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Abstract: A recent work [28] by the authors on the existence of a periodic smooth finite-
dimensional center manifold near a nonhyperbolic cycle in delay differential equations motivates
derivation of periodic normal forms. In this paper, we prove the existence of a special coordinate
system on the center manifold that will allow us to describe the local dynamics on the center man-
ifold in terms of these periodic normal forms. Furthermore, we characterize the center eigenspace
by proving the existence of time periodic smooth Jordan chains for the original and the adjoint
system.
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1 Introduction

Bifurcation theory allows us to analyze the behavior of complicated high dimensional nonlinear dynami-
cal systems near bifurcations by reducing the system to a low dimensional invariant manifold, called
the center manifold. Using normal form theory, the dynamics on the center manifold can be described
by a simple canonical equation called the normal form. These bifurcations and normal forms can be
categorized, and their properties can be understood in terms of certain coefficients of the normal form,
see [27] for more details. Methods to compute these normal form coefficients have been implemented
in software like MatCont [9] and DDE-BifTool [16, 30] to study various classes of dynamical systems.

For bifurcations of limit cycles in continuous-time dynamical systems, there are three generic codi-
mension one bifurcations: fold (or limit point), period-doubling (or flip) and Neimark-Sacker (or
torus) bifurcation. These bifurcations are well understood for ordinary differentials equations (ODEs)
[22, 23, 26, 33], but for delay differential equations (DDEs) the theory is still lacking. To understand
these bifurcations, one should first prove the existence of a center manifold near a nonhyperbolic cycle.
The authors proved in [28] that indeed such a center manifold near a nonhyperbolic cycle exists and
is sufficiently smooth. The next step is to study the local dynamics near a nonhyperbolic cycle via
normal forms.
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The aim of this paper is to show for classical DDEs that the local dynamics near a nonhyperbolic
cycle can be studied via periodic normal forms. We generalize the results from Iooss [22, 23] on periodic
normal forms for finite-dimensional ODEs towards infinite-dimensional DDEs. This task will be ac-
complished by using the rigorous perturbation framework of dual semigroups (sun-star calculus). In an
upcoming paper, we present explicit computational formulas for the critical normal form coefficients,
along the lines of the periodic normalization method [26, 33], for all codimension one bifurcations of
limit cycles in classical DDEs, completely avoiding Poincaré maps. Finally, we plan to implement the
obtained computational formulas into a software package like DDE-BifTool.

1.1 Background

Consider a classical delay differential equation (DDE)

ẋ(t) = F (xt), t ≥ 0, (1)

where x(t) ∈ Rn for each t ≥ 0, and

xt(θ) := x(t + θ), θ ∈ [−h, 0],

represents the history at time t of the unknown x, and 0 < h < ∞ denotes the upper bound of
(finite) delays. The Rn-valued smooth operator F is defined on the Banach space X := C([−h, 0],Rn)
consisting of Rn-valued continuous functions defined on the compact interval [−h, 0], endowed with the
supremum norm. Furthermore, we assume that (1) has a T -periodic solution γ : R → Rn such that
the periodic orbit (cycle) Γ := {γt ∈ X : t ∈ R} is nonhyperbolic.

Using the perturbation framework of dual semigroups, called sun-star calculus, developed in [5, 6,
7, 8, 13], the existence of a periodic smooth finite-dimensional center manifold Wc

loc(Γ) near Γ for (1)
has been recently rigorously established in [28] by the authors. We also refer to [1, 3, 4, 11, 14, 25] for
results on the existence of (parameter-dependent) center manifolds near nonhyperbolic equilibria and
cycles in classical, impulsive and abstract DDEs. Furthermore, we mention the work by Hupkes and
Verduyn Lunel on the existence and smoothness of center manifolds near equilibria [20] and periodic
orbits [21] for so-called functional differential equations of mixed type (MFDEs).

To study the local dynamics of (1) on Wc
loc(Γ), we will characterize the center manifold by proving

the existence of a special coordinate system on this manifold. Afterwards, we show that any solution of
(1) on this invariant manifold can be locally parametrized in terms of these coordinates. The existence
of such a coordinate system for finite-dimensional ODEs was already carried out by Iooss in [22, 23],
and so we will generalize his results towards the setting of classical DDEs, using the sun-star calculus
framework. It turns out that the linear part of our coordinate system will be closely related to the
coordinate system invented by Hale and Weedermann [19], which was used to study perturbations of
periodic orbits in classical DDEs. Iooss indicated in [22] that his results would be easily extendable
to the infinite-dimensional setting. However, we will show in this paper some results that were truly
not expected by the authors. For example, an interplay between history and periodicity for Jordan
chains in Theorem 5 was a remarkable observation, since the history concept is not present in ODEs.
Furthermore, the proof on the existence of this coordinate system on the center manifold happened
to be far more involved, see for example Theorem 10 and especially the role of the sun-star calculus
machinery in the proof. As a consequence of the results, the periodic normal forms for bifurcations of
limit cycles in classical DDEs are exactly the same as for ODEs.

As already addressed, we will present in an upcoming article explicit computational formulas for the
critical normal form coefficients of all codimension one bifurcations of limit cycles in DDEs. To obtain
these formulas, it is no surprise that we need to compute (generalized) eigenfunctions and adjoint
(generalized) eigenfunctions of a certain operator. The first fundaments to obtain such formulas will
be carried out in this paper by proving the existence of time periodic smooth (adjoint) (generalized)
eigenfunctions. It turns out that the existence of the periodic smooth (generalized) eigenfunctions are
also a necessary for the construction of the coordinate system on Wc

loc(Γ).
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1.2 Overview

The paper is organized as follows. In Section 2 we review and extend the results from [28] on periodic
smooth finite-dimensional center manifolds near nonhyperbolic cycles in the setting of classical DDEs.

In Section 3 we mainly characterize the center eigenspace and its associated adjoint. To do this,
we prove that there exists a periodic smooth basis of the center eigenspace by extending the results
from [23, Proposition III.1] towards classical DDEs, see Theorem 5. We show an interesting interplay
between the history and periodicity of the (generalized) eigenfunctions, a phenomenon that is not
present in the setting of ODEs.

In Section 4 we prove the existence of a special coordinate system on Wc
loc(Γ) and generalize the

normal form theorems from finite-dimensional ODEs [22, 23] towards infinite-dimensional DDEs, see
Theorem 10, Theorem 11 and Theorem 12 for the main results.

2 Periodic center manifolds for classical DDEs

In this section, we primarily summarize the results from [28] and secondly recall and extend some results
from (time-dependent) dual perturbation theory for which the book [14] together with the article
[5] are standard references. All unreferenced claims relating to basic properties of time-dependent
perturbations of delays equations can be found in both references.

In the setting of classical DDEs, we work with the real Banach space X := C([−h, 0],Rn) as the
state space for some (maximal) finite delay 0 < h < ∞ equipped with the supremum norm ‖ · ‖∞.
Consider for an integer k ≥ 1 a Ck+1-smooth operator F : X → R

n together with the initial value
problem

{

ẋ(t) = F (xt), t ≥ 0,

x0 = ϕ, ϕ ∈ X,
(DDE)

where the history of x at time t ≥ 0, denoted by xt ∈ X , is defined as

xt(θ) := x(t + θ), ∀θ ∈ [−h, 0]. (2)

By a solution of (DDE) we mean a continuous function x : [−h, tϕ) → R
n for some final time 0 <

tϕ ≤ ∞ that is continuously differentiable on [0, tϕ) and satisfies (DDE). When tϕ = ∞, we call x a
global solution. We say that a function γ : R → Rn is a periodic solution of (DDE) if γ is a solution
of (DDE) and there exists a minimal T > 0, called the period of γ, such that γT = γ0. It follows from
[18, Corollary 10.3.1] that γ ∈ Ck+2(R,Rn). We call Γ := {γt ∈ X : t ∈ R} a periodic orbit or (limit)
cycle in X .

We want to study (DDE) near the periodic solution γ, and it is therefore convenient to translate γ
towards the origin. More specifically, if x is a solution of (DDE), then for y defined as x = γ + y, we
have that y satisfies the time-dependent DDE

ẏ(t) = L(t)yt +G(t, yt), (3)

where the Ck-smooth bounded linear operator L(t) := DF (γt) ∈ L(X,Rn) denotes the Fréchet deriva-
tive of F evaluated at γt and the Ck-smooth operator G(t, ·) := F (γt + ·) − F (γt) − L(t) consists of
solely nonlinear terms. Regarding the linear part, it is traditional to apply a vector-valued version of
the Riesz representation theorem [14, Theorem 1.1] as

L(t)ϕ =

∫ h

0

d2ζ(t, θ)ϕ(−θ) =: 〈ζ(t, ·), ϕ〉, ∀t ∈ R, ϕ ∈ X. (4)

The kernel ζ : R × [0, h] → Rn×n is a matrix-valued function, ζ(t, ·) is of bounded variation, right-
continuous on the open interval (0, h), T -periodic in the first component and normalized by the re-
quirement that ζ(t, 0) = 0 for all t ∈ R. The integral appearing in (4) is of Riemann-Stieltjes type and
the subscript in d reflects on the fact that we integrate over the second variable of ζ.
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The starting point of applying the sun-star calculus construction towards the setting of classical
DDEs is by studying the trivial DDE

{

ẋ(t) = 0, t ≥ 0,

x0 = ϕ, ϕ ∈ X,
(5)

which has the unique global solution

x(t) =

{

ϕ(t), −h ≤ t ≤ 0,

ϕ(0), t ≥ 0.
(6)

We define the C0-semigroup T0 on X , also called the shift semigroup, as

(T0(t)ϕ)(θ) :=

{

ϕ(t+ θ), −h ≤ t+ θ ≤ 0,

ϕ(0), t+ θ ≥ 0,
∀t ≥ 0, ϕ ∈ X, θ ∈ [−h, 0].

and notice that T0 generates the solution of (6) in the sense of T0(t)ϕ = xt for all t ≥ 0. The shift
semigroup has (infinitesimal) generator A0 : D(A0) → X defined by

D(A0) = {ϕ ∈ C1([−h, 0],Rn) : ϕ̇(0) = 0}, A0ϕ = ϕ̇.

For this specific combination of X , T0 and A0, the abstract duality structure can be constructed
explicitly, see [14, Section II.5]. We only summarize here the basic results that are needed for the
upcoming (sub)sections.

Let us first introduce a convention. For K ∈ {R,C} let Kn be the linear space of column vectors,
while Kn⋆ denotes the linear space of row vectors, all with components in K. A representation theorem
by Riesz [29] enables us to identify X⋆ = C([−h, 0],Rn)⋆ with the Banach space NBV([0, h],Rn⋆)
consisting of functions ζ : [0, h] → Rn⋆ that are normalized by ζ(0) = 0, are continuous from the right
on (0, h) and have bounded variation. Because X is not reflexive, the dual semigroup T ⋆

0 of T0 is in
general only weak⋆ continuous on X⋆. This is also visible on the generator level, as the adjoint A⋆

0 of
A0 is only the weak⋆ generator of T ⋆

0 and takes the form

D(A⋆
0) =

{

f ∈ NBV([0, h],Rn⋆) : f(θ) = f(0+) +

∫ θ

0

g(σ)dσ for θ > 0,

g ∈ NBV([0, h],Rn⋆) and g(h) = 0

}

, A⋆
0f = g, (7)

where f(0+) := limt↓0 f(t) and the function g is called the derivative of f . The maximal subspace of
strong continuity

X⊙ := {x⋆ ∈ X⋆ : t 7→ T ⋆
0 (t)x

⋆ is norm continuous on [0,∞)}

is a norm closed T ⋆
0 (t)-invariant weak⋆ dense subspace of X⋆ and we have the characterization

X⊙ = D(A⋆
0), (8)

where the bar denotes the norm closure in X⋆. Expression (8) enables us to compute the sun dual X⊙

by taking the closure of D(A⋆
0) with respect to the norm defined on NBV([0, h],Rn⋆). As the space

consisting of functions that have bounded variation are norm dense in L1, X⊙ has the same description
as D(A⋆

0), but the derivative is allowed to be in L1([0, h],Rn⋆).
Let AC0([0, h],R

n⋆) denote the space of Rn⋆-valued functions that are absolute continuous on (0, h],
have zero value at zero and zero derivative at h. From the description of the sun dual, it is clear that
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X⊙ = AC0([0, h],R
n⋆). It turns out that another characterization of the sun dual will be helpful. As

an element f ∈ X⊙ is completely specified by f(0+) ∈ Rn⋆ and g ∈ L1([0, h],Rn⋆), we obtain the
isometric isomorphism

X⊙ ∼= R
n⋆ × L1([0, h],Rn⋆).

A representation of the dual space X⊙⋆ of the sun dual X⊙, and its restriction to the maximal subspace
of strong continuity X⊙⊙ are given by

X⊙⋆ ∼= R
n × L∞([−h, 0],Rn) and X⊙⊙ ∼= R

n × C([−h, 0],Rn).

The linear canonical embedding j : X → X⊙⋆ has action jϕ = (ϕ(0), ϕ) for all ϕ ∈ X , mapping X
onto X⊙⊙, meaning that X is ⊙-reflexive with respect to the shift semigroup T0.

Next, we turn our attention to the time-dependent linear DDE
{

ẏ(t) = L(t)yt, t ≥ s,

ys = ϕ, ϕ ∈ X,
(T-LDDE)

in the setting of time-dependent perturbation theory. Recall that L(t) = DF (γt) for all t ∈ R and
s ∈ R denotes the starting time. For i = 1, . . . , n we denote r⊙⋆

i := (ei, 0), where ei is the ith standard
basic vector of Rn. It is conventional and convenient to introduce the shorthand notation

wr⊙⋆ :=
n
∑

i=1

wir
⊙⋆
i , ∀w = (w1, . . . , wn) ∈ R

n,

and note that wr⊙⋆ = (w, 0) ∈ X⊙⋆. We define the finite rank T -periodic time-dependent bounded
linear perturbation B as

B(t)ϕ := [L(t)ϕ]r⊙⋆, ∀t ∈ R, ϕ ∈ X,

and since F ∈ Ck+1(X,Rn), L(t) = DF (γt), t 7→ γt is T -periodic and of the class Ck, we have that
B ∈ Ck(R,L(X,X⊙⋆)) is T -periodic and Lipschitz continuous. It is shown in [14, Theorem 3.1] that
there is a one-to-one correspondence between solutions of (T-LDDE) and the time-dependent linear
abstract integral equation

u(t) = T0(t− s)ϕ+ j−1

∫ t

s

T⊙⋆
0 (s− τ)B(τ)u(τ)dτ, ϕ ∈ X, (T-LAIE)

with t ≥ s where the integral has to be interpreted as a weak⋆ Riemann integral [14, Chapter III] and
takes values in j(X) under the running assumption of ⊙-reflexivity, see [5, Lemma 2.2]. The unique
solution of (T-LAIE) on an interval Iϕ := [s, tϕ) ⊂ R for some s < tϕ ≤ ∞ is generated by a strongly
continuous forward evolutionary system U := {U(t, s)}(t,s)∈ΩR

on X in the sense that u(t) = U(t, s)ϕ
for all t ∈ Iϕ, where ΩJ is defined by {(t, s) ∈ J × J : t ≥ s} for some interval J ⊆ R, see [14,
Definition XII.2.1 and Theorem XII.2.7].

