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ABSTRACT

Context. We investigate periodic orbits in galactic potentials by developing analytical methods.
Aims. We evaluate the quality of the approximation of periodic orbits in the logarithmic potential constructed using perturbation
theory based on Hamiltonian normal forms.
Methods. The solutions of the equations of motion corresponding to periodic orbits are obtained as series expansions computed by
inverting the normalizing canonical transformation. To improve the convergence of the series, a resummation based on a continued
fraction may be performed. This method is analogous to the Prendergast method, which searches for approximate rational solutions.
Results. It is shown that with a normal form truncated at the lowest order incorporating the relevant resonance it is possible to
construct accurate solutions both for normal modes and periodic orbits in general position.

Key words. galaxies: kinematics and dynamics – methods: analytical

1. Introduction

In his book on Dynamical Astronomy, Contopoulos (2004)
encouraged investigation of the higher-order versions of the
Prendergast (1982) method to solve non-linear differential equa-
tions. The original method was applied by Contopoulos &
Seimenis (1990, hereafter CS90) to periodic orbits in the log-
arithmic potential and consists of approximating the exact so-
lution with rational trigonometric functions. Even though the
trigonometric series used in the rational approximation are trun-
cated at the first non-trivial order, in CS90 it was shown that the
quality of the fit to the exact result is quite good over a wide
range of energy and ellipticity. On this basis, it is natural to pre-
sume that higher-order truncations would improve the quality of
the prediction.

However, even the simplest version of the Prendergast
(1982) method has two problematic aspects: 1) the choice of the
dominant harmonic in the trigonometric series has to be made on
the basis of knowledge about the orbit type under study; 2) the
determination of the coefficients in the series, which depend on
the parameters of the system and on initial conditions, originates
from a non-linear algebraic system the solution of which must
in general be performed numerically. This second aspect dimin-
ishes much of its simplicity, particularly if we attempt higher
order truncations and consider the growth of the number of un-
known coefficients.

In this paper, we would like to explore the link between
the Prendergast-Contopoulos approach and the approximation
of orbital solutions found with a resonant normal form. The

� Appendix A is only available in electronic form at
http://www.aanda.org
�� Also at: INFN, Sezione Roma Tor Vergata.

motivation for this study stems from the idea of rooting a sim-
plified version of the rational solution method into the frame of
a modified normalization algorithm to devise a completely ana-
lytical approach. This step was proposed (Pucacco et al. 2008)
to exploit a resummation technique based on continued fractions
to speed up the convergence of series obtained in the framework
of normal form perturbation theory. This technique extends the
quality of predictions concerning the instability of normal modes
and consequent bifurcations of families of boxlets (Belmonte
et al. 2007).

In analogy with CS90, we apply this approach to investigate
periodic orbits in the logarithmic potential (Binney & Tremaine
1987). We find analytical solutions to the equations of motion for
the normal modes and the main low-order boxlets (“loops” and
“bananas”). By inverting the normalizing transformation of co-
ordinates, these solutions are either in the form of standard trun-
cated power series or in a rational form constructed by a contin-
ued fraction truncated at the same order of the series. Knowing
the “normal form” approximating the system under study, the
procedure of creating those solutions is straightforward and does
not require any further approximation or numerics.

We show that the analytic rational solutions obtained in
this way offer a degree of reliability comparable, where data
are available, to those of the semi-analytic treatment based on
the Prendergast-Contopoulos approach. Both loops and bananas
are quite well reconstructed in shape and dimension. We extend
the analysis in CS90 to check also the energy conservation along
the boxlets: we find that, whereas for normal modes energy is
conserved within a few percent, for loops and bananas, at this
level of approximation, it is not easy to go below 10%.

The plan of the paper is as follows: in Sect. 2, we briefly re-
call the method to construct normal forms for the logarithmic po-
tential and in the Appendix we outline the explicit expressions of
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the 1:1 and 1:2 Hamiltonian and generating function. In Sect. 3,
we analyze the approximation of the major-axis orbit and, in
Sects. 4 and 5, we complete the same analysis for the loop and
banana families respectively. In Sect. 6 we present our conclu-
sions.

