
Eur. Phys. J. C (2020) 80:489
https://doi.org/10.1140/epjc/s10052-020-8067-7

Regular Article - Theoretical Physics

Periodic orbits around brane-world black holes

Xue-Mei Denga

Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210033, China

Received: 30 March 2020 / Accepted: 21 May 2020 / Published online: 1 June 2020
© The Author(s) 2020

Abstract A black hole on a three-brane in five-dimensional
spacetime was predicted by Dadhich, Maartens, Papadopou-
los and Rezania (DMPR). In order to reveal some signa-
tures for observations, we investigate a timelike particle’s
motion around the DMPR brane-world black holes. We find
that, both in the innermost stable circular orbits (ISCO) and
the marginally bound orbits (MBO), the particle’s angular
momentum and its radius decrease with the increase of Q,
where Q is a tidal charge parameter and may be negative and
positive in the brane-world black holes. From these results,
the corresponding periodic orbits with different energy levels
are analyzed numerically by employing a taxonomy, which
is related to the adiabatic inspiral regime in the gravita-
tional wave radiation. It clearly shows that a rational num-
ber defined by the taxonomy increases with the particle’s
energy. In addition, periodic orbits with Q < 0 in the DMPR
brane-world black holes have higher energy in comparison
to the ones with Q > 0 and in the Schwarzschild black holes.
Our results might provide hints for distinguishing the DMPR
brane-world black holes from other black holes by the time-
like particle’s periodic orbits in the future.

1 Introduction

Black holes, predicted by the general relativity (GR), play a
crucial role for getting deep insight into our Universe, funda-
mental physics, and even spacetime singularities. In the last
few years, one of the most important leaps in astrophysics
and astrometry is to probe black holes directly by observing
gravitational waves from a binary black hole merger [1–6]
and by imaging the supermassive black hole shadow with the
Event Horizon Telescope [7–12]. Meanwhile, these observa-
tions also open a new era for testing modified gravitational
theories in the strong gravitational field. It is interesting to
note that some effects of these gravitational theories on the
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strong gravitational field could be well investigated by using
a test particle’s orbits around black holes.

In the detection of gravitational waves, for example, an
extreme mass ratio inspiral is formed from one stellar mass
black hole whirling closely around a supermassive one. This
kind of binary black hole could be treated as a timelike par-
ticle orbiting around a black hole. For the test particle, the
innermost stable circular orbits (ISCO) and the marginally
bound orbits (MBO) are two critical regions. In the adia-
batic inspiral regime of the gravitational wave radiation, the
timelike particle’s trajectory should lie between MBO and
ISCO around the black hole. These bound orbits for the
particles around black holes have been considered in the
geodesic study of regular Hayward black hole [13], the area
and entropy spectra of black holes [14], the ringdown stage
of a binary black hole coalescence [15,16], the energy level
diagrams for the Kerr black hole orbits [17], and the evolution
of black holes [18–20].