As we have defined U(t, s) for all (t, s) ∈ ΩR, we are interested in the associated (sun) dual(s). It is
clear that one can define U⋆(s, t) := U(t, s)⋆ ∈ L(X⋆) := L(X⋆, X⋆) and that U⋆ := {U⋆(s, t)}(s,t)∈Ω⋆

R

forms a backward evolutionary system on X⋆, where Ω⋆
J is defined as {(s, t) ∈ J2 : t ≥ s} for some

interval J ⊆ R. Furthermore, the Lipschitz continuity on B ensures that the restriction U⊙(s, t) :=
U⋆(s, t)|X⊙ leavesX⊙ invariant and, by construction, U⊙ := {U⊙(s, t)}(s,t)∈Ω⋆

R
is a strongly continuous

backward evolutionary system, see [5, Theorem 5.3]. This allows us to define U⊙⋆(t, s) := (U⊙(s, t))⋆

and it is clear that U⊙⋆ := {U⊙⋆(t, s)}(t,s)∈ΩR
is a forward evolutionary system on X⊙⋆ that extends

U , which was previously defined on X .
Let us now characterize the (generalized) generators A(τ), A⋆(τ), A⊙(τ) and A⊙⋆(τ) for all τ ∈ R

together with their domains. The weak⋆ continuous generator A⊙⋆(τ) takes the form

D(A⊙⋆(τ)) = {(α, ϕ) ∈ X⊙⋆ : ϕ ∈ Lip([−h, 0],Rn) and ϕ(0) = α},

A⊙⋆(τ)jϕ = (L(τ)ϕ, ϕ̇), ∀τ ∈ R. (9)
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Because A(τ) is defined as the preimage under j of the part of A⊙⋆(τ) in j(X), we get

D(A(τ)) = {ϕ ∈ C1([−h, 0],Rn) : ϕ̇(0) = L(τ)ϕ}, A(τ)ϕ = ϕ̇, ∀τ ∈ R. (10)

The domain and action of the dual generator A⋆(τ) := [A(τ)]⋆ of A(τ) is treated in the following
lemma.

Lemma 1. For the dual generator A⋆(τ) it holds

D(A⋆(τ)) = D(A⋆
0), A⋆(τ)f = ḟ + f(0+)ζ(τ, ·), ∀τ ∈ R.

Proof. The equality between the domains follows from a sun-variant of [5, Lemma 4.2]. To show the
action, we first have to determine B⋆(τ) := [B(τ)]⋆ and notice that we traditionally restrict this map
on X⊙, see [14, page 58]. It follows from the uniqueness of the adjoint that B⋆(τ) : X⊙ → X⋆ is given
by B⋆(τ)(c, g) = cζ(τ, ·) since

〈cζ(τ, ·), ϕ〉 = 〈(〈ζ(τ, ·), ϕ〉, 0), (c, g)〉 = 〈B(τ)ϕ, (c, g)〉 = 〈B⋆(τ)(c, g), ϕ〉

for all τ ∈ R, ϕ ∈ X and (c, g) ∈ X⊙. Hence,

A⋆(τ)f = A⋆
0f +B⋆(τ)f = ḟ + f(0+)ζ(τ, ·),

which completes the proof.

The sun generator A⊙(τ) is defined as the part of A⋆(τ) in X⊙ and it is convenient to write this
in X⊙-notation as

D(A⊙(τ)) = {(c, g) ∈ D(A⋆
0) : g + cζ(τ, ·) ∈ X⊙}, A⊙(τ)(c, g) = g + cζ(τ, ·).

Since τ 7→ ζ(τ, ·) is of the class Ck, it is clear from the definitions of the generators that τ 7→
A(τ), A⋆(τ), A⊙(τ) and A⊙⋆(τ) are of the class Ck.

Our next aim is to study how the time-dependent nonlinear delay differential equation
{

ẏ(t) = L(t)yt +G(t, yt), t ≥ s,

ys = ϕ, ϕ ∈ X,
(T-DDE)

fits naturally in the setting of dual perturbation theory. Recall that G(t, ·) = F (γt+·)−F (γt)−L(t) and
so G is Ck-smooth and T -periodic in the first component. The T -periodic Ck-smooth time-dependent
nonlinear perturbation R is given by

R(t, ϕ) := G(t, ϕ)r⊙⋆, ∀(t, ϕ) ∈ R×X,

and it is shown in [28, Theorem 36] that there is a one-to-one correspondence between solutions of
(T-DDE) and the time-dependent nonlinear abstract integral equation

u(t) = U(t, s)ϕ+ j−1

∫ t

s

U⊙⋆(t, τ)R(τ, u(τ))dτ, ϕ ∈ X, (T-AIE)

for t ≥ s where the integral has to be interpreted as a weak⋆ Riemann integral and takes values in
j(X) under the running assumption of ⊙-reflexivity, see [28, Lemma 2]. The Ck-smoothness of the
nonlinearity R ensures that for any ϕ ∈ X there exists a unique (maximal) solution uϕ of (T-AIE) on
some (maximal) interval Iϕ = [s, tϕ) ⊂ R with s < tϕ ≤ ∞, see [28, Proposition 2].

Let us now turn our attention towards the construction of the center manifold around the cycle
Γ. The spectrum σ(U(s + T, s)) of the monodromy operator (at time s) U(s + T, s) ∈ L(X) is a
countable set in C, independent of the starting time s, consisting of 0 and isolated eigenvalues (called
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Floquet multipliers) that can possibly accumulate to 0. The number σ ∈ C satisfying λ = eσT is called
the Floquet exponent, and it is known that 1 is always a Floquet multiplier (called the trivial Floquet
multiplier) with associated eigenfunction γ̇s. The (generalized) eigenspace (at time s) associated to
the Floquet multiplier λ is defined as Eλ(s) := N ((λI − U(s + T, s))kλ), where kλ is the order of
a pole of (λI − U(s + T, s))−1. Hence, Eλ(s) is finite-dimensional, and its dimension, called the
algebraic multiplicity (of λ) will be denoted by mλ. The geometric multiplicity (of λ) reflects the
dimension of the eigenspace. As a consequence, the set of Floquet multipliers on the unit circle
Λ0 := {λ ∈ σ(U(s+T, s)) : |λ| = 1} is finite, say 1 ≤ n0 +1 <∞ counted with algebraic multiplicity.
Then, we define the (n0 + 1)-dimensional center eigenspace (at time s) as

X0(s) :=
⊕

λ∈Λ0

Eλ(s).

In this setting, the periodic local center manifold theorem [28, Corollary 18] for (T-DDE) applies. To
be more precise, define the center fiber bundle as

X0 := {(t, ϕ) ∈ R×X : ϕ ∈ X0(t)}.

and denote for any δ > 0 the δ-ball in X centered at the origin by Bδ(X). Then there exists a
Ck-smooth map C : X0 → X and a sufficiently small δ > 0 such that the manifold

Wc
loc(Γ) := {γt + C(t, ϕ) ∈ X : (t, ϕ) ∈ X0 and C(t, ϕ) ∈ Bδ(X)} (11)

is a T -periodic Ck-smooth (n0 + 1)-dimensional locally positively invariant manifold in X , called the
(local) center manifold around Γ, defined in the vicinity of Γ for a sufficiently small δ > 0.

3 Periodic spectral computations for classical DDEs

In the upcoming characterization of the center manifold, it turns out that we need a time periodic
smooth basis of the center eigenspace X0(s). Therefore, in Section 3.1, we will prove that such a
periodic smooth basis exists, see Theorem 5 for the main result.

To characterize the (dual) (generalized) eigenspaces by periodic (generalized) eigenfunctions, we
will study abstract ODEs on the spaces X⋆ and X⊙⋆. As the semigroups and generators on both
spaces are only defined in a weak⋆ sense, it is no surprise that we have to study the abstract ODEs
also in a weak⋆ setting. Therefore, we recall for a moment the (partial) weak⋆ differential operator.

Definition 2 ([5, Definition 4.4]). Let E be a Banach space, J ⊆ R an interval and Ω ⊆ J × J . We
say that a function f : J → E⋆ is weak⋆ differentiable with weak⋆ derivative d⋆f : J → E⋆ if

d

dt
〈f(t), x〉 = 〈d⋆f(t), x〉, ∀x ∈ E, t ∈ J.

If in addition d⋆f is weak⋆ continuous, then f is called weak⋆ continuously differentiable. Furthermore,
we say that a function g : Ω → E⋆ has partial weak⋆ derivatives ∂⋆t g : Ω → E⋆ and ∂⋆sg : Ω → E⋆ if

∂

∂t
〈g(t, s), x〉 = 〈∂⋆t g(t, s), x〉, ∀x ∈ E, (t, s) ∈ Ω,

∂

∂s
〈g(t, s), x〉 = 〈∂⋆s g(t, s), x〉, ∀x ∈ E, (t, s) ∈ Ω.

If in addition ∂⋆t g and ∂⋆sg are weak⋆ continuous, then g is called weak⋆ continuously differentiable.

Remark 3. For using spectral theory on the real Banach space X , we have to complexify X and all
discussed operators on X . This is not entirely trivial and is discussed in [14, Section III.7 and Section
IV.2]. To clarify, by the spectrum of a real (unbounded) operator L defined on (a subspace of) X , we
mean the spectrum of its complexification LC on (a subspace of) the complexified Banach space XC.
For the ease of notation, we omit the additional symbols.
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3.1 Periodic smooth Jordan chains

Let us focus on a specific Floquet multiplier λ ∈ σ(U(s+ T, s)) for a fixed s ∈ R. By the construction
given in [14, Section IV.4], it is possible to find a basis of Eλ(s) that is in Jordan normal form. That
is, there exists an ordered basis {φ0s, . . . , φ

mλ−1
s } of Eλ(s) called a Jordan chain such that

(U(s+ T, s)− λI)φis =

{

0, i = 0,

φi−1
s , i = 1, . . . ,mλ − 1,

(12)

and φis should be interpreted via the translation property (2) for all i = 0, . . . ,mλ − 1. As the map
Uλ(τ, s) := U(τ, s)|Eλ(s) : Eλ(s) → Eλ(τ) is a topological isomorphism [14, Theorem XIII.3.3], we
know that {φ0τ , . . . , φ

mλ−1
τ } is an ordered basis of Eλ(τ), where φiτ := Uλ(τ, s)φ

i
s for all τ ∈ R and

i = 0, . . . ,mλ−1. The following lemma shows that this specific basis of Eλ(τ) has additional structure.

Lemma 4. The ordered basis {φ0τ , . . . , φ
mλ−1
τ } ⊆ D(A(τ)) consists of Ck+1-smooth functions and

forms a Jordan chain for Eλ(τ) for all τ ∈ R.

Proof. Let τ ∈ R be given. Since φiτ = Uλ(τ, s)φ
i
s, it is clear from the computation

(U(τ + T, τ)− λI)φiτ = U(τ, s)(U(s+ T, s)− λI)φis =

{

0, i = 0,

φi−1
τ , i = 1, . . . ,mλ − 1,

that {φ0τ , . . . , φ
mλ−1
τ } is a Jordan chain for Eλ(τ). Let us now prove that φiτ ∈ D(A(τ)), where the

domain is defined in (10), by first showing that φiτ ∈ C1([−h, 0],Rn). Since φiτ = Uλ(τ, s)φ
i
s, it follows

from [14, Theorem XII.3.1] that φiτ satisfies the delay differential equation

φ̇i(τ) = L(τ)φiτ . (13)

Since φis ∈ C([−h, 0],Rn) = X , we know from applying the method of steps onto (13) that its solution
for τ > s is at least continuously differentiable [18, Theorem 1.2.2]. We prove the claim now by
induction. If i = 0, choose m ∈ N large enough to guarantee that τ +mT > s + h because then the
history φ0τ+mT coincides precisely with the solution of (13) on [τ +mT − h, τ +mT ] ⊂ [s,∞), and so
φτ+mT ∈ C1([−h, 0],Rn). It follows from

λmφ0τ = U(τ + T, τ)mφ0τ = U(τ +mT, τ)φ0τ = φ0τ+mT ,

that φ0τ ∈ C1([−h, 0],Rn) due to linearity and the fact that λ 6= 0. The second equality holds due to [14,
Corollary XIII.2.2]. Now, assume that φ0τ , . . . , φ

i−1
τ are in C1([−h, 0],Rn) for some i ∈ {1, . . . ,mλ−1}.

Choose again an m ∈ N such that τ +mT ≥ s+ h because then by the Jordan chain structure, there
exist scalars cm,l for l ∈ {0, . . . , i} such that

λmφiτ +

i−1
∑

l=0

cm,lφ
l
τ = U(τ +mT, τ)φiτ = φiτ+mT ∈ C1([−h, 0],Rn).

By the induction hypothesis φ0τ , . . . , φ
i−1
τ are all in C1([−h, 0],Rn) and so we conclude that λmφiτ ∈

C1([−h, 0],Rn) which proves that φiτ ∈ C1([−h, 0],Rn) since λ 6= 0. This completes the induction.
The same arguments can be used now, with choosing m ∈ N such that τ +mT ≥ s+ (k + 1)h and

employing the method of steps to increase smoothness of solutions, to conclude that all maps τ 7→ φiτ
are all Ck+1-smooth.

It remains to show that φiτ satisfies the second condition in the domain defined in (10). Since φiτ
satisfies (13), we get from the translation property that

d

dθ
φiτ (θ)

∣

∣

∣

∣

θ=0

=
d

dθ
φi(τ + θ)

∣

∣

∣

∣

θ=0

= φ̇i(τ) = L(τ)φiτ .

