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Periodic Orbits for Additive Cellular Automata 

Raul Cordovil*, Rui Dil~o, and Ana Noronha da Costa 

C.F.M.C., Av. Prof. Gama Pinto, 2, 1699 Lisboa Codex, Portugal 

Abstract. We formulate and study a necessary and sufficient condition for a 
configuration of any type of infinite additive cellular automata to have periodic 
behavior in time. The number of orbits with period n is counted. Relations between 
spatial and temporal periods are discussed. 

1. Introduction 

Cellular autonlata (CA) are structures evolving on a (finite or infinite) lattice 
according to a definite deterministic local law. Each site on the lattice takes a 
value of some finite set, typically 0 or 1, and time evolution at each site is 
determined by the previous values at neighboring sites. 

Cellular automata were first introduced by Von Neumann [8] and Ulam [6] 
as examples of  simple structures presenting some of the features of life. Recently, 
they have been reintroduced by Wolfram in a series of  remarkable papers [9]-[ 11 ], 
and inexpensive hardware has been implemented for the fast computation of any 
CA (Toffoli's CAM machine [5]). This has generated an increasing interest in 
the formulation of  a large class of  physical problems in terms of CA evolutionary 
laws (see De Pazzis et al. [1] and Phys. D 10 (1984), nos. 1 and 2, in particular 
Vichiniac [7]). 

Some CA have a simplifying additivity property, i.e., they satisfy a superposi- 
tion principle: given two configurations, the time evolution of  their sum is given 
simply by the sum of  their individual evolved configurations. A class of  finite 
additive CA has been thoroughly investigated in a recent paper  by Martin et al. 
[3]. In this paper  we give necessary and sufficient conditions for a configuration 
to be periodic in time for any type of  infinite additive CA. We further prove that 
configurations with temporal  period n are generated by a linear map  and have 
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necessarily a spatial per iod a (n). Relations between temporal  and spatial periods 
are also investigated. 

2. Periodic Orbits 

Let Z2 be the finite field with two elements {0, 1}. We denote by Z~ the vector 
space whose elements are the functions o f  the set Z o f  the integers in the field 
772: i.e., x e Z z if and only if x = {x~}i~z is a doubly  infinite sequence of  elements 
x ieZ2 .  Let o- :Z2z~ be the au tomorphism of  Z z such that, for every x~;~2 z, 
(o-x)~ = x~+~, thus cr shifts the entries one unit to the left. For  every integer m let 
o-" be the au tomorph i sm of  Z2 z defined by (o-"x)~ = xg+,,. We denote  by  V the 
vector space over Z2 of  the linear functions finitely generated by the au tomorph-  
isms {crm}m~z: 

m" 

i.e., ~ ' eV-{O}  iff z =  Y~ A~o "~, m ' < - m  ", Aie~'2, Am,=Am,,=l. 
i = m '  

We may also view V as a Z2-algebra where the product  o f  two linear functions 
7, ~"e V is this composite:  

if  ~ '=Y&cr  i, ' , , , . . . ,  i+j r =Y. Ajo J then ~'" = ~ '=~^~^scr  . 
i j i,j 

For  every r e V-{O}  we call the ordered pair  s~ = (2 ~z, 7) the one-dimensional 
infinite C A  over 7-2 with additive time evolution rule r. In this paper  we shall only 
consider  this type o f  CA. For  this reason, in the following, we call s¢ simply a 
CA. I f  x e Z  z, we call x a configuration (of  the CA, s¢). 

Example 2.1. We remark that in a CA, all entries x~ of  a given configuration 
evolve in time according to a local law. This law can be given by specifying the 
outcome o f  an entry according to all possible values in a certain fixed neighbor- 
hood.  One  simple law, involving just nearest neighbors  can be listed as follows: 

time t: 111 110 101 100 011 010 001 000 
time t + 1: 0 1 0 1 1 0 1 0 

It can easily be checked that  the time evolution o f  an entry x~ is given by addit ion 
modulo  2 o f  the values at neighboring sites, i.e., (rx)i = x~_l + xi+l (mod 2) and 
so r = cr -1 + ~r. This CA is usually referred to as rule 90 [9]. 