It is well known that periodic orbits are an extremely pow-
erful tool to describe planetary and lunar motions, long-term
dynamical evolution and stability of the Solar System, and
galactic dynamics. During the adiabatic inspiral regime, a
series of periodic orbits serves as a continuing transitional
orbit and play a significance role in the research of the grav-
itational wave radiation [19]. Given this fact, a taxonomy of
periodic orbits for a timelike particle around black holes has
been recently proposed in Ref. [21]. This taxonomy describes
periodic orbits through three integers (z, w, ν), which rep-
resent zoom, whirl and vertex numbers respectively. More-
over, three integers correspond to a rational number q, which
characterizes a closed periodic orbit with a given energy and
angular momentum. The taxonomy of periodic orbits has
been extensively studied in Kerr and Schwarzschild black
holes [17,21,22], Reissner–Nordström black holes [23] and
some others [24–29]. By using the taxonomy proposed in
Ref. [21], differences and characters among various black
holes show up ultimately.
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Although GR is consistent with some experiments both
in the weak gravitational fields and in the strong gravita-
tional fields, some phenomena in current astrophysical obser-
vations and theoretical physics still leave the window for
some modified gravity theories open. Especially, modified
gravity theories are a viable and fascinating alternative to a
self-consistent quantum gravity in addressing the problem for
unifying gravitation within a quantum framework. Motivated
by the quest for a unified theory, the five-dimensional (5D)
Kaluza–Klein gravity [30,31] and some higher-dimensional
gravitational theories [32–34] were proposed. Among them,
brane-world scenario has attracted considerable interest. For
instance, one brane-world black hole was investigated in
which matter is confined to the brane through the action of
a confining potential without using any junction conditions
[35–37]. This brane-world black hole could offer a geomet-
rical explanations for the accelerated expansion of the uni-
verse and the flatness of rotation curves of galaxies. In this
solution [35–37], there exists an m-dimensional bulk space
without imposing the Z2 symmetry. And the vacuum field
equations on the brane are modified by the Qμν term which
is a geometrical quantity. By using a delta function rather
than a confining potential in the energy-momentum tensor,
Dadhich, Maartens, Papadopoulos and Rezania (DMPR) [38]
predicted exact solutions for static black holes localized on
a three-brane in five-dimensional gravity in the Randall-
Sundrum scenario. This DMPR brane-world black hole solu-
tion of the effective Einstein equation on the brane is under
the condition that the bulk has nonzero Weyl curvature and
the brane spacetime satisfies the null energy condition. Espe-
cially, the DMPR brane-world black holes have Reissner–
Nordström-like solutions, where a tidal charge parameter Q
is arising from the projection onto the brane of free gravi-
tational field effects in the bulk. It is worth mentioning that
the tidal charge parameter may be negative or positive. Some
properties in the DMPR brane-world black holes have been
attentively investigated in thermodynamics [39,40], strong
and weak gravitational lensing [41–45], Horizon structure
[46], circular geodesic and orbital dynamics [37,47–50], and
Solar System tests [51–56], whereas the taxonomy of peri-
odic orbits in the DMPR brane-world black holes is still miss-
ing in the literature.

In view of the unique feature of the taxonomy, in this
work, periodic orbits of a timelike particle around the DMPR
brane-world black holes will be investigated. The relation-
ship between periodic orbits and rational numbers in the
black holes will be studied and analyzed. In what follows,
G = c = 1 and the metric signature is (−,+,+,+). The
layout of this paper is as follows. Section 2 gives the metric
and geodesics in the DMPR brane-world spacetime. Sec-
tion 3 describes ISCO and MBO for the particle around the
DMPR brane-world black holes. By using the taxonomy [21],
Sect. 4 exhibits rational numbers and periodic orbits in the

black holes. Finally, conclusions and discussion are outlined
in Sect. 5.

2 Metric and Geodesics in the DMPR brane-world

By considering a 5D spacetime (the bulk) with a single 4D
brane, the action of the system is [52,57]

S = Sbulk + Sbrane, (1)

where

Sbulk =
∫

(5)M

√
−(5)g

[
1

2k2
5

(5)R + (5)Lm + Λ5

]
d5X, (2)

Sbrane =
∫

(4)M

√
−(5)g

[
1

k2
5

K± + Lbrane(gμν, Ψ ) + λb

]
d4x .

(3)

In the above action, k2
5 is the gravitational constant in the

five-dimensional spacetime, (5)R and (5)Lm are respectively
the 5D scalar curvature and the matter Lagrangian in the bulk,
Lbrane(gμν, Ψ ) is the Lagrangian for a generic functional of
the brane metric and of the matter fields, K± is the trace of
the extrinsic curvature on either side of the brane, Λ5 is the
negative vacuum energy density in the bulk, and λb is the
brane tension and the negative vacuum energy density on the
brane.