2. Normal forms for the logarithmic potential

We investigate the dynamics of the potential

V =
1
2

log

(
R2 + x2 +

y2

q2

)
· (1)

For every finite values of the “core radius” R, the choice R = 1
involves little loss of generality. However, the singular limit
R → 0 associated with a central density cusp is also of
relevance (Miralda-Escudé & Schwarzschild 1989). With the
choice R = 1, the energy E may take any non-negative value.
Otherwise, the singular limit is “scale-free” and the dynamics
are the same at every energy. The parameter q provides a mea-
sure of the “ellipticity” of the figure and has values ranging in
the interval

0.6 ≤ q ≤ 1. (2)

In principle, lower values of q can be considered but correspond
to an unphysical density distribution. Values higher than unity
are included in the treatment by reversing the role of the coordi-
nate axes.

Normal forms for the Hamiltonian system corresponding to
the potential described by Eq. (1) are constructed with stan-
dard methods (Boccaletti & Pucacco 1999; Giorgilli 2002) and
were used to determine the main features of its orbit structure
(Belmonte et al. 2006, 2007). The starting point is the series ex-
pansion of Eq. (1) about the origin

V =
1
2

s − 1
2 · 2 s2 +

1
2 · 3 s3 − 1

2 · 4 s4 + . . . (3)

where

s = x2 +
y2

q2
· (4)

We briefly resume the procedure to fix notations. After a scaling
transformation

py −→ √q py, y −→ y/
√

q, (5)

the original Hamiltonian

H(px, py, x, y) =
1
2

(p2
x + p2

y/q) + V(s(x, y)) (6)

undergoes a canonical transformation to new variables PX , PY , X
and Y, such that

K(PX , PY , X, Y) =
N∑

n=0

Kn, (7)

with the prescription (K in “normal form”)

{K0,K} = 0. (8)

In these and subsequent formulas, we adopt the convention of
labeling the first term in the expansion with the index zero: in

general, the “zero order” terms are quadratic homogeneous poly-
nomials and terms of order n are polynomials of degree n + 2.
The zero order (unperturbed) Hamiltonian,

K0 ≡ H0 =
1
2

(P2
X + X2) +

1
2q

(P2
Y + Y2), (9)

with “unperturbed” frequencies ω1 = 1, ω2 = 1/q, plays, by
means of the fundamental Eq. (8), the double role of determining
the specific form of the transformation and assuming the status
of the second integral of motion.

The generating function of the transformation is a series of
the form

G = G1 +G2 + . . . (10)

and, since the procedure is based on working at each order with
quantities determined at lower orders, the normalization algo-
rithm proceeds in steps up to the “truncation” order N. At each
step n (with 1 ≤ n ≤ N), the series are “upgraded” by expressing
them in the new variables found with the normalizing transfor-
mation. In the Appendix A, we describe the expression of the
normal forms and the generating function that we need to apply
in the following.

It is customary to refer to the series constructed in this way as
Birkhoff normal forms. The presence of terms with small denom-
inators in the expansion forbids in general their convergence.
It is therefore more effective to operate with resonant normal
forms (Sanders et al. 2007; Gustavson 1966), which are still
non-convergent, but have the advantage of avoiding the small
divisors associated with a particular resonance. To determine the
primary features of the orbital structure, we therefore approxi-
mate the frequencies with a rational number plus a small “de-
tuning” (Contopoulos & Moutsoulas 1966; de Zeeuw & Merritt
1983)
ω1

ω2
=

m1

m2
+ δ. (11)

We refer to a detuned (m1:m2) resonance, where m1 + m2 is the
order of the resonance. Each resonance allows us to describe
a set of possible periodic orbits appearing in the dynamics: we
have the 1:1 “loop”, the 1:2 “banana”, the 2:3 “fish”, and so forth
(Miralda-Escudé & Schwarzschild 1989). Each orbit, if stable, is
surrounded by a family of quasi-periodic orbits usually inherit-
ing the same name.