According to another  well-known CA,  the time evolution o f  each entry x~ is 
given by (zx)i = xi_~+x~+xi+~ (rood 2) and so r =  ~ - l + ~ + o -  (rule 150 [9]). 

Definition 2.2. Let M = (7  z, r )  be a CA and  let n - 1 be a natural  number.  We 
say that  a configuration x o f  s~l has temporal period n i f  and only i f  T"x = x. In  this 
case we say also that x is a periodic orbit o f  s~. By definition the spatial period 
a ( x )  o f  the configuration x is the smallest positive natural number p such that 
xi+p = x i fo r  every i e Z. In  case it does not  exist, we say that  a ( x )  = oo. We denote 
by a (n)  the largest a (x )  f rom all the configurations x o f  sg with temporal period n. 
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Given the evolution rule ~" = Y.~__",,, A~tr ~, with m'<_ m" and A,,, = A,,° = 1, define 
s( ~') = m " -  m'. In this paper, we associate with each rule r a natural number 3J( ~'), 
such that 2/('r) = s(~" + 4) i f  ~" # ~ and y(]) = O, measuring its breadth. The  meaning 
of y ( r )  will be made clear in Theorem 2.3. Note that y ( r ) = 0  iff ~-=~+or" 
( m e Z - { O } )  or z = L  

m" Theorem 2.3. Let ~I be a CA with the time evolution rule z = Y,~=,,, A~cr ~ and let 
n > 1 be a natural number. Then x = {xi}~z is a configuration o f ~ l  with temporal 
period n iff  

tim ~ 
xj= E a~"%+, (je:¢), (2.3.1) 

i =  nrtl ' 

where the scalars A~n)~ Z2 are determined by the equality ¢ " =  """ El=rim'  x~n)o~i" O n  

the other hand i f  y(z")  >-- 1 then the configuration x is uniquely determined if, for  
some io ~ Z,  we know the entries xi0, Xio+~, • . . ,  Xio+~(~")-~. Moreover, i f  z ~ ~, x has 
a spatial period a ( x )  < 2 ~ .  

Proof. Equality (2.3.1) is obvious. The second and third statements are proved 
below (see Remark 2.9). [] 

We remark that if  x is a configuration with temporal  period n for the CA 
~¢ = (Z z, ~'), then x is the preimage of the zero configuration for the CA ~¢' with 
the evolution rule ~-' = ~-" + ~. In particular, as (~-2" + ~) = (~ + ~)2°, if x has temporal 
period 2" for the CA M, then x is a preimage of the zero configuration of the 
CA with the evolution rule r ' =  ~'+ ~ (see Examples 2.7 and 2.8 below). 

The proposition below is simple but useful. 

Proposition 2.4. Let  x be an initial configuration with spatial period n o f  the C A  
~ .  Let ~" be the time evolution rule o f  ~ .  Then z(x) has spatial period d where d 
divides n, and either x is a periodic orbit o f  ~ or x is the preimage o f  a periodic 
orbit o f  ~ .  [] 

We remark that Proposition 2.4 has the consequence that a configuration x of  
a CA, with only a finite number of  entries equal to 1, is neither a periodic orbit 
nor a preimage of a periodic orbit if ¢ # ~. 

Let /z  be the M6bius function of the partially ordered set P = (N-{0},  <-) of 
the natural numbers which are different from zero, with the relation that p <--q 
if[ p divides q (see [4]). More precisely, the MSbius function /~ is defined as 
follows: for all p, q ~ N - { 0 } ,  t ~ (p ,p )=  1, /~(p,  q ) = 0  if p does not divide q or 
q / p  is divisible by the square of  a prime, and/~ (p, q) = ( - 1 ) '  if q / p  is the product 
of  r distinct primes. 