The corresponding energy–momentum tensors of bulk and
brane matter fields are respectively defined by [52,57]

(5)TI J ≡ −2
δ(5)Lm

δ(5)gI J
+ (5)gI J

(5)Lm, (4)

Tμν ≡ −2
δLbrane

δgμν
+ gμνLbrane. (5)

Variation of the action with respect to (5)gI J and gμν , the 5D
Einstein field equation in the bulk and the 4D field equations
on the brane are respectively given by [52,57]

(5)GI J = −k2
5Λ5

(5)gI J + k2
5δ(Y )[−λb

(5)gI J + TI J ], (6)

Gμν = −Λgμν + k2
4Tμν + k2

5Sμν − Eμν, (7)

where Sμν is the local quadratic energy–momentum correc-
tion, Eμν is the projection of the 5D Weyl tensor CI AJ B ,
Λ = k2

5(Λ5 + k2
5λ2

b)/2, and k2
4 = k4

5λb/6.
By considering the case of vacuum with Λ = 0, the 4D

field equation on the brane (7) yields

Rμν = −Eμν, (8)

with

Eμν = − Q

r4 (2uμuν − 2rμrν + gμν), (9)

in which Q comes from the fifth dimensional space and is
called as the tidal charge parameter [38]. For another interest-
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ing brane-world solution [35–37], by using a confining poten-
tial rather than a delta function in the energy–momentum
tensor, the vacuum field equation on the brane is given by

Rμν = Qμν, (10)

where Qμν is a geometrical quantity and introduces the cos-
mological and dark matter parameters into the metric of the
brane-world black hole (see [35–37] for details).

Based on the above equations, the vacuum, static and
spherically symmetric metric in a brane-world spacetime
predicted by Dadhich, Maartens, Papadopoulos and Reza-
nia (DMPR) [38] is

ds2 = −g(r)dt2 + 1

g(r)
dr2 + r2(dθ2 + sin2 θdφ2), (11)

where

g(r) = 1 − 2M

r
+ Q

r2 , (12)

and for the brane-world metric in Refs. [35–37], we have

g(r) = 1 − 2M

r
− α2r2 − 2αβr − β2, (13)

where α and β are respectively constants related to the cos-
mological and dark matter parameters. Some orbital charac-
ters around the brane-wold spactime [35–37] will be consid-
ered in our next step.

For the DMPR brane-world, if Q ∼ q2
e > 0, where

qe is the electric charge, Eq. (11) returns to the Reissner–
Nordström (RN) solution. While the DMPR metric has an
RN-like solution, it is quite different from RN one. In the
DMPR brane-world, no electric field exists at all and it leads
to a neutral Q. Especially, the tidal charge parameter may be
negative or positive. When Q < 0, the DMPR metric main-
tains the space-like nature of the singularity (see Ref. [34]
for reviews).

There exist two horizons in the DMPR brane-world, given
by

r± = M ±
√
M2 − Q. (14)

When 0 ≤ Q ≤ M2, we have 0 < r− ≤ r+ ≤ rs , where rs is
the Schwarzschild horizon. When Q < 0, only one horizon
r+ = M + √

M2 − Q lies outside rs . These characters are
depicted in Fig. 1. From Fig. 1, it is clearly showed that two
horizons get closer to each other with the increase of Q.

The Lagrangian of a test particle’s geodesic motion gov-
erned by Eq. (11) is

2L = −g(r)ṫ2 + 1

g(r)
ṙ2 + r2(θ̇2 + sin2 θφ̇2), (15)

where a dot denotes differentiation with respect to an affine
parameter. Due to the isotropic gravitational field, the motion
of the particle could be confined to the plane θ = π/2. Then,
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Fig. 1 Horizons of the DMPR brane-world spacetime with a fixed Q

by using Pα ≡ ∂L /∂q̇α , we have

Pt = ∂L

∂ ṫ
= −g(r)ṫ = −E, (16)

Pr = ∂L

∂ ṙ
= 1

g(r)
ṙ , (17)

Pφ = ∂L

∂φ̇
= r2φ̇ = l, (18)

where E is the particle’s conserved energy and l is its con-
served angular momentum per unit mass. The corresponding
Hamiltonian is defined as

H ≡ pβ q̇
β = Pt ṫ + Pr ṙ + Pφφ̇ − L , (19)

it yields

2H = −Eṫ + 1

g(r)
ṙ2 + lφ̇ = δ, (20)

where

δ =
{−1 for the timelike particle,

0 for the lightlike particle.
(21)