Hence, φiτ satisfies the second condition from (10).
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Let us now take a look at the periodicity of the Jordan chain defined in (12). It is clear from the
computation

φis+T − φis =

{

(λ − 1)φis, i = 0,

(λ − 1)φis + φi−1
s , i = 1, . . . ,mλ − 1,

that τ 7→ φiτ is T -periodic if and only if λ = 1 and i = 0. However, in the upcoming characterization
of the center manifold, we explicitly need a T -periodic Ck+1-smooth (generalized) eigenbasis. To
construct this basis, let us first introduce some notation. For a real or complex Banach space E and
integer l ≥ 0, we define Cl

T (R, E) as the Banach space consisting of T -periodic Cl-smooth E-valued
functions defined on R equipped with the standard Cl-norm. The following result is a generalization
from finite-dimensional ODEs [23, Proposition III.1] towards infinite-dimensional DDEs.

Theorem 5. Let λ be a Floquet multiplier with σ its associated Floquet exponent. Then there exist
ϕi ∈ Ck+1

T (R, X) satisfying

(

d

dτ
−A⊙⋆(τ) + σ

)

jϕi(τ) =

{

0, i = 0,

−jϕi−1(τ), i = 1, . . . ,mλ − 1,
(14)

or equivalently
(

d

dτ
−A(τ) + σ

)

ϕi(τ) =

{

0, i = 0,

−ϕi−1(τ), i = 1, . . . ,mλ − 1,
(15)

such that the set of functions {ϕ0(τ), . . . , ϕmλ−1(τ)} is an ordered basis of Eλ(τ).

Proof. Let s ∈ R be an initial starting time and consider the basis {φ0s, . . . , φ
mλ−1
s } ⊆ D(A(s)) of Eλ(s)

in Jordan normal form, see Lemma 4. We show the claim by induction on i ∈ {0, . . . ,mλ− 1}. For the
base case (i = 0), consider the initial value problem

{

(d⋆ −A⊙⋆(τ) + σ)jϕ0(τ) = 0, τ ≥ s,

ϕ0(s) = φ0s,
(16)

where d⋆ denotes the weak⋆ differential operator from Definition 2. It follows from the differential
equation in (16) that

d⋆(j ◦ eσ(·−s)ϕ0)(τ) = σeσ(τ−s)jϕ0(τ) + eσ(τ−s)d⋆jϕ0(τ)

= eσ(τ−s)

(

d⋆ + σ

)

jϕ0(τ) = A⊙⋆(τ)j(eσ(τ−s)ϕ0(τ)).

This differential equation is of the form [5, Equation (4.10)] and hence its unique solution [5, Theorem
4.14] on [s,∞) is given by

eσ(τ−s)ϕ0(τ) = U(τ, s)ϕ0(s), (17)

whenever ϕ0(s) ∈ j−1D(A⊙⋆
0 ), because U leaves j−1D(A⊙⋆

0 ) invariant. Since ϕ0(s) = φ0s the claim
follows from Lemma 4 because φ0s ∈ C1([−h, 0],Rn) ⊂ Lip([−h, 0],Rn) = j−1D(A⊙⋆

0 ). Let us now
prove the T -periodicity of ϕ0. Choosing τ = s+ T in (17) and using (12) yields

eσTϕ0(s+ T ) = U(s+ T, s)ϕ0(s) = λϕ0(s).

Because λ = eσT is non-zero we get ϕ0(s+ T ) = ϕ0(s) and so ϕ0 is T -periodic. Hence, ϕ0 extends to
R. To prove the smoothness assertion, recall from Lemma 4 that τ 7→ φ0τ = U(τ, s)φ0s is Ck+1-smooth,
and because τ 7→ e−σ(τ−s) is analytic, it is clear from (17) that the map ϕ0 defined by

ϕ0(τ) = e−σ(τ−s)φ0τ , ∀τ ∈ R,
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is Ck+1-smooth. Hence, the weak⋆ differential operator d⋆ in (16) can be replaced by d
dτ

for i = 0. By
linearity, we have that ϕ0(τ) ∈ D(A(τ)) for all τ ∈ R which proves the base case for (14) and (15).

Now to complete the induction, assume that the maps ϕ0, . . . , ϕi−1 ∈ Ck+1
T (R, X) are constructed

for some i ∈ {1, . . . ,mλ − 1} and consider the initial value problem














(d⋆ −A⊙⋆(τ) + σ)jϕi(τ) = −jϕi−1(τ), τ ≥ s,

ϕi(s) =

i
∑

k=0

αikφ
k
s ,

(18)

where φ0s, . . . , φ
i
s ∈ D(A(s)) are from the Jordan chain. The goal is to find scalars αik such that ϕi

becomes T -periodic. A similar computation as done for the base case tells us by using (18) that

d⋆(j ◦ eσ(·−s)ϕi)(τ) = eσ(τ−s)

(

d⋆ + σ

)

jϕi(τ) = A⊙⋆(τ)j(eσ(τ−s)ϕi(τ)) − j(eσ(τ−s)ϕi−1(τ)). (19)

We will show that the differential equation above admits a unique solution on [s,∞). Consider the
function wi : [s,∞) → X defined by

wi(τ) := U(τ, s)

i
∑

k=0

(s− τ)k

k!
ϕi−k(s), ∀τ ∈ [s,∞). (20)

Because φ0s, . . . , φ
i
s ∈ D(A(s)), we have from (18) that ϕ0(s), . . . , ϕi(s) ∈ D(A(s)) by linearity. It is

clear that

U(τ, s)ϕj(s) =

j
∑

k=0

αjkφ
k
τ ∈ D(A(τ)), ∀τ ∈ [s,∞), j ∈ {0, . . . , i},

and so it follows that τ 7→ wi(τ) takes values in D(A(τ)) ⊆ j−1D(A⊙⋆
0 ) and is Ck+1-smooth, which

implies the weak⋆ differentiability of wi. Clearly wi(s) = ϕi(s) and notice that

d⋆(j ◦ wi)(τ) = A⊙⋆(τ)jU(τ, s)

i
∑

k=0

(s− τ)k

k!
ϕi−k(s)− jU(t, s)

i−1
∑

k=0

(s− τ)k

k!
ϕi−k(s)

= A⊙⋆(τ)jwi(τ)− jwi−1(τ),

and so wi is a solution on [s,∞) of (19). Since wi−1 is at least continuous, it follows from [28,
Proposition 32] and by construction of wi that (19) admits a unique solution j ◦ wi on [s,∞), where
wi = eσ(·−s)ϕi. As a consequence, ϕi = e−σ(·−s)wi is Ck+1-smooth because τ 7→ e−σ(τ−s) is analytic.

Let us now turn our attention towards proving T -periodicity. We see from (20) that ϕi(s) = ϕi(s+T )
if and only if

(U(s+ T, s)− λI)ϕi(s) = U(s+ T, s)
i

∑

k=1

(−1)kT k

k!
ϕi−k(s). (21)

Recall from (18) that ϕi(s) =
∑i

k=0 αikφ
k
s and retrieving (12) yields

i
∑

k=1

αikφ
k−1
s = U(s+ T, s)

i
∑

l=1

i−l
∑

k=1

αi−l,k

(−1)lT l

l!
φks

=

i
∑

l=1

i−l
∑

k=0

αi−l,k

(−1)lT l

l!

{

λφks , k = 0,

λφks + φk−1
s , k = 1, . . . , i− 1.

Because the right-hand side is a known element in the subspace spanned by φ0s, . . . , φ
i−1
s , the αik’s are

uniquely determined for k = 0, . . . , i and so we have proven that ϕi is T -periodic. Hence, τ 7→ ϕi(τ)
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extends to a Ck+1-smooth solution on R, taking values in D(A(τ)). Similarly, the weak⋆ differential
operator from (18) can be replaced by d

dτ
and so the formulas (14) and (15) hold.

Furthermore, ϕ0(τ), . . . , ϕmλ
(τ) are all linearly independent because they are all solutions to the

abstract ODE
(

d

dτ
−A⊙⋆(τ) + σ

)mλ

jϕ(τ) = 0, ∀τ ∈ R,

which completes the proof.

Let us now take some time to discuss the connection between the T -periodicity and the translation
property (2) of the (generalized) eigenfunctions. It is clear that {φ0τ , . . . , φ

mλ−1
τ } is (in general) a non-

T -periodic basis of Eλ(τ) that has the translation property because φiτ = U(τ, s)φis. On the other hand,
Theorem 5 shows us that {ϕ0(τ), . . . , ϕmλ−1(τ)} is a T -periodic basis of Eλ(τ), but how is this basis
related to the translation property? Notice that the function ϕ0(τ) ∈ X would have the translation
property if and only if it satisfies the transport equation

∂

∂τ
ϕ0(τ)(θ) =

∂

∂θ
ϕ0(τ)(θ), (22)

but a small calculation directly shows that

∂

∂τ
ϕ0(τ)(θ) = e−σ(τ−s)(−σ + φ̇0τ (θ)),

∂

∂θ
ϕ0(τ)(θ) = e−σ(τ−s)φ̇0τ (θ),

and so ϕ0 satisfies (22) if and only if σ = 0 i.e. λ = 1. A similar analysis for the T -periodic generalized
eigenfunctions shows that these never have the translation property. Hence, the only T -periodic solution
of (15) which satisfies the translation property is the map τ 7→ γ̇τ . It is however the T -periodic basis
{ϕ0(τ), . . . , ϕmλ−1(τ)} of Eλ(τ) that is needed for the characterization of the center manifold Wc

loc(Γ)
in Section 4.

In the upcoming construction of the characterization of the center manifold, we also need the
Floquet operator (at time τ) associated to the Floquet multiplier λ, defined as the coordinate map
Qλ(τ) : C

mλ → Eλ(τ) by

Qλ(τ)ξ :=

mλ−1
∑

i=0

ξiϕi(τ), ∀ξ = (ξ0, . . . , ξmλ−1) ∈ C
mλ . (23)

It is clear from Theorem 5 that the map τ 7→ Qλ(τ) is T -periodic, Ck+1-smooth and takes values in
L(Cmλ , Eλ(τ)) for all τ ∈ R. Furthermore, a direct calculation shows that

(

−
d

dτ
+A⊙⋆(τ)

)

j(Qλ(τ)ξ) = j(Qλ(τ)Mλξ), (24)

where Mλ is the mλ ×mλ Jordan matrix defined by

Mλ :=













σ 1 · · · 0

0 σ
. . .

...
...

. . .
. . . 1

0 . . . 0 σ













. (25)

This result is an extension of [23, Proposition III.3] from finite-dimensional ODEs to infinite-
dimensional DDEs. Because we are dealing with the real state space X = C([−h, 0],Rn), the linear
operator Mλ, written in matrix form in (25), should represent a real operator, recall also Remark 3.
Depending on the location of the Floquet multiplier λ in the complex plane, we have three options [23]:
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• If λ is real and positive, we choose σ and ϕ0(τ), . . . , ϕmλ−1(τ) real.

• If λ is not real, then its complex conjugate λ 6= λ is also a Floquet multiplier. Hence, we
choose σ and ϕ0(τ), . . . , ϕmλ−1(τ) complex and introduce σ and ϕ0(τ), . . . , ϕmλ−1(τ) for the
complex conjugate Jordan block.

• If λ is real and negative, both methods describe above do not succeed. Indeed, the Floquet
exponents σ are of the form π

T
+ 2liπ

T
with l ∈ Z. The standard way to deal with this situation is

to double the period, since if λ ∈ σ(U(s+T, s)) is a Floquet multiplier then λ2 ∈ σ(U(s+2T, s)).

To study this last case, one has to require T -antiperiodicity of the maps ϕi from Theorem 5. By
T -antiperiodicity, we mean that the maps ϕi are 2T -periodic and satisfy in addition

ϕi(τ + T ) = −ϕi(τ), ∀τ ∈ R, i = 0, . . . ,mλ − 1.

The existence of such T -antiperiodic (generalized) eigenfunctions will be proven in the following propo-
sition. In this antiperiodic setting, the associated Floquet exponent σ ∈ R is defined as eσT = |λ|.

Proposition 6. Let λ be a real and negative Floquet multiplier with σ its associated Floquet exponent.
Then there exist T -antiperiodic maps ϕ0, . . . , ϕmλ−1 ∈ Ck+1

2T (R, X) satisfying (14) and (15). Further-
more, there exists a real T -periodic projector Pλ : R → L(X) onto Eλ(τ). Moreover, the Floquet
operator satisfies Qλ(τ + T ) = −Qλ(τ) and the differential equation (24), where Mλ is now a linear
operator on R

mλ .

Proof. To prove the first assertion, we copy the proof of Theorem 5 but in the 2T -periodic setting.
The proof goes identical up to (17). If we set τ = s+ T in (17) we get

|λ|ϕ0(s+ T ) = eσTϕ0(s+ T ) = U(s+ T, s)ϕ0(s) = λϕ0(s)

and so ϕ0(s+ T ) = sign(λ)ϕ0(s) = −ϕ0(s), which proves the T -antiperiodicity of ϕ0.
Consider now (18) and suppose that the right-hand side of the differential equation satisfies ϕi−1(s+

T ) = −ϕi−1(s). Our goal now is to find the αik such that ϕi is T -antiperiodic. Instead of requiring
the T -periodicity of ϕi we now require T -antiperiodicity of ϕi and see that this holds if and only if

(U(s+ T, s)− λI)ϕi(s) = U(s+ T, s)

i
∑

k=1

(−1)kT k

k!
ϕi−k(s)

which is precisely (21). Hence, the same procedure in Theorem 5 can be followed to find the associated
αik’s uniquely and show that ϕi is T -antiperiodic.

The real spectral projection Pλ(τ) ∈ L(X) onto Eλ(τ) for all τ ∈ R is constructed in the same way
as the Dunford integral in [28, Appendix A.2] and so T -periodicity follows. For the Floquet operator,
it follows from linearity and ϕi(τ + T ) = −ϕi(τ) for all i = 0, . . . ,mλ − 1 that Qλ(τ + T ) = −Qλ(τ)
for all τ ∈ R.