Theorem 2.5. Let ,~l = (Z z, r) be a CA. Let  t (n)  [resp. t*(n)] be the number o f  
configurations such that its temporal period [resp. smallest temporal period] is n. 
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Then we have: 

t ( n ) = 2  ~(~") / f  ~ ' ~  and t (n)=oo i f  r = ~ ;  (2.5.1) 

t*(n) = ~ Ix(d, n ) .  t(d). (2.5.2) 
d = l  

Moreover, Y(r")  has the following properties: 

I f  y ( z ) - > l  then y ( r " ) > l .  (2.5.3) 

y ( z " )  = ny(~'), (2.5.4) 

except in the case z = ~ + t r m ' +  ' '  " + t r  m2 with mz>-ml>O or mz <-ml <O. In this 
case, we have 

y ( r " )  = nlm21- 2"' lmd, (2.5.5) 

where n' is the largest natural number such that 2"' divides n; in particular if 
m I :. m z = m' 

y((~ + trm')") = [m'l(n - 2"'). 

Proof. We prove  only  the nontr iv ia l  cases o f  the second  statement .  Suppose  
z = ~ + t r m l +  ". "+tr"~,  with m2>-m~>O. Then  z" =~+Y.~=~ ( 7 ) ( o " ' + ' '  "+tr"~)  i 
where  v is the  least  in teger  for  which (~) ~ 0 (mod  2). It is easy to see that  for 
all  na tura l  numbers  k, n, 2k  -< n, if  n = 2 p + q with 0 --- q < 2 v, then (~,) = (~) (mod  2). 
But this impl ies  v = 2"', where  n' is the largest  na tura l  number  such that  2"' d ivides  
n, and  y ( z " )  = nm2-2"'m~. The case m2 < - m~ < 0  is s imilar ,  and  equa t ion  (2.5.5) 
fol lows.  In  par t icu lar ,  it is c lear  that  i f  m~ = m2 = m' ,  

y ( r ) = O  and T(r" )= lm ' l (n -2" ' ) .  [] 

Remark  2.6. The r eade r  may  easily realize,  in view of  the above  theorem,  that  
some C A  have a ra ther  pa tho log ica l  behavior .  More  precisely,  i f  r = ~+ o "  
( m e  7 - {0}) for  n = 2 v ( p  ~ N), we have z" = ~ + ~r"" and  therefore  3'(z") = 0. But 
then  we have  t(2")  = 1, and  consequent ly  ~¢ = (Z z, ~ + cr m) is a dynamica l  system 
with no p e r i o d i c  orbi ts  wi th  pe r iod  2" for  every na tura l  number  n -> 1 (see Table  1). 

Table  1. Number of periodic points for the cellular automaton 
~=~+tr (Theorem 2.5). 

Number of periodic points Number of periodic points 
of period n of smallest period n 

1 1 1 
2 1 0 
3 4 3 
4 1 0 
5 16 15 
6 16 12 
7 64 63 
8 1 0 
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Example  2.7. We now calculate explicitly some periodic configurations for rule 
90, r =  o ' - l + o  " (see Example 2.1). For every natural number n > - 1, the time n 

. - 1 +  . . (7 )~ . -2 , .  evolution map, r ,  is given by (or o') = ~=o  Equation (2.3.1), giving 
the necessary and sufficient condition for a configuration x to have temporal 
period n, then becomes 

xj = xj+,,-2, ( j ~ Z ) .  (2.7.1) 
i i 

This is a recurrence relation of order 2n and, as asserted in Theorem 2.3, entry 
x,+j is uniquely determined given entries xj_,, x j_ ,+~, . . . ,  xi+,_~. For example, 
for temporal period 3, xj+3 = xj-3 + xj_~ + xj + xj+~ (j  e Z), which can be written in 
terms of the companion matrix, 0000,) 

1 0 0 0 0 
0 1 0 0 0 

(xj+~,xj+2, . . . ,xj+6)=(xj ,  xj+l , . . . ,x j+5)  0 0 1 0 0 " 

0 0 0 1 

(2.7.2) 