Substituting Eqs. (16)–(18) into Eq. (20), they give

ṙ2 = g(r)

(
E2

g(r)
− l2

r2 + δ

)
. (22)

3 Effective potential and bound orbits for a timelike
particle

The effective potential Veff is defined as [58]

Veff + ṙ2 = E2. (23)

For a timelike particle, based on Eq. (22) and the above def-
inition, Veff takes the form

Veff = g(r)

(
1 + l2

r2

)
=

(
1 − 2M

r
+ Q

r2

)(
1 + l2

r2

)
. (24)
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Fig. 2 rMBO (red line) and lMBO (blue line) of the timelike particle
around the DMPR brane-world black holes with respect to Q for MBO

The above expression shows that the effective potential is a
function of the radius with l and Q as parameters. In what
follows, we will consider the timelike particle between the
marginally bound orbits (MBO) and the innermost stable
circular orbits (ISCO) around the DMPR brane-world black
holes. This will be related to the adiabatic inspiral regime in
the gravitational wave radiation.

For MBO, the timelike particle’s orbit around the DMPR
brane-world black holes satisfies the following conditions

Veff = 1, ∂r Veff = 0, (25)

which lead to

2Mr3 − Qr2 − l2r2 + 2Ml2r − Ql2 = 0, (26)

Mr3 − Qr2 − l2r2 + 3Ml2r − 2Ql2 = 0. (27)

From Eqs. (26) and (27), rMBO and lMBO can be solved
numerically with a given Q. Figure 2 shows that the time-
like particle’s radius and its angular momentum decrease
with Q. When 0 ≤ Q ≤ M2, rMBO ≤ lMBO. However, a
negative Q < 0 leads to rMBO > lMBO. In contrast to the
Schwarzschild black holes (Q = 0), the values of rMBO and
lMBO with Q < 0 in the DMPR brane-world black holes are
more large.

For ISCO, the timelike particle’s motion is described as
follows

Veff = E2, ∂r Veff = 0, ∂r∂r Veff = 0. (28)

We derive that

EISCO = g(rISCO)√
g(rISCO) − rISCOg′(rISCO)/2

, (29)

lISCO = r3/2
ISCO

√
g′(rISCO)

2g(rISCO) − rISCOg′(rISCO)
, (30)
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Fig. 3 EISCO, lISCO and rISCO of the timelike particle around the
DMPR brane-world black holes against Q for ISCO
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Fig. 4 The effective potential Veff as a function of r/M with a fixed Q.
The angular momentum varies from lISCO to lMBO from bottom to top.
The dashed line represents the extremal points of the effective potential

rISCO = 3g(rISCO)g′(rISCO)

2g′2(rISCO) − g(rISCO)g′′(rISCO)
. (31)

From these expressions, Fig.3 suggests that EISCO, lISCO and
rISCO decrease with the increase of Q. Also, with a negative
Q in the DMPR brane-world black holes for this case, the
values of EISCO, lISCO and rISCO are larger than the ones in
the Schwarzschild black holes.

When the particle’s orbits lie between ISCO and MBO,
we plot Veff with the tidal charge parameter Q (see Fig. 4). In
Fig. 4, the bottom and the top curves represent Veff in lISCO

and lMBO. It is shown that these curves have a sharp increase
firstly, then decrease and slowly increase with r . The extremal
points of Veff are the dashed lines in Fig. 4. From the figure,
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Fig. 5 ṙ2 as a function of r/M with l = (lMBO + lISCO)/2 and a fixed
Q, where E varies from 0.955 to 0.975 from bottom to top
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Fig. 6 Parameter regions ΔS for the bound orbits (in shadow) with a
fixed Q

we can also see that the curves in ISCO have one extremal
points and the other curves have two extremal points. These
dashed lines decrease before increase with r .

