of each 

execution coincides with the next request for the operation. For m = I, Liu & Layland [1973] and 

Labetoulle [1974] prove that, if a feasible schedule exists, then it is obtained by the so-called 

deadline driven algorithm, which is a dynamic-priority algorithm that schedules executions 

with earliest deadlines as soon as possible. Liu & Layland also give a fixed-priority scheduling 

algorithm for m = 1, known as rate-monotonic priority assignment, which is optimal in the sense 

that the algorithm finds a feasible schedule whenever a feasible fixed-priority schedule exists. 

Dhall & Uu [1978] present two fixed-priority scheduling algorithms for m ~ 1, and discuss 

their worst-case performance. Leung & Whitehead [1982] study the complexity of preemptive 

fixed-priority scheduling. Lawler & Martel [1981] show that a feasible preemptive schedule 
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exists if and only if a feasible periodic schedule exists with a period equal to the least common 

multiple of the periods of the individual operations. Bertossi & Bonuccelli [1983, 1985] consider 

preemptive scheduling on multiprocessor systems consisting of 'processors of different speeds'. 

Scheduling periodic operations together with 'sporadic time-critical operations' is examined by 

Chetto & Chetto [1989]. 

2.1.2 Nonpreemptive Periodic Scheduling 

So far. nonpreemptive periodic scheduling has received little attention in the literature. To 

schedule periodic operations nonpreemptively, it is usually assumed that the operations have to 

be executed with a fixed time between successive executions of the same operation. Gonzalez & 

Soh propose an optimization algorithm for nonpreemptively scheduling periodic operations for 

the rather special case that the period of the ith operation is half the period of the (i + l)th one. 

Serafini & Ukovich [1989] discuss nonpreemptive periodic scheduling subject to precedence 

constraints and show that this problem is NP-complete. Park & Yun [1985] give an ll...P 

formulation of a nonpreemptive scheduling problem. They consider a set of independent periodic 

operations, where each execution requires a given number of resources during one unit of time, 

and aim to minimize the maximum required amount of resources. They show how this problem 

can be partitioned into a set of independent subproblems. which can be optimized independently. 

The partitioning divides the operations into subsets such that the periods of operations in different 

subsets are relatively prime. A problem related to nonpreemptive periodic scheduling is the 

problem of inscribing regular polygons in a circle so as to maximize the minimum distance 

between two vertices on the circle. Burkard [1986] solves this problem for a set of regular 

polygons that includes only two different types of polygons. Vince [1989] presents a more 

general approach to this problem. 

2.2 Periodic Assignment 

Periodic assignment deals with the problem of assigning the executions of periodic operations to 

a minimal number of processors, assuming that the executions are fixed in time. As we show in 

the next sections, this problem is closely related to that of colouring circular arcs. Circular-arc 

colouring has been studied by several authors. Garey, Johnson, Miller & Papadimitriou [1980] 

prove that circular-arc graph colouring is NP-hard. Tucker [1975] gives upper bounds on the 

number of colours needed to colour various types of circular-arc graphs. Orlin, Bonuccelli & 

Bovet [1981] and Shih & Hsu [1989] give efficient algorithms for the polynomially solvable 

subproblem of colouring proper circular-arc graphs. 

Bartholdi, Orlin & Ratliff (19801 consider the periodic assignment problem under the assumption 

that the availability of resources is also periodic. This problem naturally arises in the area 

of personnel scheduling, where periodic jobs have to be assigned to persons having periodic 

working hours. Bartholdi [1981] proposes a linear programming round-off algorithm and gives 

its worst-case deviation from optimum. Orlin [1982] discusses the periodic assignment problem 

under the assumption that processors require a setup time sij to switch from execution i to 

execution j. This problem naturally arises in the area of vehicle scheduling, where a vehicle 

has to be transported from the end point of route i to the starting point of route j before it can 

start traversing route j. 
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3 Problem Description 

In this section we give a formal description of a number of interrelated periodic scheduling and 

assignment problems. We restrict ourselves to nonpreemptive scheduling and do not consider 

precedence constraints. 