Introducing as the "initial condition" the vector (000001) we successively obtain 
15 different vectors. This means that the configuration having temporal period 3 
generated by this "initial condition" is also periodic in space with period 15 (see 
Fig. l(a)). Nevertheless, if we introduce into (2.7.2) the vector (000110), only 
five different vectors are generated and this configuration with temporal period 
3 will only have spatial period 5 (see Fig. l(b)). Notice that any configuration 
with temporal period 1 has, in particular, temporal period 3 and so satisfies 
equation (2.7.1). Introducing as initial conditions Xo = 1, x~= 1, x2=0,  x 3 = l  , 

x4 = 1, x5 = 0, equation (2.7.1) generates the infinite configuration 
{.. .  110110110...}, which can easily be seen to have temporal period 1. A spatial 
period associated with some temporal period is generally difficult to calculate 
explicitly. However, in the particular case n = 2 "  (me N ) ,  equation (2.7.1) 
immediately yields spatial period 3n: xj+3, =xj  ( j~  Z). 

Example  2.8. For rule 150, ~" = o --~ +4+  tr (see Example 2.1), the time n evolution 
map, r", is given by 

= Ki+,o ' ,  where K~'+,= ~ i + j  \ n - j / "  
i=--n j=O 

Coefficients K~, 0 < - j - 2 n ,  are easily shown to verify the following properties: 

K~ = K~, = 1, (2.8.1) 

K ]  = KL_~ ,  (2.8.1') 

K7 = K~, - t -  v , - ,  _L v - - ,  (2.8.1") -- axj-- 1 -- a~j-- 2 • 
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0 0 0 0 0 1  
m m~ ~m ~ m ~m ~ m ~ mm ~m 

m m mmmm~m ~ m m ~ m ~  s ~ m ~  
m m m s s  ~ s s  ~ m mmm smm m m ~ s ~  s m ~  

mm mm ~ m mm mm m ~ m~ , m  m 

m mm~ ~m~ m m mmm ~ m  ~ s m ~  ~ m  
s ms ~ m ~ m~ mm ¢ m ~ m~ 

$ s ~ m  ~mm m ~ m s ~  m ~  m ~ mm~ ~m~ 
m , m  m ,  m ~ mm ~m m s ~m m~ m 

m ~ m ~  s m mm~mm~ s ~ m ~ m m ~  

m~ m~ m s ~m sm s s m~ ~ 

m m ~mm ~mm m m msm s m ~  m m m~m mm~ 
~ mm m ~ s ~  mm m m ~m m~ 

s ~ s  ~ s m m s s s m  ~ m m s m s ~ m  
s ~ s m ~  m~m m m m~m smm m s ~ m  $~m 

(a) 

O00JlO 

, * * * *  * * * *  * * * *  * * * *  * * * *  * * * *  * * * ¢  * * * *  * * *  
* *  * *  * *  * *  * *  * *  * *  * *  * *  

m m  , m  ~ ,  s ,  m m  , m m m  s ~  ~ ~ 
, ~  mm ms sm ~m mm ms sm sm 

~m~m s s s m  ~ s m $  s s m m  ~smm m $ ~ s  msmm s~mm s ~  

, ~  m s  m m  m ~  s m  m m  e m  $ ~ m m  
ms s ~  sm mm mm mm s s  $$ ~m 

~m~m mmmm ~ m s s  smmm m~mm $$m~ mmm~ m ~ m  mm~ 
m m m ~  m m  m m  m m  ~ m  m s  m s  ~ m  

~ ~ ~ m ~  m m  m m m m ~ m  m m ~ 

(b) 

Fig. 1. Time evolution o f  two configurations of  the cellular automaton ¢ = cr-~+ cr corresponding 
to temporal period 3: (a) configuration generated by the vector ~ 1 ,  with maximal  spatial period 
a(3)  = 15; (h) configuration generated by the vector 000110, with spatial period 5. 
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Equation (2.3.1) becomes, 

x~= ~ K,"+.x~+, ( j ~ Z ) ,  (2.8.2) 
i = - - n  

where the coefficients K~+. are easily calculable from properties (2.8.1). Relation 
(2.8.2) has basically the same features as equation (2.7.1) for rule 90, generating 
a finite number of different vectors for each temporal period n. Notice again that 
spatial periods corresponding to temporal periods n = 2"  (m e N) can be directly 
calculated from (2.8.1) and (2.8.2): Xj+2n : X j  ( j e  Z). 