By taking l ≡ (lMBO + lISCO)/2 and the domain of E
as (0.955, 0.975), one-dimensional motion ṙ2 in the effec-
tive potential is depicted in Fig. 5. The effects of Q on ṙ2
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Fig. 7 Parameter regions ΔS vs Q for the bound orbits

clearly display. In each of the graphs of Fig. 5, it is shown
that these curves have a sharp decrease firstly, then increase
and slowly decrease with r later. Each curve in Fig. 5 has two
extremal points. The bound orbits between ISCO and MBO
we take into account only belong to these curves in which
two extremal points have the opposite signs. For instance, the
blue line meets this condition when Q = −0.5M2, where
one extremal point is negative while the other is positive.
After further analysis, the bound orbits in that blue line when
Q = −0.5M2 have the energy bound (0.9588, 0.9714) for
l = 3.958M . It fully indicates that the bound orbits around
the DMPR brane-world black holes has a range of energy for
a given angular momentum. This allows one to plot (l, E)

regions for the bound orbits around the DMPR brane-world
black holes (see Fig. 6). The shadow regions ΔS in Fig. 6 are
l and E of the bound orbits. Furthermore, we plot parameter
regions ΔS with respect to Q in Fig. 7. It suggest that param-
eter regions ΔS around the DMPR brane-world black holes
increase with Q for the bound orbits. It also means that the
shadow regions with Q < 0 are smaller than the ones with
Q > 0.

4 Periodic orbits and rational numbers

During the adiabatic inspiral regime, a series of periodic
orbits serves as a continuing transitional orbit and play a
significance role in the research of the gravitational wave
radiation [19]. Given this fact, a taxonomy of periodic orbits
for a timelike particle around black holes has been recently
proposed in Ref. [21]. When a timelike particle lies between
MBO and ISCO around a black hole, based on the taxonomy
in Ref. [21], there exists an interesting topological relation-
ship between a triplet of integers (z, w, ν) and the periodic
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Fig. 8 Four leaves orbits around the DMPR brane-world black holes
with ε = 0.5
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Fig. 9 The rational number q versus E by taking Q as −1.5M2, −M2,
−0.5M2, 0, 0.5M2, and M2 with four cases: ε = 0.3, 0.5, 0.7 and 0.9

orbits, which defines a rational number q as follows [21]

q = w + ν

z
= Δφ

2π
− 1, (32)

where

Δφ =
∮

dφ, (33)

is the equatorial angle accumulated in one radial cycle from
one apastron to periastron to the next apastron.

The integers (z, w, ν) have the corresponding geometric
interpretations in the structure of periodic orbit [21]: z is the
number of leaves for “zoom” , w is the “whirls” number
around the center, and ν is the “vertices” number formed
by joining the successive apastra of the periodic orbit. In
addition, 1 ≤ ν ≤ z−1 if z > 1 and ν = 0 if z = 1 (see Ref.
[21] for details). In order to show the geometric structure
for (z, w, ν), for example, we consider q = 1 + 1/4 and
q = 1 + 3/4 for periodic orbits around the DMPR brane-
world black holes with Q = 0.5M2 and Q = −0.5M2 (see
Fig. 8). There are four leaves (the blue dash lines) in this
figure, which means the zoom number z is 4. The number
around the center (a small red line in the center) in Fig. 8
is the whirls number (namely, w = 1). At the same time,
we chose two cases in Fig. 8, which are ν = 1 and ν = 3
respectively, to display the behavior of the vertices number
(the red lines).

Based on Eqs. (16)–(20), the equatorial angle Eq. (33) for
the timelike particle around the DMPR brane-world black
holes can be found as

Δφ = 2
∫ φ2

φ1

dφ

= 2
∫ φ2

φ1

φ̇

ṙ
dr

= 2
∫ r2

r1

l

r2

√
E2 −

[
1 − 2M

r + Q
r2

](
1 + l2

r2

)dr. (34)

where φ2 and φ1 denote apastron and periastron. r1 and r2

are two turning points of the bound orbits between ISCO
and MBO. From the above equation, we can see that Δφ

in the DMPR brane-world black holes depends on the tidal
charge parameter Q. This leads to significant differences of
the timelike particle between the DMPR brane-world black
holes and the RN/Schwarzschild black holes.