Let 0 = {01, ... , On} be a set of n periodic operations. For each 0 E 0 an execution time 

e(o) E 1N and a period p(o) E 1N are given. We assume that p(o) ~ 1 and e(o) ::; p(o) for each 

o EO. Once an execution of an operation 0 is started at a time unit t E 7Z, it is completed 

without interruption on the same processor. Note that in this paper time is measured in time 

units, i.e., time periods of equal length. If an operation 0 with execution time e(o) is said to 

start at time unit t, it starts at the beginning of time unit t and completes· at the end of time 

unit t + e( 0) - 1. Similarly, a time interval [tl, t2] denotes a set of consecutive time units, given 

by {t1,t1 + 1, ... ,t2}. The kth execution of operation 0 is denoted by o[k]. If execution o[k] 

is started at time unit t, then execution o[k + 1] is started at time unit t + p(o). The set of all 

executions is given by 

E = {o[k] I 0 EO, k E 7Z}. 

So, each operation 0 E 0 is started exactly every p(o) time units. Consequently, if for an 

operation 0 the start time of an arbitrary execution is fixed, then all executions of 0 are fixed 

in time. Without loss of generality, the executions of operation 0 are uniquely specified by 

a start time s(o) , with 0 ::; s(o) < p(o). Hence, a schedule S of the operations in 0 is 

uniquely determined by an n-tuple (S(Ol), S(02) , ... ,s(on», with 0 ::; S(Oi) < p(Oi) for all 0i E O. 

Furthermore, the operations are considered independent, i.e., there are no precedence constraints 

between executions of different operations. 

Scheduling periodic operations naturally leads to periodic schedules. A schedule S is called 

periodic with period P if for each time unit t E 7Z and each 0 E 0 the following holds: 

operation 0 is executed at time unit t if and only if it is executed at time unit t + P. 

Clearly, in order for a schedule to be periodic with period P, it is required that p(o) I P, for each 

o E O. Consequently, the minimal period P of a schedule is given by 1cm(p(ol), ... ,p(on», 

i.e., the least common multiple of the periods of the individual operations. 

Let M denote the set of processors. The processors are supposed to be identical, i.e., each 

operation 0 E 0 can be executed on any processor m E M and the time to execute operation 

o does not depend on the processor. Furthermore, a processor can only execute one operation 

at a time. We aim to minimize the number of processors necessary for the execution of the 

operations in O. Given a schedule S, we can define the thickness function T s : 7Z -+ IN which 

assigns to each t E 7Z the number of operations that are being executed at that time unit. Since 

a processor can only execute one operation at a time, max, T s(t) gives, for a given schedule S, 

a lower bound on the number of processors that is required to carry out schedule S. If schedule 

S is periodic with period P, then the thickness function T s is also periodic with a period pi, for 

which pI I P. Hence, to determine max., Ts(t), it suffices to consider time units t E {l, ... ,P}. 

With respect to the assignment of executions to processors we consider two different cases, 

namely 
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(i) the constrained case, where all executions of an operation 0 have to be assigned to the 

same processor, for all 0 E 0, i.e., an assignment from 0 to M is required, and 

(ii) the unconstrained case, where each execution o[k] can be assigned to a different processor, 

i.e., an assignment from E to M is required. 

An assignment of each execution in E to a processor in M may be difficult to specify, since 

E is a (countably) infinite set. We therefore restrict ourselves to periodic assignments. An 

assignment is called periodic with period P E 1N if for each time unit t E 'ZZ, each 0 EO, and 

for each m E M the following holds: 

m executes 0 at time unit t if and only ifm executes 0 at time unit t + P. 

If for a periodic schedule S with period P the corresponding assignment is periodic with pe­

riod P', then necessarily P I P'. In the constrained case, i.e., if all executions of an operation 

are assigned to the same processor, the assignment is necessarily periodic with period pI = P. 

For the unconstrained case, restricting oneself to periodic assignments does not lead to the use 

of extra processors as long as the length of period pi is not restricted. This is shown in the 

following theorem. 

Theorem 1 For each periodic schedule S a periodic assignment exists requiring onlymaxt Ts(t) 

processors. 