3.2 Dual periodic smooth Jordan chains

Our next goal is to repeat the construction above, but now for the adjoint system. Let us first
observe that σ(U(s + T, s)) = σ(U⋆(s − T, s)) because U(s + T, s) is a real operator (Remark 3) and
U⋆(s, s + T ) = U⋆(s − T, s) due to [14, Corollary XIII.2.2]. Hence, it follows from general spectral
theory and [15, Proposition IV.2.18] that

X = N ((λI − U(s+ T, s))kλ)⊕N ((λI − U⊙(s− T, s))kλ)⊥,

where ⊥ denotes the annihilator. Notice that the first sum in this direct sum decomposition is precisely
the mλ-dimensional subspace Eλ(s) of X which has been characterized in Section 3.1. The aim of this
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subsection is to characterize the mλ-dimensional subspace E⊙
λ (s) := N ((λI − U⊙(s− T, s))kλ) of X⊙

and therefore we start by constructing a Jordan chain. Again, by the construction given in [14, Section
IV.4], there exists an ordered basis {φ⊙mλ−1(s), . . . , φ

⊙
0 (s)} of E⊙

λ (s) called a Jordan chain such that

(U⊙(s− T, s)− λI)φ⊙i (s) =

{

0, i = mλ − 1,

φ⊙i+1(s), i = mλ − 2, . . . , 0.
(26)

Because the T -periodic time-dependent perturbation B is Lipschitz continuous, it follows from [5,
Remark 5.10] that the backward evolutionary system U⊙ leaves X⊙ invariant, which proves that
the Jordan chain in (26) is well-defined. Recall from Section 3.1 that the bounded linear operator
Uλ(τ, s) : Eλ(s) → Eλ(τ) is a topological isomorphism. Hence, U⊙

λ (τ, s) := (Uλ(s, τ))
⊙ : E⊙

λ (s) →
E⊙

λ (τ) is a topological isomorphism and so {φ⊙mλ−1(τ), . . . , φ
⊙
0 (τ)} is an ordered basis of E⊙

λ (τ), where
φ⊙i (τ) := U⊙

λ (τ, s)φ⊙i (s) for all τ ∈ R and i = 0, . . . ,mλ − 1. The following lemma shows that E⊙
λ (τ)

has additional structure.

Lemma 7. The ordered basis {φ⊙mλ−1(τ), . . . , φ
⊙
0 (τ)} ⊆ D(A⋆

0) consists of Ck+1-smooth functions and

forms a Jordan chain for E⊙
λ (τ) for all τ ∈ R.

Proof. The proof of the Jordan chain structure is analogous to that of Lemma 4. Let i ∈ {mλ−1, . . . , 0}
be given. Because φ⊙i (s) ∈ X⊙, it follows from [5, Theorem 5.8] that τ 7→ φ⊙i (τ) satisfies

d

dτ
〈φ⊙i (τ), ϕ〉 = −〈A⊙⋆(τ)jϕ, φ⊙i (τ)〉, ∀ϕ ∈ j−1D(A⊙⋆

0 ), (27)

where the map τ 7→ 〈φ⊙i (τ), ϕ〉 is continuously differentiable for all τ ≤ s. Because U⊙ leaves X⊙

invariant, we know that φ⊙i (τ) = (ci(τ), gi(τ)) ∈ X⊙, where φ⊙i (τ)(0
+) =: ci(τ) ∈ Cn⋆ and gi(τ) ∈

L1([0, h],Cn⋆) represents the derivative of φ⊙i with respect to the second component. Notice that in
the representation of spaces we worked with the complexification (Remark 3). Furthermore, it follows
that gi(τ)(h) = 0 for all τ ≤ s. As we are working in the setting of classical DDEs, we can evaluate
the pairings explicitly [14, Equation (II.5.6)] and so

〈A⊙⋆(τ)jϕ, φ⊙i (τ)〉 = 〈(L(τ)ϕ, ϕ̇), (ci(τ), gi(τ))〉

= 〈ci(τ)ζ(τ, ·), ϕ〉 +

∫ h

0

gi(τ)(θ)ϕ̇(−θ)dθ

=

∫ h

0

dθ[ci(τ)ζ(τ, θ) + gi(τ)(θ)]ϕ(−θ),

where we used (4) and (9) in the second equality, partial integration for Riemann-Stieltjes integrals
and the conditions on g coming from (7) in the third equality. The dθ refers to Riemann-Stieltjes
integration over the θ-variable. We can also express the left-hand side of (27) as

d

dτ
〈φ⊙i (τ), ϕ〉 = ċi(τ)ϕ(0) +

∫ h

0

∂gi(τ)(θ)

∂τ
ϕ(−θ)dθ =

∫ h

0

dθ

[

∂φ⊙i (τ)(θ)

∂τ

]

ϕ(−θ).

Hence, (27) is equivalent to

∫ h

0

dθ

[

ci(τ)ζ(τ, θ) +

(

∂

∂τ
+

∂

∂θ

)

φ⊙i (τ)(θ)

]

ϕ(−θ) = 0, ∀ϕ ∈ j−1D(A⊙⋆
0 ),

Clearly, if we can show that φ⊙i satisfies
(

∂

∂τ
+

∂

∂θ

)

φ⊙i (τ)(θ) + ci(τ)ζ(τ, θ) = 0, ∀τ ≤ s, θ ∈ (0, h], (28)
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then (27) is satisfied and the result follows from the uniqueness of (27) when the initial condition φ⊙i (s)
at starting time s is specified. The inhomogeneous transport equation (28) has the unique solution

φ⊙i (τ)(θ) = ci(τ − θ)−

∫ θ

0

ci(τ + v − θ)ζ(τ + v − θ, v)dv, (29)

when the initial condition ci is specified. To determine ci from φ⊙i (s), we will have a look at the map
θ 7→ gi(τ)(θ) = ∂

∂θ
φ⊙i (τ)(θ) that has to satisfy gi(τ)(h) = 0 for all τ ≤ s. Differentiating (29) with

respect to θ by employing the Leibniz integral rule gives

gi(τ)(θ) = −ċi(τ − θ)− ci(τ)ζ(τ, θ) +

∫ θ

0

ċi(τ + v − θ)ζ(τ + v − θ, v)dv

+

∫ θ

0

ci(τ + v − θ)D1ζ(τ + v − θ, v)dv.

Using partial integration for Riemann-Stieltjes integrals on the first integral above leads eventually to

gi(τ)(θ) = −ċi(τ − θ)−

∫ θ

0

ci(τ + v − θ)d2ζ(τ + v − θ, v).

To simplify the expression even more, recall that gi(τ − θ + h)(h) = 0 for all τ ∈ R and θ ∈ (0, h] that
satisfy τ − θ + h ≤ s. This is equivalent to

0 = −ċi(τ − θ)−

∫ h

0

ci(τ + v − θ)d2ζ(τ + v − θ, v), (30)

and so gi simplifies to

gi(τ)(θ) =

∫ h

θ

ci(τ − θ + v)d2ζ(τ − θ + v, v). (31)

As gi(τ − h)(h) = 0 for all τ ≤ s+ h, it follows from (30) that that ci satisfies

ċi(τ) = −

∫ h

0

ci(τ + v)d2ζ(τ + v, v), ∀τ ≤ s− h, (32)

which is an advance differential equation that has to be solved backward in time with an initial condition
that still has to be specified. To determine the initial condition, recall that φ⊙i (s) is known and so it
follows from (29) that ci has to satisfy

ci(s− θ) = φ⊙i (s)(θ) +

∫ θ

0

ci(s+ v − θ)ζ(s + v − θ, v)dv, θ ∈ [0, h].

Perform the change of variables: s − θ = −ξ, zi(ξ) = ci(−ξ), ψ(ξ) = φ⊙i (s)(s + ξ) and define the map
K as K(ξ − v) := ζ(v − ξ, v). This yields the linear Volterra integral equation of the second kind

zi(ξ) = ψ(ξ) +

∫ ξ

−s

zi(η)K(ξ − η)dη, ∀ξ ∈ (−s,−s+ h]. (33)

Because ψ ∈ AC((−s,−s + h],Cn⋆) and K ∈ L1((0, h],Cn⋆) as the kernel ζ is Ck-smooth in the
first component and of bounded variation of the second component, it follows from [17, Theorem
2.3.5] that (33) has a unique solution z̃i = zi(−s + h + ·) ∈ AC([−h, 0],Cn⋆) ⊂ X , where we define
z̃i(0) := limt↓0 zi(−s + h + t). Perform now the change of variables τ = −t, zi(t) = ci(−t) and
ζ̃(t, v) = ζ(v − t, v) in (32) because then it is clear that (32) can be transformed into











żi(t) =

∫ h

0

zi(t− v)d2ζ̃(t, v), t ≥ −s+ h,

zi(−s+ h+ ·) = z̃i, z̃i ∈ X,

(34)
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which is a delay differential equation with initial condition z̃i on starting time −s+ h. By the Jordan
chain structure in (26), we can use similar arguments on (34) as in the proof of Lemma 4 to conclude
that zi is Ck+1-smooth and extends to R. Hence, ci is Ck+1-smooth, and it follows then from (31) that
τ 7→ gi(τ) is Ck+1-smooth, and the map θ 7→ gi(τ)(θ) has bounded variation for all θ ∈ (0, h] because
of the Ck+1-smoothness of ci and the Ck-smoothness of ζ in the first component. As gi(τ)(0) = 0 for
all τ ∈ R, we have shown that gi(τ) ∈ NBV([0, h],Cn⋆) and so φ⊙i (τ) ∈ D(A⋆

0) for all τ ∈ R. Hence,
we obtain the Ck+1-smoothness of τ 7→ φ⊙i (τ) from (29).

Let us now take a look at the periodicity of the Jordan chain for the adjoint system. It is clear
from the computation

φ⊙i (s− T )− φ⊙i (s) =

{

(λ− 1)φ⊙mλ−1(s), i = mλ − 1,

(λ− 1)φ⊙i (s) + φ⊙i+1(s), i = mλ − 2, . . . , 0,

that τ 7→ φ⊙i (τ) is T -periodic if and only if λ = 1 and i = mλ − 1. However, similarly as for
the (generalized) eigenfunctions, we explicitly need a Ck+1-smooth T -periodic basis of E⊙

λ (s) for the
computation of the critical normal coefficients in an upcoming paper.

Theorem 8. Let λ be a Floquet multiplier with σ its associated Floquet exponent. Then there exist
ϕ⊙
i ∈ Ck+1

T (R, X⊙) satisfying

(

d

dτ
+A⋆(τ) − σ

)

ϕ⊙
i (τ) =

{

0, i = mλ − 1,

ϕ⊙
i+1(τ), i = mλ − 2, . . . , 0

(35)

such that the set of functions {ϕ⊙
mλ−1(τ), . . . , ϕ

⊙
0 (τ)} is an ordered basis of E⊙

λ (τ).

Proof. Let s ∈ R be a starting time and consider the order basis {φ⊙mλ−1(s), . . . , φ
⊙
0 (s)} of E⊙

λ (s) in
Jordan normal form. We show the claim by induction on i ∈ {mλ − 1, . . . , 0}. For the base case
(i = mλ − 1), consider the initial value problem

{

(d⋆ +A⋆(τ) − σ)ϕ⊙
mλ−1(τ) = 0, τ ≤ s,

ϕ⊙
mλ−1(s) = φ⊙mλ−1(s),

(36)

where φ⊙mλ−1(s) is the first basis vector of E⊙
λ (s). It follows from the differential equation in (36) that

d⋆(eσ(s−·)ϕ⊙
mλ−1)(τ) = −σeσ(s−τ)ϕ⊙

mλ−1(τ) + eσ(s−τ)d⋆ϕ⊙
mλ−1(τ)

= eσ(s−τ)

(

d⋆ − σ

)

ϕ⊙
mλ−1(τ) = −A⋆(τ)[eσ(s−τ)ϕ⊙

mλ−1(τ)].

This differential equation is of the form [5, Equation (5.8)] and so (36) admits a unique solution [5,
Theorem 5.8] on (−∞, s] given by

eσ(s−τ)ϕ⊙
mλ−1(τ) = U⊙(τ, s)ϕ⊙

mλ−1(s), ∀τ ≤ s, (37)

whenever ϕ⊙
mλ−1(s) ∈ D(A⋆

0), because U⊙ leaves D(A⋆
0) invariant. Since ϕ⊙

mλ−1(s) = φ⊙mλ−1(s), the
claim follows from Lemma 7. Let us now prove the T -periodicity of ϕ⊙

mλ−1. If we set τ = s−T in (37)
and use (26), we get

eσTϕ⊙
mλ−1(s− T ) = U⊙(s− T, s)ϕ⊙

mλ−1(s) = λϕ⊙
mλ−1(s).

Because λ = eσT is non-zero we get ϕ⊙
mλ−1(s − T ) = ϕ⊙

mλ−1(s) and so ϕ⊙
mλ−1 is T -periodic. Hence,

ϕ⊙
mλ−1 extends to R. To prove the smoothness assertion, recall from Lemma 7 that τ 7→ φ⊙mλ−1(τ) =
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U⊙(τ, s)φ⊙mλ−1(s) is Ck+1-smooth, and because τ 7→ e−σ(τ−s) is analytic, it is clear from (37) that the
map ϕ⊙

mλ−1 defined by

ϕ⊙
mλ−1(τ) = e−σ(s−τ)φ⊙mλ−1(τ), ∀τ ∈ R,

is Ck+1-smooth. Hence, the weak⋆ differential operator d⋆ in (35) can be replaced by d
dτ

for i = mλ−1.
By linearity and Lemma 1, we have that ϕ⊙

mλ−1(τ) ∈ D(A⋆(τ)), which proves the base case for (35).
Assume now that the maps ϕ⊙

mλ−1, . . . , ϕ
⊙
i+1 ∈ Ck+1

T (R, X⊙) are constructed for somemλ−2 ≥ i ≥ 0
and consider the initial value problem















(d⋆ +A⋆(τ) − σ)ϕ⊙
i (τ) = ϕ⊙

i+1(τ), τ ≤ s,

ϕ⊙
i (s) =

mλ−1
∑

k=i

αikφ
⊙
k (s).