From Eqs. (32) to (34), the rational number q and the cor-
respondingΔφ can be obtained by numerical integration with
fixed Q, E and l. Therefore, for the periodic orbits around
the DMPR brane-world black holes, the rational number q
versus E could be depicted, see Fig. 9. Since the value of
the angular momentum in the bound orbits only varies from
lISCO to lMBO, a new angular momentum is given by

l = lISCO + ε(lMBO − lISCO), (35)

where ε = 0 and ε = 1 denote the angular momentums of
ISCO and MBO respectively and we have 0 ≤ ε ≤ 1 for the
bound orbits. By taking Q as −1.5M2, −M2, −0.5M2, 0,
0.5M2, and M2 with four cases: ε = 0.3, ε = 0.5, ε = 0.7
and ε = 0.9, the rational number with the energy is plotted
in Fig. 9. From the figure, the rational number q gradually
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Fig. 10 Periodic orbits with
rational numbers (rows 1 and 3)
and nearby aperiodic orbits with
approximate rational numbers
(rows 2 and 4) with ε = 0.9
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increase with E firstly and then have a sharp increase espe-
cially when E becomes the maximum value. Besides, the
case for Q < 0 are different from the cases for Q = 0 and
Q > 0.

From the view of Ref. [21], a generic orbit is an accumu-
lated angel per radial cycle. The orbit is not quite closed. On
the contrary, it belongs to precession of the periodic orbit. We
always treat a generic orbit as a approximate rational num-
ber. The corresponding closed periodic orbit with the rational
number is a main problem which we need to deal with. For
example, a rational number q = w+ν/z gives a closed peri-
odic orbit, whereas a approximate number q = w + ν/z + ς

corresponds to nearby aperiodic orbits, where the irrational
ς � 1. Figure 10 clearly shows this point. For the particle
around the DMPR brane-world black holes for Q = M2 and
Q = −M2 with ε = 0.9, rows 1 and 3 are closed peri-
odic orbits with rational numbers q = 1/2, 2/3 and 3/4.

In Fig. 10, rows 2 and 4 are nearby aperiodic orbits with
approximate rational numbers, where ς ≈ 1/100, ≈ 1/300
and ≈ 1/400 respectively. From the above, we only need to
focus on closed periodic orbits around the DMPR brane-
world black holes. Any generic orbit between MBO and
ISCO around the DMPR brane-world black holes could be
approximated arbitrarily closely by some rational.

In Figs. 11 and 12, closed periodic orbits around the brane-
world black holes have been plotted with different (z, w, ν)

for a given ε = 0.3 and Q. Here we take Q = −M2 and
Q = M2 for examples. These figures show the characters
of the “zoom” number z and the “whirls” number w clearly.
It is worth noting that the geometric structure of periodic
orbit gets more complicated with the increase of the zoom
number. The energy with a fixed Q increases with the whirls
number. And the energy with Q < 0 is larger than the one
with Q < 0. Due to the closed periodic orbits in Figs. 11 and
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Fig. 11 Zoom-whirl periodic
orbits (z, w, ν) around the
DMPR brane-world black holes
with Q = −M2 and ε = 0.3
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12, the behavior of the vertices number does not show up.
However, Fig. 8 display the behavior.

When we take ε as 0.5 and 0.7 respectively, Tables 1 and
2 outline the energy of periodic orbits with a fixed q [or
(z, w, ν)] and different Q. From Tables 1 and 2, it is shown
that periodic orbits with Q < 0 in the DMPR brane-world
black holes have higher energy in comparison to the ones with
Q > 0. Especially, periodic orbits with a negative Q < 0
have higher energy in comparison to the Schwarzschild ones
(Q = 0). In addition, the energy of periodic orbits increases
with ε when we fix the values of Q and q. This unique signal
included the energy of periodic orbits and the parameter Q
might be identified and constrained through testing the bound
orbits of the timelike particle and the corresponding taxon-

omy about periodic orbits around the DMPR brane-world
black holes in the future.