Proof We have seen that maxt T 8(t) gives a lower bound on the required number of proces­

sors. Now a finite set of executions can be optimally assigned to maxt T s(t) processors, using 

an O(nlogn) algorithm [Hashimoto & Stevens, 1971; Gupta, Lee & Leung, 1979], where n 

denotes the number of executions. The algorithm assigns the executions in order of increasing 

start times to the first available processor, i.e., to the available processor with the smallest index 

number. Let us consider the assignment of a finite set of executions, namely the set of all execu­

tions in the time interval [0, mP - IJ. with m E 1N and P = Icm(p(Ol),' .. ,p(on»' We show that, 

if m is chosen sufficiently large. the assignment necessarily becomes periodic with some period 

mlp. m' < m. Let us examine the assignment in intervals [IP,(/+I)P-l], with 0 ~ 1< m. The 

assignment can attain only a finite set of different solutions in such an interval [IP, (I + 1)P - 1], 

since a finite set of executions can be assigned to a finite set of processors. Consequently, if m 

is chosen suffiCiently large, then in two intervals [IP, (l + I)P - 1] and [l'p, (I' + 1)P - 1], with 

o ~ I < l' < m, the assignment must necessarily be identical. Hence, the assignment necessarily 

becomes periodic with period (I' -l)P, using only maxtT8(t) processors, which completes the 

proof of the theorem. _ 

The minimum period for which a periodic assignment uses max, T 8(t) processors may generally 

be very large. For reasons of simplicity, we restrict ourselves in this paper to periodic assign­

ments With periods of minimal length, i.e., with a period P = Icm(P(Ol), .•. ,p(on». In this 

way, an operation 0 is executed on at most P/p(o) different processors. For the unconstrained 

case, an assignment is thus completely specified if the processor is given for P /p(o) successive 

executions of each operation 0 E 0, denoted by 0[1],0[2], ... , o[P /p(o)] , where 0[1] is defined 

to be the first execution starting at a time unit t 2:: O. 

Given the definitions and assumptions described above, we can define the following periodic 

assignment problems. We formulate these problems as decision problems. 
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Unconstrained Periodic Assignment (UPA) 

Given a schedule S for a set 0 of periodic operations with an execution time e(o) E 1N and a 

period p(o) E 1N for each 0 E 0, and an integer k, does an unconstrained periodic assignment 

with period P = lcm(p(ot), •.. ,p(on» exist that uses at most k processors? 

Constrained Periodic Assignment (CPA) 

Given a schedule S for a set 0 of periodic operations with an execution time e(o) E 1N and a 

period p( 0) E 1N for each 0 EO, and an integer k, does a constrained periodic assignment exist 

that uses at most k processors? 

Likewise, we define the following periodic scheduling problems. 

Unconstrained Periodic Scheduling (UPS) 

Given a set 0 of periodic operations with an execution time e(o) E 1N and a period p(o) E 1N 

for each 0 E 0, and an integer k, does a schedule exist for which an unconstrained periodic 

assignment with period P = lcm(p(ot}, .. . ,p(on» uses at most k processors? 

Constrained Periodic Scheduling (CPS) 

Given a set 0 of periodic operations with an execution time e(o) E 1N and a period p(o) E lNfor 

each 0 EO, and an integer k, does a schedule exist for which a constrained periodic assignment 

uses at most k processors? 

With respect to CPS the following theorem gives a necessary and sufficient condition for schedul­

ing the executions of two operations on the same processor. 

Theorem 2 For CPS, the executions of two periodiC operations OJ and OJ can be scheduled on 

the same processor if and only if 

(1) 

Proof Let g = gcd(p(oj),p(Oj». We first prove that (1) is a sufficient condition. This is shown 

as follows. Choosing the start times s(Oj) = 0 and s(Oj) = e(oj), operation OJ is executed in a 

subset of the setlj of intervals, defined by [lg,ig+e(oj) -1], I E 1Z. and operation OJ is executed 

in a subset of the set Ij of intervals. defined by [lg + e(oj), 19 + e(oj) + e(oj) - 1], I E 'lZ. Hence, 

if g ~ e(oj) + e(oj), then no intervals of Ii and Ij overlap, which proves the sufficiency of (1). 

We prove the necessity of (1) by showing that, if g < e(oj)+e(oj), operation OJ and OJ cannot be 

scheduled on the same processor. So, assume that g < e(oj) + e(oj). Without loss of generality 

we may assume that s(Oj) = O. We now have to prove that integers x,y exist for which 

or, equivalently, 

From elementary number theory it is known that integers w, z exist for which wP(Oj) + zp(Oj) = g. 

If we choose x = lw and y = -I:, with I E 1Z, it suffices to show that for some integer I 
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Clearly, this must be the case since the free intervals between the intervals [/g,lg + e(oj) - 1], 

I = 0,1, ... , are of length g - e(oj), while the intervals [S(Oj) , s(Oj) + e(oj) - 1] are of length 

e(oj). Hence, the assumption that g < e(oj)+e(oj) implies that some integer 1 necessarily exists 

for which [lg,lg + e(oj) - 1] and [s(Oj),s(Oj) + e(oj) - 1] overlap. This completes the proof of 

the theorem. -

A similar condition can be derived for CPA, as is shown in the following theorem. 