(38)

The goal is to find scalars αik such that ϕ⊙
i becomes T -periodic. Notice that the differential equation

from (38) is equivalent to

d⋆(eσ(s−·)ϕ⊙
i )(τ) = eσ(s−τ)

(

d⋆ − σ

)

ϕ⊙
i (τ) = −A⋆(τ)[eσ(s−τ)ϕ⊙

i (τ)] + eσ(s−τ)ϕ⊙
i+1(τ). (39)

Hence, it suffices to prove that the abstract differential equation above together with the initial condi-
tion in (38) admits a unique solution on (−∞, s]. Consider the function w⊙

i : (−∞, s] → X⊙ defined
by

w⊙
i (τ) := U⊙(τ, s)

mλ−1
∑

l=i

(τ − t)l−i

(l − i)!
ϕ⊙
l (t), ∀τ ∈ (−∞, s]. (40)

Since φ⊙mλ−1(s), . . . , φ
⊙
i (s) ∈ D(A⋆(s)) we get from (38) that ϕ⊙

mλ−1(s), . . . , ϕ
⊙
i (s) ∈ D(A⋆(s)). It is

clear that

U⊙(τ, s)ϕ⊙
j (s) =

mλ−1
∑

k=j

αikφ
⊙
k (τ) ∈ D(A⋆(τ)), ∀τ ∈ (−∞, s], j ∈ {mλ − 1, . . . , i},

and so it follows from Lemma 7 that τ 7→ w⊙
i (τ) takes values in D(A⋆(τ)) and is Ck+1-smooth, which

implies weak⋆ differentiability of w⊙
i . Clearly w⊙

i (s) = ϕ⊙
i (s) and notice that

d⋆w⊙
i (τ) = −A⋆(τ)U⊙(τ, s)

mλ−1
∑

l=i

(τ − s)l−i

(l − i)!
ϕ⊙
l (s) + U⊙(τ, s)

mλ−1
∑

l=i+1

(τ − s)l−i−1

(l − i− 1)!
ϕ⊙
l (s)

= −A⋆(τ)wi(τ) + w⊙
i+1(τ),

and so w⊙
i is a solution on (−∞, s] of (39). Since w⊙

i+1 is at least continuous, it follows from
Proposition 14 and by construction of w⊙

i that (39) admits a unique solution w⊙
i on (−∞, s] where

wi = eσ(s−·)ϕ⊙
i . As a consequence, ϕ⊙

i = e−σ(s−·)w⊙
i and because τ 7→ e−σ(τ−s) is analytic, we have

that ϕ⊙
i is Ck+1-smooth.

Let us now turn our attention towards proving T -periodicity. If we set τ = s − T in (40), we see
that ϕ⊙

i (s− T ) = ϕ⊙
i (s) if and only if

(U⊙(s− T, s)− λI)ϕ⊙
i (s) = U⊙(s− T, s)

mλ−1
∑

l=i+1

(−1)l−i+1

(l − i)!
ϕ⊙
l (s). (41)
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Recall from (38) that ϕ⊙
i (s) =

∑mλ−1
k=i αikφ

⊙
k (s) and retrieving (26) yields

mλ−2
∑

k=i

αikφ
⊙
k+1(s) = U⊙(s− T, s)

mλ−1
∑

l=i+1

(−1)l−i+1T l−i

(l − i)!
ϕ⊙
l (s)

= U⊙(s− T, s)

mλ−1
∑

l=i+1

mλ−1
∑

k=l

αlk

(−1)l−i+1T l−i

(l − i)!
φ⊙k (s)

=

mλ−1
∑

l=i+1

mλ−1
∑

k=l

αlk

(−1)l−i+1T l−i

(l − i)!

{

λφ⊙k (s), k = mλ − 1,

λφ⊙k (s) + φ⊙k+1(s), k = mλ − 2, . . . , i+ 1.

Because the right-hand side is a known element in the subspace spanned by φ⊙mλ−1(s), . . . , φ
⊙
i+1(s), the

αik’s are uniquely determined for k = mλ − 2, . . . , i and so we have proven that ϕ⊙
i is T -periodic and

so extends to R.
Furthermore, ϕ⊙

mλ−1(τ), . . . , ϕ
⊙
0 (τ) are all linearly independent because they are all solutions to the

abstract ODE
(

d

dτ
+A⊙(τ)− σ

)mλ

ϕ⊙(τ) = 0, ∀τ ∈ R,

which completes the proof.

Similar as for the (generalized) eigenfunctions associated to a strictly negative real Floquet multi-
plier λ, we need a T -antiperiodic version of Theorem 8 for the adjoint (generalized) eigenfunctions.

Proposition 9. Let λ be a real strictly negative Floquet multiplier with σ its associated Floquet expo-
nent. Then there exist T -antiperiodic maps ϕ⊙

mλ−1, . . . , ϕ
⊙
0 ∈ Ck+1

2T (R, X⊙) satisfying (35).

Proof. We copy the proof of Theorem 8 but in the 2T -periodic setting. The proof goes identical up to
(37). If we set τ = s− T in (37) we get

|λ|ϕ⊙
mλ−1(s− T ) = eσTϕ⊙

mλ−1(s− T ) = U⊙(s− T, s)ψmλ−1(s) = λϕ⊙
mλ−1(s)

and so ϕ⊙
mλ−1(s− T ) = sign(λ)ϕ⊙

mλ−1(s) = −ϕ⊙
mλ−1(s). This proves the T -antiperiodicity of ϕ⊙

mλ−1.
Consider now (38) and suppose that the right-hand side of the differential equation satisfies ϕ⊙

i+1(s−

T ) = −ϕ⊙
i+1(s). The goal is to find αik such that ϕ⊙

i is T -antiperiodic. Instead of requiring the T -
periodicity of ϕ⊙

i we require now that ϕ⊙
i (s− T ) = −ϕ⊙

i (s) and so

(U⊙(t− T, t)− λI)ϕ⊙
i (t) = U⊙(t− T, t)

mλ−1
∑

l=i+1

(−1)l−i+1

(l − i)!
ϕ⊙
l (t),

which is precisely (41). The same procedure in Theorem 8 can be followed to find the associated αik’s
uniquely and obtain ϕ⊙

i (s− T ) = ϕ⊙
i (s).

4 Characterization of the center manifold and normal forms

In this section, we study the dynamics of (DDE) on the center manifold Wc
loc(Γ) near the nonhyperbolic

cycle Γ, meaning that there are, except of the trivial Floquet multiplier, other Floquet multipliers
present on the unit circle in the complex plane, or the trivial Floquet multiplier has an algebraic
multiplicity higher than one. Recall from Section 1 that there are three generic codimension one
bifurcation of limit cycles: the fold bifurcation, where the trivial Floquet multiplier has an algebraic
multiplicity 2 and geometric multiplicity 1, the period-doubling bifurcation, where there is a simple
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Floquet multiplier at −1 and the Neimark-Sacker bifurcation where there is a simple complex conjugate
pair of Floquet multipliers present on the unit circle.

To study these bifurcations, we first separate the trivial Floquet multiplier from the rest of the dy-
namics in Section 4.1. Afterwards, in Section 4.2, we prove the existence of a special coordinate system
on the center manifold and provide in addition the periodic (critical) normal forms. These results are
an extension of the work by Iooss [22, 23] from finite-dimensional ODEs to infinite-dimensional DDEs.
As a consequence, the periodic normal forms obtained in Theorem 10, Theorem 11 and Theorem 12 for
DDEs are exactly the same as obtained by Iooss in ODEs, see [23, Theorem III.7, Theorem III.10 and
Theorem III.13]. Instead of being interested in only codim 1 bifurcations of limit cycles, the provided
framework is also suited to study bifurcations of limit cycles of higher codimension, see for example
[33, Table 1] for the periodic normal forms for some codim 2 bifurcations of limit cycles in ODEs, and
hence DDEs. It is nevertheless helpful to keep these three codim one bifurcations in mind.

Before we start proving the characterization and periodic normal forms, let us first review some
results from [28] on the topological direct sum decompositions of X and X⊙⋆. It turns out from [28,
Hypothesis 1] that we can decompose X as

X = X−(τ) ⊕X0(τ) ⊕X+(τ), ∀τ ∈ R, (42)

where X−(τ) and X+(τ) denote the stable eigenspace and unstable eigenspace (at time τ) respectively,
see [28, Section 3.6] for their definitions. Furthermore, it turns out from [28, Appendix A.1] that we
can lift the decomposition (42) towards a decomposition in X⊙⋆ as

X⊙⋆ = X⊙⋆
− (τ) ⊕X⊙⋆

0 (τ) ⊕X⊙⋆
+ (τ), ∀τ ∈ R, (43)

where X⊙⋆
0 (τ) = j(X0(τ)) and X⊙⋆

+ (τ) = j(X+(τ)), see [28, Appendix A.2] for more information.

4.1 Separating the dynamics of the periodic orbit

The coordinate system and normal forms we will present consist of two parts and is inspired by [22, 23].
The first part expresses the dynamics along Γ by a time-dependent phase and the other part expresses
the dynamics transverse to Γ in terms of this phase. The normal forms depend on the location and
multiplicities of the Floquet multipliers on the unit circle. Let us first separate the dynamics of the
periodic orbit via coordinates along this phase and transverse to this phase.

Recall that X0(τ) is a (n0 +1)-dimensional subspace of X for all τ ∈ R. For each λ ∈ Λ0, we know
that the (generalized) eigenspace Eλ(τ) has a (T or 2T )-periodic basis that satisfies the conditions from
Theorem 5 or Proposition 6, depending on the location of λ on the unit circle. Recall that the trivial
Floquet multiplier is always present on the unit circle and γ̇τ is the associated T -periodic eigenfunction
of U(τ +T, τ). We choose ϕ0(τ) to be γ̇τ and denote by X̃0(τ) the space spanned by ϕ1(τ), . . . , ϕn0

(τ)
that forms a (T or 2T )-periodic Ck+1-smooth basis as presented in Theorem 5 or Proposition 6. Define
for any τ ∈ R the bounded linear operator Q̃0(τ) : R

n0 → X̃0(τ) as

Q̃0(τ)ξ :=

n0
∑

i=1

ξiϕi(τ), ∀ξ = (ξ1, . . . , ξn0
) ∈ R

n0 . (44)

With this notation, it is clear that the Floquet operator (at time τ) associated to Λ0 is defined as
Q0(τ) : R× Rn0 → X0(τ) has the action

Q0(τ)(ξ0, ξ) := ξ0γ̇τ + Q̃0(τ)ξ, ∀(ξ0, ξ) ∈ R× R
n0 .

The (n0 + 1)× (n0 + 1) matrix M0 from takes the form

M0 =









0 ⋆ · · · 0
0
... M̃0

0









, (45)
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where ⋆ ∈ {0, 1} depends on the algebraic multiplicity of the trivial Floquet multiplier.

4.2 Characterization and normal form theorems

Depending on the algebraic multiplicity of the trivial Floquet multiplier and the location of the other
Floquet multipliers on the unit circle, the periodic normal forms will have a different shape and therefore
three different normal form theorems will be presented.

The main idea to prove the existence of suitable coordinates on Wc
loc(Γ) is to use the invariance

property of Wc
loc(Γ) around the periodic orbit Γ to the fullest. We try to parametrize the history

xt ∈ Wc
loc(Γ) in the vicinity of the periodic orbit Γ as

xt = γτ + Q̃0(τ)ξ +H(τ, ξ), (46)

where τ is a function of t, expresses the dynamics along Γ by a time-dependent phase and ξ is a function
of τ that expresses the dynamics transverse to Γ in terms of this phase. Such a coordinate system is
visualized for a two-dimensional local center manifold around Γ in Figure 1.

Γ Γ

ξ
ξ

τ τ

Wc
loc
(Γ) Wc

loc
(Γ)

Figure 1: Illustration of two-dimensional center manifolds Wc
loc(Γ) together with the coordinate system

(τ, ξ). The left figure represents the case when −1 6∈ Λ0 and then Wc
loc(Γ) is locally diffeomorphic to a

cylinder in a neighborhood of Γ, see Theorem 11. The right figure represents the case when −1 ∈ Λ0

and then Wc
loc(Γ) is locally diffeomorphic to a Möbius band in a neighborhood of Γ, see Theorem 12.

The only unknown in (46) is the nonlinear operator H : R × Rn0 → X and to obtain a Taylor
expansion of this operator, we use again the invariance property of Wc

loc(Γ). To be more precise, if
we take an initial condition xs = ϕ ∈ Wc

loc(Γ), then we must have that xt ∈ Wc
loc(Γ) for all t in the

time domain of definition, say Iϕ ⊆ R with s ∈ Iϕ. By [7, Theorem 3.6] we know that the history
xt ∈ Wc

loc(Γ) satisfies the abstract ODE

d

dt
j(xt) = A⊙⋆

0 j(xt) +G(xt), t ∈ Iϕ, (47)

where G(ψ) = F (ψ)r⊙⋆ for all ψ ∈ X and F ∈ Ck+1(X,Rn) for some k ≥ 1 is the right-hand side
of (DDE). The idea is to show the existence of each qth order term in the Taylor expansion of H for
q = 2, . . . , k by using (47) and the invariance property of Wc

loc(Γ).
First we consider the case where the trivial Floquet multiplier has algebraic multiplicity 1 and there

is no Floquet multiplier located at −1. This is for example the case in the Neimark-Sacker bifurcation.

Theorem 10 (Normal Form I). Assume that the algebraic multiplicity of the trivial Floquet multiplier
is one and that −1 is not a Floquet multiplier. Then there exist Ck-smooth maps H : R×Rn0 → X, p :
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R× Rn0 → R and P : R× Rn0 → Rn0 such that the history xt ∈ Wc
loc(Γ) may be represented as

xt = γτ + Q̃0(τ)ξ +H(τ, ξ), t ∈ I,

where the time dependence of the coordinates (τ, ξ) describing the dynamics of (DDE) on Wc
loc(Γ) is

defined by the normal form














dτ

dt
= 1 + p(τ, ξ) +O(|ξ|k+1),

dξ

dτ
= M̃0ξ + P (τ, ξ) +O(|ξ|k+1).

Here the functions H, p, and P are T -periodic in τ and at least quadratic in ξ. The O-terms are also
T -periodic in τ . Moreover, p and P are polynomials in ξ of degree less than or equal to k such that

d

dτ
p(τ, e−τM̃⋆

0 ξ) = 0 and
d

dτ

(

eτM̃
⋆

0P (τ, e−τM̃⋆

0 ξ)

)

= 0,

for all τ ∈ R and ξ ∈ Rn0 .

The proof of this theorem is quite long and technical. Essentially, it is a careful generalization of [23,
Theorem III.7]. Therefore, we first sketch the idea of the proof and break it up into several steps. The
final goal is to characterize the map H by its Taylor expansion. In Step 1 of the proof, we assume this
Taylor expansion and start in Step 2 with collecting terms in powers of ξq for q = 0, . . . , k from both
sides of the resulted equation, obtained from the invariance property of the center manifold. We get for
q = 2, . . . , k an equation for the coefficient Hq and we must show that this can be uniquely solved. This
will be done via decomposing Hq into the decomposition provided in (42) together with the separation
made in Section 4.1, see Step 3. Hence, we get for each q = 2, . . . , k the terms H00

q , H̃0
q , H

−
q and H+

q

and then we prove the existence of each of these terms in Step 4 (H+
q ), Step 5 (H−

q ) and Step 6

(H00
q and H̃0

q ). The provided normal forms are partially derived in step 6 of the proof in combination
with [23, Theorem III.7].