5 Conclusion

In this paper, we mainly focus on the period orbits of a time-
like particle around the DMPR brane-world black holes. By
considering the particle orbital between the innermost sta-
ble circular orbits (ISCO) and the marginally bound orbits
(MBO) around the brane-world black hole, it clearly shows
that the particle’s angular momentum and its radial dis-
tance decrease with the increase of Q, where Q is a tidal
charge parameter and may be negative and positive in the
brane-world black holes. Furthermore, the allowed parame-
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Fig. 12 Zoom-whirl periodic
orbits (z, w, ν) around the
DMPR brane-world black holes
with Q = M2 with ε = 0.3
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Table 1 The energy E(z,w,ν) for periodic orbits (z, w, ν) [q = w + ν/z] around the DMPR brane-world black holes for different values of Q with
ε = 0.5

Q/M2 E(1,1,0) E(1,2,0) E(2,1,1) E(2,2,1) E(3,1,2) E(3,2,2) E(4,1,3) E(4,2,3)

−1.5 0.973091 0.975239 0.974995 0.975272 0.975133 0.975274 0.975174 0.975275

−1 0.971243 0.973522 0.973259 0.973557 0.973405 0.973560 0.973449 0.973561

−0.5 0.968874 0.971336 0.971038 0.971376 0.971199 0.971379 0.971255 0.971381

0 0.965425 0.968383 0.968026 0.968434 0.968225 0.968438 0.968285 0.968440

+0.5 0.960277 0.963961 0.963467 0.964035 0.963735 0.964041 0.963819 0.964043

+1 0.948292 0.955381 0.954262 0.955592 0.954841 0.955615 0.955031 0.955623
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Table 2 The energy E(z,w,ν) for periodic orbits (z, w, ν) [q = w + ν/z] around the DMPR brane-world black holes for different values of Q with
ε = 0.7

Q/M2 E(1,1,0) E(1,2,0) E(2,1,1) E(2,2,1) E(3,1,2) E(3,2,2) E(4,1,3) E(4,2,3)

−1.5 0.982835 0.984704 0.984516 0.984725 0.984624 0.984726 0.984655 0.984727

−1 0.981642 0.983654 0.983449 0.983678 0.983567 0.983679 0.983601 0.983680

−0.5 0.980179 0.982319 0.982087 0.982347 0.982220 0.982348 0.982259 0.982350

0 0.977906 0.980519 0.980237 0.980554 0.980398 0.980557 0.980445 0.980558

+0.5 0.974414 0.977826 0.977425 0.977881 0.977650 0.977885 0.977717 0.977886

+1 0.965907 0.972588 0.971601 0.972764 0.972123 0.972780 0.972291 0.972786

ter regions ΔS of the (l, E) plane are analyzed detailedly. It
suggest that parameter regions ΔS around the DMPR brane-
world black holes increase with Q for the bound orbits.

From these results, the corresponding periodic orbits with
different energy levels are analyzed numerically by employ-
ing a taxonomy [21], which is related to the adiabatic inspiral
regime in the gravitational wave radiation. It clearly shows
that a rational number defined by the taxonomy increases
with the particle’s energy. In addition, periodic orbits with
Q < 0 in the DMPR brane-world black holes have higher
energy in comparison to the ones with Q > 0. Especially,
periodic orbits with a negative Q < 0 have higher energy in
comparison to the Schwarzschild ones (Q = 0). Our results
might provide hints for distinguishing the DMPR brane-
world black holes from other black holes by the timelike
particle’s periodic orbits in the future.

In the future, the detection of gravitational waves in the
adiabatic inspiral regime might provide us with an unambi-
guity signal of Q through the corresponding taxonomy about
periodic orbits around the brane-world black hole. It is worth
mentioning that the motion below ISCO is in the transition
regime [18]. In this regime, the trajectory for a compact body
(e.g., extreme mass ratio black hole binaries) changes from
inspiral to plunge gradually. We will leave the detailed inves-
tigation on this issue for future works. In addition, another
open issue for the brane-world black hole is the thermody-
namic characters, which will be also done in our next move.
It is worth mentioning that another brane-world black hole
in Refs. [35–37] can generate interesting cosmological con-
sequences and is an attractive alternative to the accelerated
expansion of the universe and the flatness of rotation curves
of galaxies. Periodic orbits around this brane-world black
hole and the corresponding thermodynamic characters will
be considered in our future works.
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