Theorem 3 For CPA, two periodic operations OJ and OJ with given start times s(Oj) and s(Oj), 

can be executed on the same processor if and only if 

(2) 

where g = gcd(p(oj),p(Oj». 

Proof Without loss of generality we may assume that s(Oj) = O. This is true since, if s(Oj) =I 0, 

then the start times of OJ and OJ can be shifted such that s(Oj) becomes zero, without affecting 

possible overlap. The sufficiency of (2) is shown as follows. Let us consider time intervals 

[0 + kg,g 1 + kg], with k E 'Zl. The first e(oj) time units of each of these intervals can be 

allocated for executions of OJ, and the remaining g - e(oj) time units for executions of OJ. Now, 

if (2) holds, then the allocated time units surely suffices to execute OJ and OJ. The first e(oj) time 

units of the intervals are only used to execute OJ once every p(Oj)/g intervals. The remaining 

g - e(oj) time units are only (partly) used to execute OJ once every p(Oj)/g intervals. 

The necessity of (2) is shown as follows. Let us again consider the time intervals [0 + kg,g-

1 + kg], with k E 'Zl. If (2) does not hold then the execution of OJ overlaps the first e(oj) time 

units once every p(Oj)/ g time intervals. We have already seen that the first e(oj) time units of 

the intervals are used for the execution of OJ once every p(Oj)/g time units. Now, by definition, 

gcd(p(oj)/g,p(Oj)/g) = 1. Hence, if (2) does not hold, then operations OJ and OJ cannot be 

executed on the same processor. This completes the proof of the theorem. -

Note that Theorem 2 can be considered a corollary of Theorem 3, since (1) directly follows 

from (2). In the next section we examine the computational complexity of the problems defined 

above. 

4 Computational Complexity 

To examine the complexity of the periodic assignment problems CPA and UPA, we focus our 

attention on the subset of problem instances for which p(o) = p for all 0 E O. Note that 

under this restriction CPA and UPA are identical. If we prove that this subset of instances is 

NP-complete, then both CPA and UPA have been proved to be NP-complete. 

Theorem 4 CPA and UPA are NP-complete. 

Proof It is easily verified that CPA and UPA are in NP. Now the NP-completeness is proved 

by a reduction from circular-arc colouring, which has been shown to be NP-complete by Garey, 

Johnson, Miller & Papadimitriou [1980]. We first define circular-arc colouring. Let a set of cir­

cular arcs A = {al, ... ,an} be given, where each arc aj. specified by an ordered pair (lj,r;), with 

7 



Ij,rj E {O, 1, ... ,2n - I}, is an arc on a circle with circumference 2n that stretches clockwise 

from point Ii to point rj. containing both endpoints, and let an integer k be given. The problem 

is now: is A k-colourable, i.e., does a function f : A -;. {I, ... , k} exist such that fiaj) =I fia,) 

whenever aj and aj overlap? Any instance of circular-arc colouring can be transformed to a 

periodic assignment instance as follows. For each arc aj we define a periodic operation with 

period p(Oj) = 2n, start time s(Oj) = lit and execution time e(oj) = rj - Ii + 1 if rj ;::: Ii and 

e(oj) = ri -I; + 2n + 1 if rj < Ij. Now two periodic operations can be assigned to the same 

processor if and only if the corresponding circular arcs can be coloured with the same colour. 

Consequently, the circular arcs can be coloured using k colours if and only if the periodic 

operations can be assigned to k processors. Evidently, this is a polynomial-time transformation, 

which completes the proof of the theorem. _ 

Note that the transformation from circular-arc colouring defines an equivalence between circular­

arc colouring and the problem of assigning operations with identical periods, which we will use 

in Section 5.1. 

To consider the complexity of CPS and UPS we again focus our attention on the subset of 

problem instances for which p(o) = p for all 0 E O. Again notice that this subset is in the 

intersection of the CPS and UPS problem instances. 

Theorem 5 CPS and UPS are NP-complete in the strong sense. 