A conservative strategy is of truncate at the lowest order
Nmin adequate to convey some non-trivial information about the
system. In the resonant case, it can be shown (Tuwankotta &
Verhulst 2000) that the lowest order in the normal form capable
of including the primary characterisitics of the m1:m2 resonance
with double reflection symmetries is

Nmin = 2 × (m1 + m2 − 1). (12)

Using “action-angle”–like variables J , θ defined through the
transformation

X =
√

2J1 cos θ1, Y =
√

2J2 cos θ2, (13)

PX =
√

2J1 sin θ1, PY =
√

2J2 sin θ2, (14)

the typical structure of the doubly-symmetric resonant normal
form truncated at Nmin is (Sanders et al. 2007; Contopoulos
2004)

K = m1 J1 + m2 J2 +

m1+m2∑
k=2

P(k)(J1, J2)

+am1m2 Jm2
1 Jm1

2 cos [2(m2θ1 − m1θ2)], (15)
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where P(k) are homogeneous polynomials of degree k whose co-
efficients may depend on δ and the constant am1m2 (q) is the only
marker of the resonance. In these variables, the second integral is

E = m1J1 + m2J2 (16)

and the angles appear only in the resonant combination

ψ = m2θ1 − m1θ2. (17)

For a given resonance, these two statements remain true for ar-
bitrary N > Nmin. Introducing the variable conjugate to ψ,

R = m2J1 − m1 J2, (18)

the new Hamiltonian can be expressed in the reduced form
K(R, ψ;E, q), that is a family of 1-d.o.f. systems parametrized
by E and δ.

We are interested in the solution of the equations of motion.
For a non-resonant (Birkhoff) normal form, the problem is easily
solved: the coefficient am1m2 vanishes and K no longer has a term
containing angles. Therefore, the J are “true” conserved actions
and the solutions are

X(t) =
√

2J1 cos κ1t, Y(t) =
√

2J2 cos,(κ2t + θ0), (19)

where

κ = ∇J K (20)

is the frequency vector and θ0 is a suitable phase shift.
In the resonant case instead, it is not possible to write the

solutions in closed form. It is true that the dynamics described by
the 1-d.o.f. Hamiltonian K(R, ψ;E, q) are always integrable, but,
in general, the solutions cannot be written in terms of elementary
functions. However, solutions can still be written down in the
case of the main periodic orbits, for which J , θ are true action-
angle variables. There are two types of periodic orbits that can
be easily identified:

1. The normal modes for which one of the J vanishes.
2. The periodic orbits in general position characterized by a

fixed relation between the two angles, m2θ1 − m1θ2 ≡ θ0.

In both cases, it is straightforward to check that the solutions
retain a form analogous to Eq. (19) with known expressions of
the actions and frequencies in terms of E and q such that κ1/κ2 =
m1/m2.

By using the generating function Eq. (10), the solutions in
terms of standard “physical” coordinates can be recovered (apart
from possible scaling factors) inverting the canonical transfor-
mation defined by Eqs. (A.3) and (A.4). As discussed in the
Appendix, the expansion Eq. (10) is composed of even-order
terms only. Since in our applications we consider the 1:1 and
1:2 symmetric resonances, we have from Eq. (12) that at most
Nmin = 4 so that the transformation back to the physical coordi-
nates expressed as a series of the form

x(t) = x1 + x2 + x3 + . . . (21)

is given explicitly by

x1 = X, (22)

x2 = 0, (23)

x3 = L2(X) = {G2, X}, (24)

x4 = 0, (25)

x5 = L4(X) + 1
2 L2

2(X) = {G4, X} + 1
2 {G2, {G2, X}}. (26)

We again remark that the vanishing of terms of even degree is re-
lated to the double reflection symmetry embodied in the normal
form. From a knowledge of the normalized solutions Eq. (19),
we can therefore construct power series approximate solutions
of the equations of motion of the original system

d2x
dt2
= −∇xV. (27)