Remark 2.9. Let ~/ be a CA with the time evolution rule T = Y'.~",,,, ACt ~ such 
that y(z)-> 1. Let x be a configuration of  ~¢ with temporal period n. Then, by 
Theorem 2.5, y(1-")>_ 1 and it results from equality (2.3.1) that its entries are 
uniquely determined given the y(~-") entries {Xo, x a , . . . ,  xv(,,)_a}. In fact, let x' 
be the vector of Z~ '(~") such that, for every 0 <- i <- y(~'") - 1, (x')~ = x~. Then there 
exists a linear application L: Z~ '('°~ ~ such that for every m ~ Z and for every 
0 < - i - < y ( ~ - ' ) - l ,  we have, in the canonical basis of  Z~ '('"), (L'x')~=x~. With 
respect to this basis, it is clear that the matrix A of the linear application L is 
of the following type: 

(i00000 0 ala°  
1 0 " ' "  0 a 2 , 

0 0 • • • 1 av(~.)-~l 

where the a~, 0 -  i -  y ( r " )  - 1, are determined by equality (2.3.1). More precisely, 
in the particular case of  a time evolution rule ~" with m' < 0 < m", we have 

~(~) (O<__i<_n(m, ,_m,)_l , i#_nm,) ,  ai = ,t.',+i 
a_.~, = ;t <o ") + 1, 

where the scalars A~")~ Z2 are determined by the equality ~-" = ~=.,.,V"'" ..,~'")o -~. We 
- ~ ( " )  = A ' ,=  1. More generally, it is seen that we always have remark that , .o -  ,~. ' ,  

det(A) = ao = 1. Hence any period n configuration x of  sg can be written in the form 

{ . . . ,  x 'A -2v('"), x 'A  -v(,"), x', x'A v('"), x ' A  2v(~") , . . . } .  

Conversely, if  x can be written in this form then it is clear that x is a configuration 
with temporal period n. 

Note also that, as A determines an automorphism of Z~ '(~"), a ( x ) < 2  ~(~°). 
The linear application L:Z~'(~")~ and the matrix A constructed above are 

independent of  the particular configuration with temporal period n of ~t that we 
have selected. We say that A [resp. L] is the companion matrix [resp. linear 
application] of  the configurations of  ~ with temporal period n. 
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Theorem 2.10. Let  M = (Z2 z, r) be a CA, and let n be a positive natural number. 
Suppose y(~ 'n)> 1 and let A be the companion matrix o f  the configurations with 
temporal period n. Then a ( n )  is the smallest positive natural number such that 
A ~(~) = I. In particular, for  every configuration x with temporal period n, a ( x )  
divides a ( n ). 

Corollary 2.11. Let M be a CA, and let d and n be two positive natural numbers. 
Then i f  d divides n, a (  d ) also divides a(  n ). In particular, a(1)  divides a(  n ). 

On the other hand, i f  n = 2"d and y(~-)> 1 [ resp. ~-=~+t r "  ( m e 2 / - { 0 } ) ]  then 
a ( n )  = 2"a(d )  [resp. a ( n )  = 2"a(d)  i f  n ~ 2 ~ and a(2  ~) = 1]. 

The bulk of the proof  of  Theorem 2.10 rests in the following more technical 
result. 