Proof It is easily verified that CPS and UPS belong to NP. We now prove the NP­

completeness by a reduction from bin packing, which is NP-complete in the strong sense 

[Garey & Johnson, 1979]. An instance of bin packing is specified as follows. Let a finite set 

A = {a1, ... , an} of items be given, with for each item aj E A a positive integer size 3(0;), a 

positive bin capacity B and a positive integer k. Can A be partitioned into k disjoint subsets 

A I, •.• ,Akt such that the sum of the sizes in each subset Aj does not exceed the bin capacity 

B? Any instance of bin packing can be directly transformed into an instance of CPS or UPS 

as follows. For each item aj we define a periodic operation OJ with execution time e(oj) = s(aj) 

and period p(Oj) = B. Clearly, a number of periodic operations can be executed on the same 

processor if the corresponding items can be packed in one bin, and vice versa. Hence, the items 

a1, ... ,an can be packed into k bins if and only if the operations 01, .. . ,On can be scheduled 

on k processors. Since the above transformation is polynomial, CPS and UPS are both NP­

complete in the strong sense. _ 

An alternative reduction from 3-partition can be constructed, showing that the problems remain 

NP-complete in the strong sense for the case that only one processor is available. Hence, this 

gives a stronger result. We have chosen, however, to give the reduction from bin packing 

since this reduction defines an equivalence between bin packing and the problem of scheduling 

periodic operations with identical periods, which we will use in Section 5.1. 
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5 Approximation Algorithms 

All problems presented in Section 3 are NP-complete. This means that, unless P = NP. efficient 

optimization algorithms do not exist for these problems. We therefore focus our attention on 

approximation algorithms, i.e., algorithms which do not guarantee to find an optimal solution 

for every instance but attempt to find near-optimal solutions. In the remainder of this paper 

we present approximation algorithms for the periodic scheduling and assignment problems 

presented in Section 3 and, to some extent, analyse their performance. An interesting subclass 

of problems arises if we assume that the operations all have identical periods. We first consider 

approximation algorithms for this subclass of problems. 

5.1 Periodic Operations with Identical Periods 

In Section 4 we already indicated the equivalence between bin packing and the problem of 

scheduling periodic operations with identical periods. Hence, approximation algorithms for bin 

packing can be directly applied to this problem. A large number of approximation algorithms 

exist for bin packing, ranging from simple approximation algorithms called first fit and first fit 

decreasing, which have asymptotic performance ratios of ~~ and Ii, respectively, to approxima­

tion schemes. An extensive survey of the literature on approximation algorithms for bin packing 

is given by Coffinann, Garey & Johnson [1984]. A bin packing algorithm gives a partitioning 

of the operations into subsets such that the operations in the same subset can be assigned to the 

same processor. A feasible schedule can then easily be obtained by scheduling the operations in 

each subset one after the other, in some arbitrary order. The wealth of approximation algorithms 

for bin packing provided by the literature surely suffices to effectively handle this subclass of 

periodic scheduling problems. 

To present approximation algorithms for the assignment of periodic operations with identical 

periods we refer to its equivalence with the problem of colouring circular arcs, as indicated 

in Section 4. To the best of our knowledge, Tucker [1975] is the only author who considers 

the subject of approximation algorithms for colouring circular arcs, in order to give an upper 

bound on the number of colours necessary for colouring circular arcs. Elaborating on this re­

sult, we present the following 2-step approximation algorithm for colouring circular arcs, called 

sort&match. 

1. Partition the set of arcs into two subsets A and B. where A contains all arcs that cover one 

specific point t E {O, 1, ... ,2n - I} for which the thickness function attains a minimum 

value, and B contains all remaining arcs. Consequently. IA I = mint T s(t). Now the arcs 

in B can be optimally assigned using the assignment algorithms of Hashimoto & Stevens 

[1971] or Gupta, Lee & Leung [1979] using maxt T s(t) colours: the arcs Qi in B are sorted 

in order of their starting point Ii and they are assigned in this order to the first available 

colour, Le., the available colour with the smallest index number. 

2. Determine a maximum subset AI of arcs in A which can be coloured with a colour that is 

already used in step 1 to colour arcs in B. This problem can be formulated as a maximum­

cardinality matching problem in a bipartite graph, which can be solved efficiently using 
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an augmenting path algorithm [Edmonds, 1965; Hopcroft & Karp, 1973]. Finally, each 

remaining arc in A - AI is given a different free colour. 