Proof of Theorem 10. We follow the outlined route of the proof as indicated above.
Step 1: Taylor expansion. Let us write (DDE) in the form of (47) and notice that

G(γτ + ϕ) = G(γτ ) +B(τ)ϕ +
k

∑

q=2

Gq(τ, ϕ
(q)) +O(‖ϕ‖k+1

∞ ), ∀ϕ ∈ X, (48)

where B(τ)ϕ = [DF (γτ )ϕ]r
⊙⋆ is the time-dependent bounded linear perturbation and the nonlinear

terms are given by Gq(τ, ϕ
(q)) := 1

q!D
qF (γτ )(ϕ

(q))r⊙⋆, where DqF (γτ ) : Xq → Rn is the qth order

Fréchet derivative evaluated at γτ for q = 2, . . . , k and ϕ(q) := (ϕ, . . . , ϕ) ∈ Xq := X × · · · ×X . We
also expand the maps H, p and P as

H(τ, ξ) =
k

∑

q=2

Hq(τ, ξ
(q)) +O(|ξ|k+1), p(τ, ξ) =

k
∑

q=2

pq(τ, ξ
(q)), P (τ, ξ) =

k
∑

q=2

Pq(τ, ξ
(q)),

with the coefficients Hq(τ, ξ
(q)) ∈ X, pq(τ, ξ

(q)) ∈ R and Pq(τ, ξ
(q)) ∈ Rn0 , where ξ(q) := (ξ, . . . , ξ) ∈

[Rn0 ]q. As already announced, we will use the invariance property of Wc
loc(Γ) to show existence of the

coefficients Hq(τ, ξ
(q)) for all q = 2, . . . , k. Hence, we compare the expansions of

d

dt
j(γτ + Q̃0(τ)ξ +H(τ, ξ)) = j

(

γ̇τ +
∂Q̃0(τ)

∂τ
ξ +

∂H(τ, ξ)

∂τ
+

(

Q̃0(τ) +DξH(τ, ξ)

)

dξ

dτ

)

dτ

dt
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and
A⊙⋆

0 j(xt) +G(xt) = A⊙⋆
0 j(γτ + Q̃0(τ)ξ +H(τ, ξ)) +G(γτ + Q̃0(τ)ξ +H(τ, ξ))

by substituting

dτ

dt
= 1 + p(τ, ξ) +O(|ξ|k+1) and

dξ

dτ
= M̃0ξ + P (τ, ξ) +O(|ξ|k+1).

Using the expansions of H, p and P together with (48), where now ϕ must be substituted by Q̃0(τ)ξ +
H(τ, ξ), we get

j

[

γ̇τ +
∂Q̃0(τ)

∂τ
ξ +

k
∑

q=2

∂Hq(τ, ξ
(q))

∂τ
+

(

Q̃0(τ) +

k
∑

q=2

DξHq(τ, ξ
(q))

)(

M̃0 +

k
∑

q=2

Pq(τ, ξ
(q))

)]

(

1 +

k
∑

q=2

pq(τ, ξ
(q))

)

+O(|ξ|k+1)

= A⊙⋆
0 j(γτ ) +G(γτ ) +A⊙⋆(τ)j

(

Q̃0(τ)ξ +

k
∑

q=2

Hq(τ, ξ
(q))

)

+

k
∑

q=2

Gq

(

τ,

[

Q̃0(τ)ξ +

k
∑

p=2

Hq(τ, ξ
(p))

](q))

+O(|ξ|k+1).

Step 2: Collecting terms. Let us now compare the terms in powers of ξ on both side of this
equation. Collecting the ξ0-terms give us

d

dτ
j(γτ ) = A⊙⋆

0 j(γτ ) +G(γτ ),

which means that γ is a solution (47). This was already known since γ is a periodic solution of (DDE).
The ξ1-terms give us

(

−
∂

∂τ
+A⊙⋆(τ)

)

j(Q̃0(τ)ξ) = j(Q̃0(τ)M̃0ξ), (49)

which is exactly the result established in (24), but now for all Floquet multipliers on the unit circle
and this characterizes the linear part. After collecting the ξ(2)-terms, we get the expression

(

−
∂

∂τ
+ A⊙⋆(τ)

)

j(H2(τ, ξ
(2)))

= j(DξH2(τ, ξ
(2))M̃0ξ + p2(τ, ξ

(2))γ̇τ + Q̃0(τ)P2(τ, ξ
(2)))−R2(τ, ξ

(2)),

where R2(τ, ξ
(2)) = G2(τ, (Q̃0(τ)ξ)

(2)). Finally, after collecting the ξ(q)-terms for q = 3, . . . , k one
obtains

(

−
∂

∂τ
+A⊙⋆(τ)

)

j(Hq(τ, ξ
(q)))

= j(DξHq(τ, ξ
(q))M̃0ξ + pq(τ, ξ

(q))γ̇τ + Q̃0(τ)Pq(τ, ξ
(q))) −Rq(τ, ξ

(q)), (50)

where Rq(τ, ξ
(q)) depends on Gq′ (τ, ξ

(q′)) for 2 ≤ q′ ≤ q and j(Hq′ (τ, ξ
(q′))), j(pq′(τ, ξ(q

′))γ̇τ ) and
j(Q̃0(τ)Pq′ (τ, ξ

(q′))) for q′ = 2, . . . , q − 1.
Step 3: Projecting on subspaces. We want to project (50) onto the spaces Rjγ̇τ , j(X̃0(τ)) and

X⊙⋆
± (τ) to show the existence of Hq separately on each individual space. Because X can be decomposed
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as in (42) whereX0(τ) = Rγ̇τ⊕X̃0(τ) for any τ ∈ R, we can decompose for any q = 2, . . . , k the function
Hq as

Hq(τ, ξ
(q)) = H00

q (τ, ξ(q))γ̇τ + Q̃0(τ)H̃
0
q (τ, ξ

(q)) +H−
q (τ, ξ(q)) +H+

q (τ, ξ(q)),

where H±
q (τ, ξ(q)) = P±(τ)Hq(τ, ξ

(q)) ∈ X±(τ) together with H00
q (τ, ξ(q)) ∈ R and H̃0

q (τ, ξ
(q)) ∈ R

n0

for all τ ∈ R and ξ ∈ Rn0 . It follows from (43) that for any τ ∈ R there holds

Rq(τ, ξ
(q)) = R00

q (τ, ξ(q))jγ̇τ + j(Q̃0(τ)R̃
0
q(τ, ξ

(q))) +R−
q (τ, ξ

(q)) +R+
q (τ, ξ

(q)),

where R±
q (τ, ξ

(q)) = P⊙⋆
± (τ)Rq(τ, ξ

(q)) ∈ X⊙⋆
± (τ) together with R00

q (τ, ξ(q)) ∈ R and R̃0
q(τ, ξ

(q)) ∈ Rn0

for all τ ∈ R and ξ ∈ Rn0 . The definition of the spectral projector P⊙⋆
± can be found in [28, Appendix

A]. Substituting these decompositions into (50) yields for the left-hand side of this equation

(

−
∂

∂τ
+A⊙⋆(τ)

)

j(Hq(τ, ξ
(q))) = −j

(

∂H00
q (τ, ξ(q))

∂τ
γ̇τ +H00

q (τ, ξ(q))γ̈τ

)

+A⊙⋆(τ)j(H00
q (τ, ξ(q))γ̇τ )

− j

(

∂Q̃0(τ)

∂τ
H̃0

q (τ, ξ
(q)) + Q̃0(τ)

∂H̃0
q (τ, ξ

(q))

∂τ

)

+A⊙⋆(τ)j(Q̃0(τ)H̃
0
q (τ, ξ

(q)))

+

(

−
∂

∂τ
+A⊙⋆(τ)

)

j(H−
q (τ, ξ(q)) +H+

q (τ, ξ(q))),

where we twice used the product rule for differentiation. Since τ 7→ γ̇τ is a T -periodic eigenfunction
we get from Theorem 5 that (− d

dτ
+ A⊙⋆(τ))jγ̇τ = 0. Using this in combination with (49), we arrive

at
(

−
∂

∂τ
+A⊙⋆(τ)

)

j(Hq(τ, ξ
(q))) = j

(

−
∂H00

q (τ, ξ(q))

∂τ
γ̇τ

)

(51)

+ j

(

Q̃0(τ)

(

−
∂

∂τ
+ M̃0

)

H̃0
q (τ, ξ

(q))

)

+

(

−
∂

∂τ
+A⊙⋆(τ)

)

j(H−
q (τ, ξ(q)) +H+

q (τ, ξ(q)))

and this must be equal to the right-hand side of (50). Let us first show existence of H±
q via projecting

on the spaces X⊙⋆
± (τ). On these subspaces, we get the equation

(

−
∂

∂τ
+A⊙⋆(τ)

)

j(H±
q (τ, ξ(q))) = j(DξH

±
q (τ, ξ(q))M̃0ξ)−R±

q (τ, ξ
(q)).

Substituting τ = θ and ξ = e(θ−τ)M̃0ξ =: ξ̃ leads to

−
∂

∂θ
j(H±

q (θ, ξ̃(q))) + A⊙⋆(θ)j(H±
q (θ, ξ̃(q)))− j(Dξ̃H

±
q (θ, ξ̃(q))M̃0ξ) = −R±

q (θ, ξ̃
(q)).

When the operator −U⊙⋆(τ, θ) acts on both side of the equation, we obtain

− U⊙⋆(τ, θ)

[

−
∂

∂θ
j(H±

q (θ, ξ̃(q))) +A⊙⋆(θ)j(H±
q (θ, ξ̃(q)))− j(Dξ̃H

±
q (θ, ξ̃(q))M̃0ξ)

]

= U⊙⋆(τ, θ)R±
q (θ, ξ̃

(q)). (52)
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Let us focus on the left-hand-side of this equation. It follows from [5, Theorem 5.5] that

−U⊙⋆(τ, θ)A⊙⋆(θ)j(H±
q (θ, ξ̃(q))) = −[∂⋆θU

⊙⋆(τ, θ)]j(H±
q (θ, ξ̃(q))).

Filling this result back into (52) and using the partial weak⋆ derivative operator yields

U⊙⋆(τ, θ)[∂⋆θ j(H
±
q (θ, ξ̃(q)))] + [∂⋆θU

⊙⋆(τ, θ)]j(H±
q (θ, ξ̃(q))) = U⊙⋆(τ, θ)R±

q (θ, ξ̃
(q)),

where we have used the product rule for differentiation, but essentially in the dual pairings due to the
partial weak⋆ derivative. Using the product rule again and recalling that ξ̃ = e(θ−τ)M̃0ξ, we get the
identity

∂⋆θ [U
⊙⋆(τ, θ)j(H±

q (θ, (e(θ−τ)M̃0)(q)))] = U⊙⋆(τ, θ)R±
q (θ, (e

(θ−τ)M̃0)(q)).

Using the definition of the weak⋆ derivative, we get for all x⊙ ∈ X⊙ that

∂

∂θ
〈j(U(τ, θ)H±

q (θ, (e(θ−τ)M̃0ξ)(q))), x⊙〉 = 〈U⊙⋆(τ, θ)R±
q (θ, (e

(θ−τ)M̃0ξ)(q)), x⊙〉. (53)

Step 4: Existence of H+
q . Let us first find an expression for H+

q (τ, ξ(q)). As X+(s) is finite-
dimensional, U(τ, s) extends to all τ, s ∈ R on the subspace X+(s). So let s ≥ τ be given and integrate
(53) over the interval [τ, s] to obtain

〈j(H+
q (τ, ξ(q))), x⊙〉 = 〈j(U(τ, s)H+

q (s, (e(s−τ)M̃0ξ)(q))), x⊙〉

−

∫ s

τ

〈U⊙⋆(τ, θ)R+
q (θ, (e

(θ−τ)M̃0ξ)(q)), x⊙〉dθ. (54)

Let us focus on the first term of the right-hand side. Notice that

H+
q (s, (e(s−τ)M̃0ξ)(q)) =

∑

|α|=q

1

α!
P+(s)H

α
s ((e

(s−τ)M̃0ξ)α)

where Hα
s ((e

(s−τ)M̃0ξ)α) ∈ X . Then, we get

U(τ, s)H+
q (s, (e(s−τ)M̃0ξ)(q)) =

∑

|α|=q

1

α!
U(τ, s)P+(s)H

α
s ((e

(s−τ)M̃0ξ)α)

and using the exponential trichotomy property of the forward evolutionary system [28, Hypothesis 1],
there is a b > 0 such that for a given ε > 0 there exists a Kε > 0 with the property

‖U(τ, s)H+
q (s, (e(s−τ)M̃0ξ)(q))‖∞ ≤ Kεe

b(τ−s)
∑

|α|=q

1

α!
‖Hα

s ((e
(s−τ)M̃0ξ)α)‖∞,

where the numberN from [28, Hypothesis 1] is absorbed in theKε constant. Since the diagonal elements
of the matrix M̃0 have real part zero, e(s−τ)M̃0ξ is a polynomial in ξ and so ‖Hα

s ((e
(s−τ)M̃0ξ)α)‖∞ can

grow at most polynomially for s→ ±∞. With this in mind, we get

|〈j(U(τ, s)H+
q (s, (e(s−τ)M̃0ξ)(q))), x⊙〉| ≤ Kεe

b(τ−s)‖x⊙‖
∑

|α|=q

1

α!
‖Hα

s ((e
(s−τ)M̃0ξ)α)‖∞

≤Mεe
b(τ−s) max

|α|=q
‖Hα

s ((e
(s−τ)M̃0ξ)α)‖∞

→ 0, as s→ ∞.
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Using this convergence, taking the limit in (54) yields

〈j(H+
q (τ, ξ(q))), x⊙〉 = 〈

∫ ∞

τ

−U⊙⋆(τ, θ)R+
q (θ, (e

(θ−τ)M̃0ξ)(q))dθ, x⊙〉, (55)

if we can show that for any x⊙ ∈ X⊙ and fixed τ ∈ R and ξ ∈ Rn0 the map g+q,τ,ξ : [τ,∞) → R

defined by g+q,τ,ξ(θ) = 〈−U⊙⋆(τ, θ)R+
q (θ, (e

(θ−τ)M̃0ξ)(q)), x⊙〉 is in L1([τ,∞),R). Let τ ∈ R, ξ ∈ Rn0

and x⊙ ∈ X⊙ be given. From [28, Hypothesis 1 and Proposition 18] we get
∫ ∞

τ

|g+q,τ,ξ(θ)|dθ ≤ KεN‖x⊙‖ebτ
∫ ∞

τ

e−bθ‖Rq(θ, (e
(θ−τ)M̃0ξ)(q))‖dθ.