Lemma 2.12. In the conditions o f  Theorem 2.10 let x' be a vector o f  Z~ (~°~ such 
that {x', ' , 2 x A , x  A , . , x ' A  ~<~"~-~} is a basis o f  Z~ '<~'). Let x =  
{ . . . ,  x '  A - ~ " ~ ,  x ' ,  x ' A  V(~"), . . .}. Then a ( x ) = a ( n ) and a ( n ) is the smallestpositive 
natural number such that A ~ )  = L 

Proof  o f  L e m m a  2.12. Let x '  be a vector ofZ~2 ~) such that {x',  x ' A  . . . .  , x ' A  ~<~")-~} 
is a basis of  Z~ '~ ') .  Let y be a configuration with temporal period n of  M. From 
Remark 2.9, we know there is a vector y ' ~ Z ~  '~") such that y =  
{ . . . , y ' A - V ( ~ ° ) , y ' , y ' A  ~ )  . . . .  }. Then there are scalars ~ 7 7 2 ,  such that y ' =  

~x '  A ~, 0 <- i <- y(~-") - 1, implying that a ( y )  divides a ( x ) and necessarily a ( x ) = 
or(n). Finally, if A s = I  then z ' A S = z  ' for every z ' ~ Z ~  ~ ) ,  and the lemma 
follows. [] 

Proof  o f  Theorem 2.10. Let x '  be the vector of  Z~ '(~n) such that, in the canonical 
basis of  Z~ '(~°), x~=O if O- - - i - - -y (z" ) -2  and x~<~-)_~=l. Then 
{x',  x ' A  . . . .  , x ' A  ~ ) - ~ }  is a basis ofZ~ '<~') and Theorem 2.10 follows from Lemma 
2.12. [] 

Proof  o f  Corollary 2.11. We prove the first statement. I f  ~'=~, then a ( n ) = o o ,  
n > 1. Suppose ~" # 1. I f  z = ~ + tr m (m ~ Z - {0}) and n = 2 ~' we have, by Theorem 
2.5, a ( d ) =  a ( n ) =  1. Suppose now y ( ~ " ) >  1. Then, by Theorem 2.5, y(~.a)> 1 
and from the proof  of  Theorem 2.10 there is a configuration x, with temporal 
period d, such that a ( x ) =  a ( d ) .  But x also has temporal period n, because d 
divides n. Th~n, from Theorem 2.10, a ( d )  divides a(n ) .  

To prove the second statement of the corollary we need the following lemma. 
(We recall that PA(X) ,  the minimalpolynomial  of  a n x n matrix A over the field 
K, is the monic polynomial of  least degree in K [ X ]  such that Pa(A)  = 0.) 

Lemma 2.13. Let M be a C A  with ~" ~ ~ and let n be a natural number such that 
y(~-n)> 1. Let  An [resp. A2n] be the companion matrix o f  the configurations with 
temporal period n [resp. 2n] o f  M. Let PAn(X)  [resp. PA~n(X)] be the minimal 
polynomial o f  An [resp. A2n]. Then PA.(X) = ( P A 2 n ( X ) )  2. 



Periodic Orbits for Additive Cellular Automata 285 

Proof Let (ao, al,...,a~,(~.)_l) T [resp. (bo, bl . . . . .  bv(~%_0 r ]  be the last 
column of the matrix A, [resp. A2,]. If r" =V""" A(.")o "~ we have r 2"= (~.,)2= g - ~ i = n r n '  1 , 

n m  ~ ~'i=.m' )tl n)Or2i" From the definition of the companion matrix, it is easily checked 
that b2~ = a~ and b2~+~ = 0  for 0-<--i- < y ( r " ) -  1. So 

y(~r")-I ( -1 ) 2  
PA2.(X) = ~ a~X2~ + X 2~'(~")= ~'~'~) a~X~ + X~,(,.) 

i =o \ i=0 

= ( P ~ o ( x ) )  ~ . 