Tucker [1975] only considers the first step of the algorithm presented above. Qearly the 

algorithm requires at most maxr T s(t) + m.int T s(t) colours. Since maxt T s(t) is a lower bound 

on the number of required colours, sort&match has a worst-case performance ratio of 2. This 

worst-case performance ratio already holds for the first step of the algorithm (assuming that 

all arcs in A are given a different free colour), which Tucker already showed. The worst-case 

performance bound can be shown to be tight [Korst, Aarts, Lenstra & Wessels, 1991]. The 

average-case performance of sort&match is much better. Experimental results indicate that 

the algorithm almost always finds solutions that are within 10% of the optimum for randomly 

generated instances [Korst, Aarts, Lenstra & Wessels, 1991]. 

5.2 Periodic Operations with Arbitrary Periods 

In this subsection we discuss possible approximation algorithms for the UPA, CPA, UPS and 

CPS problems, for the case that operations have arbitrary integer periods. 

Approximation Algorithm for UPA 

Sort&match, presented in Section 5.1, can also be used as an apprOximation algorithm for 

UPA by associating an arc with each execution that is contained in a time window of length 

P = 1cm(p(ol), ... ,p(OIl»' Note, however, that here the number of arcs is not polynomially 

bounded by the number of operations. The performance bound of sort&match clearly remains 

unaffected. Circular arcs can be efficiently coloured if they are proper, ie., if no arc is completely 

contained in another arc [Odin, Bonuccelli & Bovet, 1981;Shih & Hsu, 1989]. Hence, ifperiodic 

operations all have identical execution times, they can be optimally assigned to processors in a 

time that is polynomial in the number of executions. 

Approximation Algorithms for CPA 

Using Theorem 3 we can easily determine for each pair of periodic operations whether they 

can be assigned to the same processor. Consequently, we can define a graph 9 = (V, f), where 

each Vj E V is associated with a periodic operation OJ. Two vertices Vj and Vj are adjacent if 

the associated operations OJ and OJ cannot be assigned to the same processor. The resulting 

graph 9 is called a periodic-interval graph. Now it is easy to see that solving a CPA instance is 

identical to colouring the vertices of the corresponding periodic-interval graph with a minimum 

number of colours. A periodic-interval graph can be considered to be a generalization of a 

circular-arc graph in the case that all periods are identical. To the best of our knowledge no 

graph colouring algorithms are presented in the literature that are tailored to colouring periodic­

interval graphs. However, approximation algorithms for colouring arbitrary graphs might give 

satisfactory results in practice. 

Approximation Algorithms for UPS 

Experimental results indicate that sort&match is able to find solutions for UPA that are often 

close to maxtTs(t). It therefore seems tempting to handle UPS using the following two-step 

approach: 

1. first determine start times for the operations such that maxr T set) is minimized, and 
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2. next use sort&match to find a feasible assignment. 

Now the problem of finding a schedule such that maxt T set) is minimized can be shown to be 

NP-complete. This immediately follows from the fact that UPS remains NP-complete for the 

single processor case. Consequently, we can restrict ourselves to constructing an approximation 

algorithm for the problem of finding start times that minimize max, T set). Note that for a set 0' 

of periodic operations with gcd(p(oj),p(Oj» = 1 for all OJ,Oj EO', we have maxtTs(t) = 10'1 
for any possible choice of start times. This is a corollary of Theorem 2; see also [park & 

Yun, 1985]. Consequently, the set of periodic operations 0 can be partitioned into a number of 

disjoint subsets Ot, 02, ... ,01 such that gcd(p(Oj),p(Oj» = 1 for each pair of operations OJ, OJ 

that have been assigned to different subsets, and maxt T S(Oj)(t) can be minimized independently 

for each subset OJ. The total thickness maxt T set) is then given by Lo
i 
max, T S(Oj)- This 

partitioning approach will reduce the size of the problem. 

We now restrict ourselves to minimizing maxt T set) for a given subset OJ. This can be done 

as follows. First select a subset 01' of OJ, for which gcd(p(oj),p(Oj» = 1 for all OJ,Oj E OJ'' 

such that OJ' is as large as possible. This is done by using some independent set heuristic. The 

operations in 0i' are given arbitrary start times. Next, the remaining operations must be given 

start times subject to the start times of the operations in 0 i' _ If the number of operations in 

OJ - 0;, is small, an enumeration is most appropriate. Otherwise, some constructive or local 

search approach can be used. 