We are investigating a non-integrable system. This implies that
any perturbation approach to cope with its dynamics is deemed
to fail, since it produces series that do not in general converge.
On the other hand, the normal form provides us with an efficient
way of constructing series with an asymptotic character: this im-
plies that at some point we should achieve an “optimal” value
for the expansion order Nopt (hopefully> Nmin) that provides the
best possible result (Efthymiopoulos et al. 2004). The optimal
order depends on the size of the phase-space region in which we
are interested. The larger the region, the lower are the value of
Nopt and the accuracy of the approximation. In galactic dynam-
ics (in contrast to celestial mechanics) it is in general preferable
to obtain an overall picture of the dynamics at the expense of
extreme accuracy and truncating at Nmin appears a reasonable
choice. Verifying if this conjecture is tenable is an aim of the
present work.

3. Axial orbits

In systems of the form of Eq. (6), the orbits along the symme-
try axes are simple periodic orbits. It can be verified readily that
these orbits correspond to the two normal modes for which ei-
ther J1 or J2 vanish. If the axial orbit is stable it parents a family
of “box” orbits. A case that is both representative and useful in
galactic applications is that of the stability of the x-axis peri-
odic orbit, the “major-axis orbit”, if q is in the range provide by
Eq. (2)). Among its possible bifurcations, the most prominent is
usually that due to the 1:2 resonance between the frequency of
oscillation along the orbit and that of a normal perturbation, pro-
ducing the “banana” and “anti-banana” orbits (Miralda-Escudé
& Schwarzschild 1989). Therefore, to derive explicit solutions
for both the major-axis orbit and stable bananas (the “pendulum-
like family” in the denomination of CS90, see Sect. 5 below), we
use the 1:2 symmetric normal form.

From the expression of K reported in the Appendix, we ob-
tain on the normal mode J2 = 0,

KA = 2qJ1 − 3
4

qJ2
1 +

1
2

q

(
5
3
− 17

4
q(q − 1)

)
J3

1 . (28)

The value of the action can be computed by using the rescaling
in Eq. (A.1), i.e. KA = 2qE and inverting the series. The original
“physical” energy E can be expressed in terms of the amplitude
A of the axial orbit

E =
1
2

log (1 + A2). (29)

The frequency is given by the usual differentiation

κ1 =
1
2q

∂KA

∂J1
, (30)

where the rescaling of the energy is accounted for in order to be
able to use t as the physical time. Therefore, in the normalization
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Fig. 1. Relative energy error along the major-axis orbit for two different
truncations of the normal form at E = 0.1.

variables, we have a solution of the form (19) with Y = 0 and
(Belmonte et al. 2007)

J1 = E +
3
8

E2 +
25

192
E3, (31)

κ1 = 1 − 3
4

E +
11
64

E2. (32)

Inserting this solution into the transformation formulas of
Eqs. (22–26) and exploiting the terms of the generating func-
tions of Eqs. (A.16) and (A.17), after some computer algebra we
obtain

x1 = A cos κ1t, (33)

x3 =
A3

32
(cos κ1t − cos 3κ1t) , (34)

x5 =
A5

64

(
−59

48
cos κ1t + cos 3κ1t +

11
48

cos 5κ1t

)
. (35)

This result coincides with that obtained by Scuflaire (1995)
with an independent approach based on the Poincaré-Lindstedt
method and provides the explicit time evolution of an oscillation
starting at rest from x(0) = A.

To evaluate the quality of the approximation, a simple
method is to follow the energy variation along the solution of
the true potential of Eq. (1). We therefore compute

Ẽ(t) =
1
2

(
dx
dt

)2

+
1
2

log (1 + x(t)2) (36)

and compare this with the value of E determined by Eq. (29) for
various amplitudes. To understand the question of the optimal
order we can choose two different truncations of the prediction
obtained with the normal form:

x(3)
NF = x1 + x3, (37)

x(5)
NF = x1 + x3 + x5 (38)

and compute the quantity

ΔE
E
=

Ẽ(t) − E
E

· (39)

In Fig. 1, we plot ΔE/E for E = 0.1, corresponding to an ampli-
tude A = 0.47, over a half period: the curves replicate themselves
in the subsequent half period. The solid line is computed using
x(3)

NF and the dashed line using x(5)
NF; the relative error in the energy
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Fig. 2. Relative energy error along the major-axis orbit for two different
truncations of the normal form at E = 0.5.