Recall that e(θ−τ)M̃0ξ is a polynomial in ξ and that Rq(τ, ξ
(q)) depends on Gq′ (τ, ξ

(q′)) for 2 ≤ q′ ≤ q

and j(Hq′ (τ, ξ
(q′))), j(pq′(τ, ξ(q

′))γ̇τ ) and j(Q̃0(τ)Pq′ (τ, ξ
(q′))) for q′ = 2, . . . , q−1. Since Gq′ is periodic

in the first variable and evaluated at a polynomial, Gq′ grows at most polynomially for 2 ≤ q′ ≤ q. As
we can assume that Hq′ is T -periodic in the first variable for q′ = 2, . . . , q − 1 (we will show this later
for q′ = q) and evaluated at a polynomial it follows that j(Hq′(τ, ξ

(q′))) grows at most polynomially for
q′ = 2, . . . , q−1. As pq′ and Pq′ are T -periodic in the first variable for q′ = 2, . . . , q−1 (we will show this
later for q′ = q), it follows that j(pq′(τ, ξ(q

′))γ̇τ ) and j(Q̃0(τ)Pq′ (τ, ξ
(q′))) grow at most polynomially.

To conclude, there exists a polynomial r+q,τ,ξ : R → R such that ‖R+
q (θ, (e

(θ−τ)M̃0ξ)(q))‖ ≤ r+q,τ,ξ(θ) for
all θ ≥ τ . Hence,

∫ ∞

τ

|g+q,τ,ξ(θ)|dθ ≤ KεN‖x⊙‖ebτ
∫ ∞

τ

e−bθr+q,τ,ξ(θ)dθ <∞, (56)

because the map [τ,∞) ∋ θ 7→ e−bθg+q,τ,ξ(θ) ∈ R decays fast enough to zero as θ → ∞. We have proven

that the weak⋆ integral in (55) exists. Because R+
q (θ, (e

(θ−τ)M̃0ξ)(q)) ∈ j(X+(θ)) and (55) holds for
any x⊙ ∈ X⊙, we obtain

j(H+
q (τ, ξ(q))) = j

∫ ∞

τ

−U(τ, θ)j−1R+
q (θ, (e

(θ−τ)M̃0ξ)(q))dθ.

By ⊙-reflexivity we have that j is an isomorphism on j(X) = X⊙⊙ and hence

H+
q (τ, ξ(q)) = −

∫ ∞

τ

U(τ, θ)j−1R+
q (θ, (e

(θ−τ)M̃0ξ)(q))dθ (57)

can be evaluated as a standard Riemann integral. It can easily be checked that H+
q is T -periodic in the

first variable because P⊙⋆
+ is T -periodic and Rq is T -periodic in the first variable. Let us now prove the

continuity of the map H+
q . As U⊙⋆(t, τ) restricted to j(X+(τ)) is invertible, we can adjust the proof

from [28, Lemma 1] to prove continuity of the limiting function v(τ,∞, τ, g) (notation from [28, Lemma
1]) for a continuous function g : [τ,∞) → X⊙⋆ under the assumption that H+

q is bounded in norm. As
it is proved in (56) that H+

q is bounded in norm and noticing that P⊙⋆
+ and Rq are continuous for all

q ∈ {1, . . . , k}, the result follows.
Step 5: Existence of H−

q . Now, we can look for an explicit expression of H−
q (τ, ξ(q)). Integrating

(53) over [s, τ ] for a fixed s ∈ R, yields for any x⊙ ∈ X⊙, due to the definition of the weak⋆ integral

〈j(H−
q (τ, ξ(q))), x⊙〉 = 〈j(U(τ, s)H−

q (s, (e(s−τ)M̃0ξ)(q))), x⊙〉

+

∫ s

τ

〈U⊙⋆(τ, θ)R−
q (θ, (e

(θ−τ)M̃0ξ)(q)), x⊙〉dθ. (58)

Similar to the H+
q -case, we want to show that the first term goes to zero, but now as s→ −∞. Recall

that ‖Hα
s ((e

(s−τ)M̃0ξ)α)‖∞ can grow at most polynomially for s→ ±∞ and so due to the exponential
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trichotomy of the forward evolutionary system [28, Hypothesis 1], there exists an a < 0 such that for
a given ε > 0 there is a Mε > 0 with the property

|〈j(U(τ, s)H−
q (s, (e(s−τ)M̃0ξ)(q))), x⊙〉| ≤Mεe

a(τ−s) max
|α|=q

‖Hα
s (s, (e

(s−τ)M̃0ξ)(q))‖∞

→ 0, as s→ −∞,

where the other constants are already absorbed in Mε. We conclude that

〈j(H−
q (τ, ξ(q))), x⊙〉 = 〈

∫ τ

−∞

U⊙⋆(τ, θ)R−
q (θ, (e

(θ−τ)M̃0ξ)(q))dθ, x⊙〉, (59)

if we are able to show that for any x⊙ ∈ X⊙ and fixed τ ∈ R and ξ ∈ Rn0 that the map g−q,τ,ξ :

(−∞, τ ] → R defined by g−q,τ,ξ(θ) = 〈U⊙⋆(τ, θ)R−
q (θ, (e

(θ−τ)M̃0ξ)(q)), x⊙〉 is in L1((−∞, τ ],R). The
exponential trichotomy implies that for a given ε > 0 one can find a Kε > 0 such that

∫ ∞

τ

|g−q,τ,ξ(θ)|dθ ≤ KεN‖x⊙‖eaτ
∫ τ

−∞

e−aθ‖Rq(θ, (e
(θ−τ)M̃0ξ)(q))‖dθ.

From the same reasoning as in the H+
q -case, there exists a polynomial r−q,τ,ξ : R → R that satisfies the

estimate ‖Rq(θ, (e
(θ−τ)M̃0ξ)(q))‖ ≤ r−q,τ,ξ(θ) for all θ ≤ τ . Hence,

∫ ∞

τ

|g−q,τ,ξ(θ)|dθ ≤ KεN‖x⊙‖eaτ
∫ τ

−∞

e−aθr−q,τ,ξ(θ)dθ <∞, (60)

because the map θ 7→ e−aθr−q,τ,ξ(θ) decays fast enough to zero as θ → −∞. Hence, g−q,τ,ξ ∈

L1((−∞, τ ],R) and so the weak⋆ integral exists. Since (59) holds for all x⊙ ∈ X⊙ we get

H−
q (τ, ξ(q)) = j−1

∫ τ

−∞

U⊙⋆(τ, θ)R−
q (θ, (e

(θ−τ)M̃0ξ)(q))dθ, (61)

if we can prove that the weak⋆ integral takes values in j(X). Notice that we proved in (60) that H−
q is

bounded in norm. With the notation from [28, Lemma 1] we have that j(H−
q (τ, ξ(q))) = v(τ, τ,−∞, g)

with the continuous map g defined by g(θ) = P⊙⋆
− (θ)Rq(θ, (e

(θ−τ)M̃0ξ)(q)) for all θ ∈ (−∞, τ ] since
P⊙⋆
− and Rq are continuous for all q ∈ {1, . . . , k}. It follows from [28, Lemma 1] that Hq takes values

in j(X) and is continuous. It is not difficult to show that H−
q is T -periodic in the first variable because

P⊙⋆
− is T -periodic and Rq is T -periodic in the first variable.

Step 6: Existence of H00
q and H̃0

q . To obtain H00
q (τ, ξ(q)) and H0

q (τ, ξ
(q)), we project (50) onto

Rjγ̇τ and j(X̃0(τ)). Since j is an isomorphism on j(X) = X⊙⊙ we get from combining (50) and (51)
that the coefficients must satisfy

−
∂H00

q (τ, ξ(q))

∂τ
−DξH

00
q (τ, ξ(q))M̃0ξ = pq(τ, ξ

(q))−R00
q (τ, ξ(q)),

−
∂H̃0

q (τ, ξ
(q))

∂τ
+ M̃0H̃

0
q (τ, ξ

(q))−DξH̃
0
q (τ, ξ

(q))M̃0ξ = Pq(τ, ξ
(q))−R0

q(τ, ξ
(q)).

These are precisely the equations obtained in [23, Theorem III.7] and hence from the results of [23,
Theorem III.7], the provided normal forms follow. In addition, it is proven in [23, Theorem III.7] that
H00

q , H̃0
q , pq, Pq are continuous and so we conclude that H, p and P are Ck-smooth maps.

Recall that the map τ 7→ γτ is T -periodic and Ck-smooth. Furthermore, from (23) in combination
with (44) we have that τ 7→ Q̃0(τ) is T -periodic and Ck-smooth. It also follows from previous theorem
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that (τ, ξ) 7→ H(τ, ξ) is T -periodic in the first component and Ck-smooth. Hence, Wc
loc(Γ) can be also

written as
Wc

loc(Γ) = {γτ + Q̃0(τ)ξ +H(τ, ξ) : τ ∈ R and ξ ∈ R
n0} ⊂ X, (62)

and has exactly the same properties as the description of Wc
loc(Γ) given in (11). Hence, Wc

loc(Γ) is the
center manifold for (DDE) around the periodic orbit Γ whenever the Floquet multiplier λ fulfills the
requirements of Theorem 10. This center manifold is T -periodic in the sense that for any ξ ∈ Rn0 the
map R ∋ τ 7→ γτ + Q̃0(τ)ξ +H(τ, ξ) ∈ X is T -periodic.

Next we consider the case where the trivial Floquet multiplier has algebraic multiplicity larger than
1 and there is no Floquet multiplier located at −1. This is for example the case in the fold bifurcation.

Theorem 11 (Normal Form II). Assume that the algebraic multiplicity of the trivial Floquet multiplier
is more than one and that −1 is not a Floquet multiplier. Then there exist Ck-smooth maps H :
R × R

n0 → X, p : R × R
n0 → R and P : R × R

n0 → R
n0 such that the history xt ∈ Wc

loc(Γ) may be
represented as

xt = γτ + Q̃0(τ)ξ +H(τ, ξ), t ∈ I,

where the time dependence of the coordinates (τ, ξ) describing the dynamics of (DDE) on Wc
loc(Γ) is

defined by the normal form














dτ

dt
= 1 + ξ1p(τ, ξ) +O(|ξ|k+1),

dξ

dτ
= M̃0ξ + P (τ, ξ) +O(|ξ|k+1).

Here the functions H, p and P are T -periodic in τ and at least quadratic in ξ. The O-terms are also
T -periodic in τ . Moreover, p and P are polynomials in ξ of degree less than or equal to k such that

d

dτ
p(τ, e−τM̃⋆

0 ξ) = 0 and
d

dτ

(

eτM̃
⋆

0P (τ, e−τM̃⋆

0 ξ)

)

= 0,

for all τ ∈ R and ξ ∈ Rn0 .

Notice the appearance of the ξ1-term in the normal form description. This is due to the fact that
the ⋆ in (45) is now replaced by 1 instead of 0 compared to Theorem 10. The proof of this theorem is
very similar to that of Theorem 10.

Proof of Theorem 11. We proceed in the same way as the proof of Theorem 10 and start by comparing
the expansions of

d

dt
j(γτ + Q̃0(τ)ξ +H(τ, ξ)) = j

(

γ̇τ +
∂Q̃0(τ)

∂τ
ξ +

∂H(τ, ξ)

∂τ
+

(

Q̃0(τ) +DξH(τ, ξ)

)

dξ

dτ

)

dτ

dt

and
A⊙⋆

0 j(γτ + Q̃0(τ)ξ +H(τ, ξ)) +G(γτ + Q̃0(τ)ξ +H(τ, ξ))

by substituting

dτ

dt
= 1 + ξ1 + p(τ, ξ) +O(|ξ|k+1) and

dξ

dτ
= M̃0ξ + P (τ, ξ) +O(|ξ|k+1).

We copy the same notation from the proof of Theorem 10 and use the expansions ofH, p and P together
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with (48) where now ϕ must be substituted by Q̃0(τ)ξ +H(τ, ξ). Eventually,

j

[

γ̇τ +
∂Q̃0(τ)

∂τ
ξ +

k
∑

q=2

∂Hq(τ, ξ
(q)))

∂τ
+

(

Q̃0(τ) +

k
∑

q=2

DξHq(τ, ξ
(q))

)(

M̃0 +

k
∑

q=2

Pq(τ, ξ
(q))

)]

(

1 + ξ1 +

k
∑

q=2

pq(τ, ξ
(q))

)

+O(|ξ|k+1)

= A⊙⋆
0 j(γτ ) +G(γτ ) +A⊙⋆(τ)j

(

Q̃0(τ)ξ +
k
∑

q=2

Hq(τ, ξ
(q))

)

+

k
∑

q=2

Gq

(

τ,

[

Q̃0(τ)ξ +

k
∑

p=2

Hq(τ, ξ
(p))

](q))

+O(|ξ|k+1).