Proof of Corollary 2.11 (sequel). Let A, [resp. A2,] be the companion matrix 
of the configurations with temporal period n [resp. 2n] of M. Let PA.(X) [resp. 
PA~.(X)] be the minimal polynomial of A, [resp. A2,]. From the definitions and 
Galois' Theorem (see [2]), or(n) [resp. ot(2n)] is the least positive integer such 
that PA~ (X)  divides X "~") + 1 [resp. PA~ (X)  divides X '~2~) + 1]. By the preceding 
results, we know that a(n) divides a(2n).  By Lemma 2.13, PA~,(X) = (PA.(X)) 2 
divides (X"(")+  1) 2 = X 2 a ( n ) +  1. So a(2n)  = a(n) or a (2n)  = 2a(n) .  Suppose 
c~(2n) = a(n). If a(n) = 2k, then (PA.(X)) 2 divides X2k+ 1 = ( x k +  1) 2, and we 
get the contradiction that a(n)<-k. If  c ~ ( n ) = 2 k + l ,  then (PA.(X)) 2 divides 
X 2k+~ + 1, so that X 2k+~ + 1 has multiple roots in some extension field, contradict- 
ing the fact that its derivative X 2k has no roots in common with it. Hence 
~(2n) = 2a (n )  and the second statement of the corollary follows. [] 

We risk the conjecture that there are no further properties for a (n )  in any of 
the classes of  the one-dimensional infinite CA over Z2 with additive evolution 
rules, other than those made explicit by Theorem 2.10 and Corollary 2.11. The 
evaluation of  a(n) is very time consuming. Some of  the calculations of  a(n) for 
rules 90, 150 and ~-=~+o- are given in Table 2. 

However, more information concerning the minimal polynomial of  companion 
matrices can be obtained from the following result. 

P r o p o s i t i o n  2.14. Let M be a CA, and let d and n be positive natural numbers. 
Suppose d divides n, y(~'d)-->l and y(~.a) divides y(~r"). Denote by PA(X) the 
minimal polynomial of  the matrix A and let Aa [ resp. A,  ] be the companh~n matrix 
of the configurations with temporal period d [ resp. n ]. Then PA~ ( X)  divides PA, ( X ). 

7~,(~ -~) 
Proof. Let x" be the vector of Z~ (~d) such that, in the canonical basis of  ,-2 , 
(x")i=O if  O < i < y ( r a ) - 2  and (X")y(,d)_l=l. From Remark 2.9 x= 
{. . . ,  x"A~ ~(~), x", x"A~ ~ )  . . . .  } is a configuration of  .d with temporal period d. 
Since x is also a configuration with temporal period n (because d divides n) and 

we must also have x = { . . . ,  x A,  , x ,  x A,  , . . .} ,  where y(~.a) divides y ( r  n) ' -~(~") ' ' ~(~") 
x'= Ix", x"A~ ('~') . . . .  , x"A(d'-~)v(~)]. Let y" [resp. y'] a vector of Z~ (~) [resp. 
Z[  (~)] such that, for some j e Z, (y")~ = xi+j, 0-< i < y(~.d) -- 1, [resp. (y')~ = x~+j, 
0----- i--< y(~'") -- 1]. From the definitions, (y"Ad)~ = x,+j+], 0 <-- i <-- y ( r  d) -- l, and 
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Table 2. a(n) for rules r=cr-~+cr ,  r=c r -~+~+~r  and r=~+~r.  

n r = c r - I + o  " r = o - - ~ + ~ + o  " r = ~ + o -  

1 3 2 1 
2 6 4 1 
3 15 10 3 
4 12 8 1 
5 51 30 15 
6 30 20 6 
7 63 126 7 
8 24 16 I 
9 315 130 63 

10 102 60 30 
11 3 075 2 050 341 
12 60 40 12 
13 12 291 8 190 819 
14 126 252 14 
15 255 510 15 
16 48 32 1 
17 65 535 510 255 
18 630 260 126 
19 786 435 524 290 21 483 
20 204 120 60 
21 4 095 8 190 63 
22 6 150 4 100 682 
23 4 194 303 2 796 202 4 185 601 
24 120 80 24 
25 17 825 775 209 715 25 575 
26 24 582 16 380 1 638 
27 436 905 524 290 13 797 

(y'A.)~ = x~+~+l, 0-< i < 3'(¢") - 1. Then we have (x"A~)~ = x~+j, 0 <- i < T ( r  d) - 1, 
and  (x'A~)~ = x~+~, 0_< i <  y ( 1 - " ) -  1, and it follows that  

x'A~ = [ x"A~, x"A~ ~,d)+j . . . .  , x"A~'-'~r~'~)+J]. (2.14.1) 