Table 1. Relative energy variations along the major-axis orbit with dif-
ferent analytic predictions.

E A x(3)
NF x(5)

NF x(3)
CF x(5)

CF

0.1 0.47 0.0013 0.0005 0.002 0.0001
0.2 0.70 0.005 0.005 0.009 0.001
0.3 0.91 0.011 0.020 0.022 0.003
0.4 1.11 0.017 0.058 0.046 0.008
0.5 1.31 0.02 0.13 0.08 0.02
0.6 1.52 0.03 0.25 0.16 0.03
0.7 1.75 0.08 0.42 0.29 0.05
0.8 1.99 0.15 0.70 0.55 0.07
0.9 2.25 0.25 0.95 − 0.09
1.0 2.53 0.35 − − 0.12

conservation is almost three times smaller with the higher trun-
cation and as low as 0.05%. From Fig. 2 however, we see that
with E = 0.5 (A = 1.31) the situation is upset: the lower order
truncation, which corresponds to the first non-zero term in the
normal form, has an error at least five times smaller than that of
the higher truncation. We deduce that, between the two energy
levels, the optimal order decreases by two and verify that, to ob-
tain information about an orbit 3 times larger, we must accept a
relative error of a few percent. In Table 1, we list the maximum
absolute energy variation over a half period for various values of
E and observe that the optimal order is equal to or higher than 4
up to E = 0.2: for higher values of energy the optimal order is
simply 2, that is for x(3)

NF we achieve the most accurate result.
After achieving the optimal order, it is disappointing to ne-

glect terms evaluated by a costly high-order computation. There
are however other rules for “summing” divergent series that
adopt all terms (Bender & Orszag 1978), such as the construc-
tion of Padè approximant. A related approach is the construc-
tion of continued fractions: successive approximants obtained by
truncating the fraction at various order can provide an improve-
ment in the asymptotic convergence with respect to the origi-
nal series (Khovanskii 1963). From the normal form series of
Eqs. (37) and (38) we can compute the truncated fractions

x(3)
CF =

x1

1 − x3/x1
, (40)

x(5)
CF =

x1

1 − x3/x1

1+
x2
3−x1 x5
x1 x3

· (41)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810023&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810023&pdf_id=2
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Fig. 3. Relative energy error along the major-axis orbit for two different
truncations of the continued fraction at E = 0.5.

These approximations produce rational solutions and it is natu-
ral to consider a relation with the Prendergast-Contopoulos ap-
proach of CS90. By using the explicit forms of Eqs. (33)–(35),
we derive

x(3)
CF =

A cos κ1t

1 + A2

16 (1 − cos 2κ1t)
, (42)

x(5)
CF = A cos κ1t

1 + A2( 65
96 +

1
6 cos 2κ1t)

1 + A2( 59
96 +

11
48 cos 2κ1t)

(43)

and the expression of x(3)
CF is found to have the same structure as

the trial rational approximation used in CS90:

Ã cos κ1t
1 + B cos 2κ1t

· (44)

The main difference is that in x(3)
CF the parameters A and κ1

are known in analytic form by Eqs. (29) and (32), whereas in
Eq. (44), Ã, B and κ1 must be computed numerically by solv-
ing a nonlinear algebraic system obtained by inserting the trial
solution into the equations of motion.

In Fig. 3, we plot the same quantities as in Fig. 2 now derived
via the continued fraction truncations: the solid line is computed
with x(3)

CF and the dashed line with x(5)
CF. At this energy level, the

prediction using x(5)
CF begins to outperform that using x(3)

NF. From

Table 1 we observe that the performance of x(5)
CF is the optimal

one when going to energies higher than 0.5 and is at least as
good as that of CS90 for the same range of energy.