Approximation AJgorithm for CPS 

In the case of CPS we observe the following. If one or more periodic operations are assigned 

to a processor, then the time that the processor remains idle can be expressed as one or more 

periodic intervals, each with a period and a duration. For example, if a periodic operation 0i 

with period p(Oj) and execution time e(oj) is assigned to an idle processor, then the remaining 

idle time can be expressed as a periodic interval with period p{o;) and a duration p(Oj) - e(oj). 

We can thus consider the problem of assigning periodic operations to processors as the problem 

of assigning periodic operations to periodic intervals. For reasons of simplicity we denote a 

periodic operation OJ with period p(Oj) and execution time e(oj) by the ordered pair (Pi' ej) and 

a periodic interval with period Pj and duration dj by the ordered pair [Pj' dj]. From Theorem 2 

we derive that a periodic operation (Ph ei) can be assigned to a periodic interval [Pj' dj] if and 

only if gcd(Pi,Pj) 2: ei+(Pj-dj). Let g = gcd(Pi'P) and ej = Pj-dj; then by assigning periodic 

operation (Pi' ei) to periodic interval [Pj' dj ], the remaining idle time can be expressed as a set 

of periodic intervals in a number of alternative ways. We assume that a periodic operation is 

always started at the begin of the periodic interval to which it is assigned. Consequently, the 

remaining idle time can be expressed as one of the following three alternatives. 
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1. pdg - 1 periodic intervals [Pj,g - ej], 

Pj/g - 1 periodic intervals [Pbej], and 

1 periodic interval [Pi,g - ej - ejll 

2. pdg -1 periodic intervals [Pi,ei], 

Pj/g-1 periodic intervals [Pj' ej]. and 

1 periodic interval [g,g - ej - ejll 

3. pdg - 1 periodic intervals [Pj, ejll, 

Pj/g -1 periodic intervals [Pj,g - eill, and 

1 periodic interval [Pj,g - ei - ej] 

In all three cases the number of periodic intervals is given by 

Pi +Pj -1. 

gcd(pj,Pj) 

Note that. if Pi = Pj' the three alternatives are identical. leading to only one periodic interval. 

Otherwise, if P/iPi or PjlPj, then the three alternatives reduce to two essentially different ones. 

Based on this observation, we propose the following iterative approximation algorithm. In each 

iteration all possible assignments of periodic operations to periodic intervals are considered and 

the one that is considered best is selected to be scheduled. The 'goodness' of an operation­

to-interval assignment is defined by the amount of idle time that remains after assigning the 

periodic operation to the periodic interval. In each iteration the assignment of (Ph ei) to [Pj' djll 

is selected for which dj / Pj - ej / Pj is minimal, provided that the assignment is feasible. Clearly, 

the amount of idle time that remains after assigning an operation (Pi' ej) to an idle processor is 

given by 1 - e;jpj. Consequently, the algorithm will not assign a periodic operation to an idle 

processor as long as the periodic operation can be assigned to a periodic interval of a processor 

that is already in use. After each iteration, the remaining idle time is expressed as one or more 

periodic intervals using one of the three alternatives mentioned above. Which alternative is 

selected is determined by considering how well the unassigned operations fit in the periodic 

intervals. This can be considered as a maximum-weight matching problem on a bipartite graph, 

which can be handled efficiently. 

A detailed analysis of the algorithm is beyond the scope of the paper. We mention that, in the 

case of periodic operations with identical periods, solutions are found that are identical to the 

ones obtained by first fit decreasing for bin packing. 

6 Conclusions 

A number of closely interrelated optimization problems have been discussed from the field 

of nonpreemptive periodic scheduling. The complexity of these problems has been examined. 

We have derived Necessary and sufficient conditions for executing two periodic operations on a 

single processor. Finally, approximation algorithms have been proposed for periodic scheduling 

and periodic assignment problems, for the constrained case as well as the unconstrained case. 

The material presented in this paper leaves the following open problems: 
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- Which constraints do we have to impose on the problems discussed in this paper to allow 

for efficient optimization algorithms? 

- Do approximation algorithms exist for colouring periodic-interval graphs that have a con­

stant worst-case performance ratio? 

- Do approximation algorithms exist for colouring circular-arc graphs with a worst-case 

performance ratio smaller than two? 

- Is it possible to give a constant worst-case performance ratio for the approximation algo­

rithms for CPS and UPS? 
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