We now show tha t  given any  polynomia l  P ( X )  in Z2[X]  we have x'P(A,,)  = 0 
i f  and only i f  . . . .  • ~ '~) ~ )  x P(Ad)=O.  Indeed,  consider  the p ro j ec t ion  rr. Z2 ~ Z 2  
defined in the canonical  basis  o f  Z~ '( ) and  Z~ '( ) as (~r(x))i=x~. From the 
definitions ~r(x')=x" and,  using (2.14.1), w(x 'P(A~) )=x"P(Ag) .  Then  if 
x'P(A, ,)  = 0 we have 1r(x 'P(A, )= x"P(Ad)  = O. Conversely ,  i f  x"P(Ad)  = O, then 
x"P(Ag)A~a ~'t~d)= x"A~dV(~)P(Ad) = 0, 0 < -- i----- r -  1. Using again (2.14.1) we have 
x ' P ( A , )  = 0 as asserted.  

Let Q ( X )  be the nonnul l  po lynomia l  in 72[X ] o f  least degree such that 
x"Q(Ad)=O. As {x",x"Ag . . . .  ,x"A~ e~d)-l} is a basis o f  Z~ '(~),  we have 

7vt 'd)  Hence,  Q ( X )  is the nonnul l  polynomial  Z'PAd(Aa)=Oforeveryvectorz 'e , .2  . 
o f  least degree  such that  Q ( A a ) =  0 and,  f rom the definitions, Q ( X ) =  PAd(X). 
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From the above results, PAd(X) is also the nonnull polynomial of least degree 
such that X'PA~(A,)=0. Hence degree PA.(X)>-degree PAd(X). Suppose that 
PA~(X) does not divide PA.(X). Then there is a nonnull polynomial R ( X )  such 
that degree R ( X ) < d e g r e e  P ~ ( X )  and x"R(Ad)=O. It follows from the last 
equality, as above, that R(Ad) = 0, a contradiction with the definition of  PA~ (X). 
Hence PA~(X) divides P A , ( X ) .  [] 

In order to finish this section we (re)consider the following fundamental 
problem. 

Problem 2.15. Let ~ be a CA, and let x be a configuration with temporal period 
n o f~ .  What is the spaceperiod of x? 

If  ~'= ~ there is no information to evaluate a(x). If  ~ ,=~+tr"  (m e Z2-{0}) 
and n = 2 p ( p  E N) ,  only the zero configuration has temporal period n. Suppose 
now T(T")->I. Let A, be the companion matrix of the configurations with 
temporal period n of ~/. Let x' be the vector of Z~ '~") such that (x')i = xl, 
0<- i<-y(7"" ) - l .  Let n(x') be the smallest integer such that the vectors 

, , , ,(x') • n n(x') , i {x, x A . . . . .  , x AN } are hnearly depende t. Suppose Y.i~o ~x An = 0 such that 
i . . . n(x') i • 

{x A, :  ~:i = 1} Is a minimal dependent set. Let Q(X)  =~i~o ~:iX. (Then Q(X)  is 
the nonnull polynomial in ~'2[X] of least degree such that x'Q(Am)= 0.) Now 
let m(x') be the smallest integer such that Q(X)  divides X"~x')+ 1. We claim that 

, m(x ) , m(x') = a(x).  Since x A,  ' + x  = 0  we have, from the definition of  c~(x), a(x)  < - 
m(x'). If  Q(X) divides X~<X)+l, then we must also have m(x')<-a(x) and 
a(x) = m(x'). Suppose that Q(X) does not divide X " ~ ) +  1. From the definitions 
we have degree Q(X)  < - a(x).  Then there is a nonnull polynomial R ( X )  such 
that degree R ( X )  < degree Q ( x )  and x 'R(A, )  = 0, a contradiction. Hence Q(X)  
divides X~<X)+l and a ( x ) =  m(x'). 
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