Let us now compare the terms in powers of ξ on both side of the equation. The ξ0-terms give us

d

dτ
j(γτ ) = A⊙⋆

0 j(γτ ) +G(γτ ),

which means that γ is a solution (47). The ξ1-terms tell us

(

−
∂

∂τ
+A⊙⋆(τ)

)

j(Q̃0(τ)ξ) = j((Q̃0(τ)M̃0 + γτΠ1)ξ), (63)

which is exactly the result established in (23), but now for all Floquet multipliers on the unit circle
and characterizes the linear part. Here Π1 : Rn0 → R is the projection on the first component, defined
as Π1ξ := ξ1, where ξ = (ξ1, . . . , ξn0

). After collecting the ξ(2)-terms, we get

(

−
∂

∂τ
+ A⊙⋆(τ)

)

j(H2(τ, ξ
(2)))

= j(DξH2(τ, ξ
(2))M̃0ξ + p2(τ, ξ

(2))γ̇τ + Q̃0(τ)P2(τ, ξ
(2)))−R2(τ, ξ

(2)),

where R2(τ, ξ
(2)) = G2(τ, (Q̃0(τ)ξ)

2)− ξ1(
dQ̃0(τ)

dτ
ξ+ Q̃0(τ)M̃0ξ). Finally, after collecting the ξ(q)-terms

for q = 3, . . . , k, we get
(

−
∂

∂τ
+A⊙⋆(τ)

)

j(Hq(τ, ξ
(q))) (64)

= j(DξHq(τ, ξ
(q))M̃0ξ + pq(τ, ξ

(q))γ̇τ + Q̃0(τ)Pq(τ, ξ
(q))) −Rq(τ, ξ

(q)), (65)

where Rq(τ, ξ
(q)) depends on Gq′ (τ, ξ

(q′)) for 2 ≤ q′ ≤ q and j(Hq′ (τ, ξ
(q′))), j(pq′(τ, ξ(q

′))γ̇τ ) and
j(Q̃0(τ)Pq′ (τ, ξ

(q′))) for q′ = 2, . . . , q − 1.
We want to project (64) onto the spaces Rγ̇τ , X̃0(τ) and X±(τ) to show the existence of Hq sepa-

rately on each individual space. We decompose for any q = 2, . . . , k the functions Hq and Rq as

Hq(τ, ξ
(q)) = H00

q (τ, ξ(q))γ̇τ + Q̃0(τ)H̃
0
q (τ, ξ

(q)) +H−
q (τ, ξ(q)) +H+

q (τ, ξ(q))

Rq(τ, ξ
(q)) = R00

q (τ, ξ(q))γ̇τ + Q̃0(τ)R̃
0
q(τ, ξ

(q)) +R−
q (τ, ξ

(q)) +R+
q (τ, ξ

(q)),

where H±
q (τ, ξ(q)) = P±(τ)Hq(τ, ξ

(q)) ∈ X±(τ) and R±
q (τ, ξ

(q)) = P⊙⋆
± (τ)Rq(τ, ξ

(q)) ∈ X⊙⋆
± (τ) with

coordinates H00
q (τ, ξ(q)), R00

q (τ, ξ(q)) ∈ R and H̃0
q (τ, ξ

(q)), R̃0
q(τ, ξ

(q)) ∈ R
n0 for all τ ∈ R and ξ ∈ R

n0 .
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Carrying out the calculations in the same way as the proof of Theorem 11 and recalling that
(− d

dτ
+A⊙⋆(τ))jγ̇τ = 0 together with (63), we obtain

(

−
∂

∂τ
+A⊙⋆(τ)

)

j(Hq(τ, ξ
(q))) = j

(

−
∂H00

q (τ, ξ(q))

∂τ
γ̇τ +Π1H̃

0
q (τ, ξ

(q))γ̇τ

)

+ j

(

Q̃0(τ)

(

−
∂

∂τ
+ M̃0

)

H̃0
q (τ, ξ

(q))

)

+

(

−
∂

∂τ
+A⊙⋆(τ)

)

j(H−
q (τ, ξ(q)) +H+

q (τ, ξ(q)))

and this must be equal to the right-hand side of (64). To obtain the coefficients, we project onto the
spaces Rjγ̇τ , j(X̃0(τ)), j(X+(τ)) and X⊙⋆

− (τ). This yields the equations

−
∂H00

q (τ, ξ(q))

∂τ
DξH

00
q (τ, ξ(q))M̃0ξ=pq(τ, ξ

(q))−Π1H̃
0
q (τ, ξ

(q))−R00
q (τ, ξ(q))

−
∂H̃0

q (τ, ξ
(q))

∂τ
+ M̃0H̃

0
q (τ, ξ

(q))−DξH̃
0
q (τ, ξ

(q))M̃0ξ = Pq(τ, ξ
(q))− R̃0

q(τ, ξ
(q))

(

−
∂

∂τ
+A⊙⋆(τ)

)

j(H±
q (τ, ξ(q))) = j(DξH

±
q (τ, ξ(q))M̃0ξ)−R±

q (τ, ξ
(q)).

We see that the equations for the X⊙⋆
± (τ)-component are the same as in the proof of Theorem 10.

Hence, we obtain H±
q as in (57) and (61) respectively. To solve the remaining part of this hierarchy

of equations, notice these equations are solvable in exactly the same way as the proof of Theorem 10
and the proposed normal forms follow. One should make the observation that H̃0

q has to be computed
before H00

q .

Under these assumptions on the Floquet multipliers, we have also proven that Wc
loc(Γ) can also be

parametrized as (62).
The last normal form theorem is more involved because we have to deal with the Floquet multiplier

−1 that induces T -antiperiodic maps due to Proposition 6. Introduce the decomposition

X̃0(τ) = X̃ ′
0(τ) ⊕ X̃ ′′

0 (τ),

where X̃ ′
0(τ) is spanned by T -periodic maps ϕ0(τ), . . . , ϕn′

0
(τ) and where X̃ ′′

0 (τ) is spanned by 2T -
periodic maps ϕn′

0
+1(τ), . . . , ϕn′

0
+n′′

0
(τ) and n′

0 + n′′
0 = n0, corresponding to all (generalized) eigen-

functions of the monodromy operator belonging to the Floquet multiplier −1. Define the symmetry
S̃0 : Rn0 → Rn0 as

(ξ′, ξ′′) = ξ 7→ S̃0ξ = (ξ′,−ξ′′),

then we have the following theorem, which is for example the case in the period-doubling bifurcation.

Theorem 12 (Normal form III). Assume that −1 is a Floquet multiplier. Then the results of
Theorem 10 or Theorem 11, depending on the location and algebraic multiplicity of other the Floquet
multipliers on the unit circle hold with the following modification: the maps H, p and P are 2T -periodic
in the first component and additionally satisfy

H(τ + T, ξ) = H(τ, S̃0ξ)

and
p(τ + T, ξ) = p(τ, S̃0ξ), P (τ + T, ξ) = P (τ, S̃0ξ),

for all τ ∈ R and ξ ∈ Rm.
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Proof. The proof of this theorem is analogous to that of Theorem 10 or Theorem 11 but in a 2T -
periodic setting. Hence, we obtain the results from Theorem 10 or Theorem 11, depending on the
location and algebraic multiplicity of the Floquet multipliers on the unit circle where now the maps
H, p and P being 2T -periodic in τ . It remains to show the additional symmetries on the maps H, p and
P . Because the structure of the parts in the normal form are similar to that of the ODE case, treated
in [23, Theorem III.13] this part will be omitted since the proof is identical by making the substitution
of τ 7→ γ(τ) towards τ 7→ γτ .

Via this theorem we obtain a 2T -periodic (n0 + 1)-dimensional Ck-smooth manifold Wc
loc(Γ) ⊂ X

that is a center manifold for (DDE) around the periodic orbit Γ.

5 Conclusion and outlook

We have proven that the periodic normal forms to study bifurcations of limit cycles suit naturally in the
framework of classical DDEs. This task has been accomplished by proving two principal results: the
existence of a periodic smooth basis for the center eigenspace (Theorem 5) and the existence of a special
coordinate system on the center manifold (Theorem 10, Theorem 11 and Theorem 12) in which the
local dynamics can be described. A paper providing computational formulas to study all codimension
one bifurcations of limit cycles in classical DDEs, along the lines of the periodic normalization method
[26, 33], is in preparation.

In this paper, we restricted ourselves to the setting of classical DDEs. However, our proof on the
existence of a periodic smooth finite-dimensional center manifold near a nonhyperbolic cycle in [28]
is given in the general context of dual perturbation theory (sun-star calculus). As a consequence,
the results extend to a much broader class of delay equations, such as for example renewal equations
[10, 14, 2]. The natural question arises if the results from this paper can also be generalized towards
the general context of sun-star calculus. We already see some difficulties in the linear part because the
proof on the existence of the periodic smooth (adjoint) (generalized) eigenfunctions rely on Lemma 4
and Lemma 7. Both lemmas are based on the smoothness property of delay differential equations,
which is a result that is not present in the general setting of delay equations. Nevertheless, if one
requires only weak⋆ continuous differentiability of the forward and backward evolutionary systems, we
believe that the proven normal form theorems can still be applied (in a weak⋆ sense) to the general
context of dual perturbation theory, but of course under certain assumptions.

If one is interested in bifurcations of limit cycles for systems consisting of infinite delay [12] or
abstract DDEs [24, 25, 32, 31] that describe for example neural fields, it is known that ⊙-reflexivity is
in general lost [32, Theorem 12], and therefore the center manifold theorem for nonhyperbolic cycles
from [28] does not directly apply. However, we believe that this technical difficulty can be resolved by
employing similar techniques as in [25]. We are convinced that these techniques can also be used to
prove the existence of the periodic normal forms in the setting of abstract DDEs and systems consisting
of infinite delay because the proof of the periodic normal forms are written in the general setting of
sun-star calculus.
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A Variation-of-constants formula for the adjoint problem

In this section of the appendix, we will prove that solutions of an inhomogeneous perturbed abstract
ordinary differential equation are precisely given by an abstract integral equation. This result is
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important in the proof of Theorem 8.
Let J ⊆ R be an interval and suppose that (s, t) ∈ Ω⋆

J . Consider an inhomogeneous perturbation
f : J → X⋆ on the generator A⋆(s) to the adjoint problem [5, Equation (5.8)]. This yields the initial
value problem

{

d⋆u(s) = −A⋆(s)u(s) + f(s), s ≤ t,

u(t) = ψ, ψ ∈ X⊙,
(66)

which suggests the variation-of-constants formula

u(s) = U⊙(s, t)ψ +

∫ s

t

U⋆(s, τ)f(τ)dτ, ψ ∈ X⊙, (67)

for t ≤ s, where the integral must be interpreted as a weak⋆ integral. This suggestion, with the
additional assumptions on f , will be verified in this section. Let us first turn our attention towards
the weak⋆ integral appearing in (67).

Lemma 13. Let g : J → X⋆ be a continuous function and denote the set {(s, r, t) ∈ J3 : s ≤ r ≤ t}
by Θ⋆

J . Then the map v(·, ·, ·, g) : Θ⋆
J → X⋆ defined as the weak⋆ integral

v(s, r, t, g) :=

∫ s

t

U⋆(r, τ)g(τ)dτ, ∀(s, r, t) ∈ Θ⋆
J ,

is continuous and takes values in X⊙.

Proof. The statement of the theorem is a dual version of the first part of [28, Lemma 1]. The proof
is along the same lines as the proof in [28, Lemma 1], where one just has to work with the backward
evolutionary system U⋆. See also [8, Lemma 3.1] for a semigroup analogue of this lemma.

As we have proven that the weak⋆ integral, appearing in (67) is well-defined, we can turn our
attention towards the verification of the variation-of-constants formula. The proof is inspired from [28,
Proposition 37] and [25, Proposition 21].

Proposition 14. Let f : J → X⋆ be a continuous function. If u is a solution of (66) on J then u is
given by (67).

Proof. Let (s, t) ∈ Ω⋆
J with t > s be arbitrary. Define the function w : [s, t] → X⋆ as w(τ) :=

U⋆(s, τ)u(τ) for all τ ∈ [s, t]. We claim that w is weak⋆ differentiable with weak⋆ derivative

d⋆w(τ) = U⋆(s, τ)d⋆u(τ) + U⋆(s, τ)A⋆(τ)u(τ). (68)

To show this claim, let τ ∈ [s, t] and x ∈ X be given. For any h ∈ R such that τ + h ∈ [s, t] we have
that

〈w(τ + h)− w(τ), x〉 = 〈U⋆(s, τ + h)u(τ + h)− U⋆(s, τ)u(τ), x〉

= 〈U⋆(s, τ + h)[u(τ + h)− u(τ)], x〉 + 〈[U⋆(s, τ + h)− U⋆(s, τ)]u(τ), x〉

= 〈u(τ + h)− u(τ), U(τ + h, s)x〉+ 〈[U⋆(s, τ + h)− U⋆(s, τ)]u(τ), x〉

Because U is a strongly continuous forward evolutionary system, we have that U(τ +h, s)x→ U(τ, s)x
in norm as h→ 0. The definition of the weak⋆ derivative implies

1

h
(u(τ + h)− u(τ)) → d⋆u(τ) weakly⋆ as h→ 0,

if we can show that the difference quotients remains bounded in the limit. Since u is a solution to
(66), we know that u is weak⋆ continuously differentiable and so locally Lipschitz continuous by [25,
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Remark 16]. Because [s, t] is compact, u is Lipschitz continuous on [s, t] and so the difference quotient
remains bounded in the limit. Combining these two facts, we get

1

h
〈u(τ + h)− u(τ), U(τ + h, s)x〉 → 〈d⋆u(τ), U(s, τ)x〉 as h→ 0.

Furthermore, since u(τ) ∈ D(A⋆(τ)) = D(A⋆
0), it follows from [5, Theorem 5.7] that

1

h
〈[U⋆(s, τ + h)− U⋆(s, τ)]u(τ), x〉 → 〈U⋆(s, τ)A⋆(τ)u(τ), x〉 as h→ 0.

Hence, we get

1

h
〈w(τ + h)− w(τ), x〉 → 〈U⋆(s, τ)d⋆u(τ) + U⋆(s, τ)A⋆(τ)u(τ), x〉 as h→ 0,

which proves (68). Substituting the differential equation from (66) into (68) yields

d⋆w(τ) = U⋆(s, τ)f(τ)

and so d⋆w is weak⋆ continuous since f was assumed to be norm continuous. For every x ∈ X we have

〈u(s)− U⋆(s, t)u(t), x〉 = 〈w(s), x〉 − 〈w(s), x〉 =

∫ s

t

〈d⋆w(τ), x〉dτ = 〈

∫ s

t

U⋆(s, τ)f(τ)dτ, x〉.

Since x and (s, t) ∈ Ω⋆
J were arbitrary, we conclude that

u(s)− U⋆(s, t)u(t) =

∫ s

t

U⋆(s, τ)f(τ)dτ,

or equivalently

u(s) = U⋆(s, t)ψ +

∫ s

t

U⋆(s, τ)f(τ)dτ,

since u(t) = ψ by assumption. The continuity and range of f ensures from Lemma 13 that the weak⋆

integral takes values in X⊙. Since ψ ∈ X⊙, we have that

u(s) = U⊙(s, t)ψ +

∫ s

t

U⋆(s, τ)f(τ)dτ,

which completes the proof.
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