4. Loop orbits

As a first example of a boxlet, we consider the “loop” orbits
for which we can use the 1:1 symmetric normal form to derive
explicit solutions. For moderate ellipticities (q > 0.7), loops en-
sue as the lowest energy bifurcation due to the 1:1 resonance
between the frequency of oscillation along the short (y-axis) pe-
riodic orbit and that of a normal perturbation (Miralda-Escudé &
Schwarzschild 1989). From Eq. (12), for the 1:1 resonance we
have Nmin = 2 so that a normal form truncated at K2 is already
able to produce loops. The bifurcation curve in the (q, E)-plane
starts from the point (1, 0) (Scuflaire 1995; Belmonte et al. 2007)
and can be expressed as the series

Ec(q) = 2 (1 − q) + (1 − q)2 − 5
6

(1 − q)3 . . . (45)

if the normal form is truncated at progressively higher orders.
We limit ourselves to the case q = 0.9 with transition energy
Ec(0.9) = 0.21 and investigate the analytic prediction of the the-
ory by fixing the energy level at E = 1: with suitable rescaling,
these are the same values of parameters used by CS90.

In the normalization variables, we have a solution in the form
of Eq. (19) with

X(t) =
√

2J1 cos κLt, Y(t) =
√

2J2 sin κLt, (46)

with phase shift θ0 = π/2. The actions and frequencies can be
obtained from the following procedure: starting from the normal
form (A.8)–(A.9), we determine the fixed points of the reduced
Hamiltonian K(R, ψ;E, q) with

E = J1 + J2, (47)

ψ = θ1 − θ2, (48)

R = J1 − J2. (49)

The fixed point corresponding to the loop is given by ψ = π/2
and

J1(L)(E, q) = (E + RL(E, q)) /2, (50)

J2(L)(E, q) = (E − RL(E, q)) /2, (51)

where RL(E, q) is the solution of the algebraic equation

∂K
∂R

(
R, π

2
;E, q

)
= 0. (52)

The frequency is then given by

κL =
1
q

∂K
∂J1(L)

(
RL,

π

2
;E, q

)
. (53)

Explicit expressions of actions and frequencies are (Belmonte
et al. 2007)

J1(L)(E, q) =
(3 − q)E + 4q(q − 1)

3q2 − 2q + 3
, (54)

J2(L)(E, q) =
q(3q − 1)E − 4q(q − 1)

3q2 − 2q + 3
, (55)

κL =
1
q

(
1 − 3

4q
E
)
. (56)

For the solutions in the physical variables, we first detrmine the
transformations (22)–(24) with the generating function repre-
sented by Eq. (A.11) obtaining

x1 =
√

2J1(L) cos κLt, (57)

x3 =
1
16

√
2J1(L) cos κLt

× (
7(J2(L) + qJ1(L)) − 2(2J2(L) + qJ1(L)) cos 2κLt

)
, (58)

y1 =
√

2J2(L) sin κLt, (59)

y3 =
1

16q

√
2J2(L) sin κLt

× (
7(J2(L) + qJ1(L)) + 2(J2(L) + 2qJ1(L)) cos 2κLt

)
. (60)

We observe that, in the first higher-order terms both actions ap-
pear, to imply that a strong coupling exists between the degrees
of freedom. The inversion of the series

E =
1
q

KL(E, q) =
1
q

K
(
RL(E, q),

π

2
;E, q

)
(61)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810023&pdf_id=3


1060 G. Pucacco et al.: Periodic orbits in the logarithmic potential

allows us to express actions and frequencies in terms of the phys-
ical energy. However, using the exact solutions of Eqs. (54)–(55)
to evaluate the functions in Eqs. (57)–(60) would produce com-
plicated expressions that would hinder the procedure of resum-
mation with the continuous fraction. Therefore, in analogy with
the series written for the axial orbit, a separation of terms of
given orders is necessary and is achieved by linearly expanding
the actions in the form

J1(L) = a(E − Ec), (62)

J2(L) = b + c(E − Ec). (63)

The first expansion provides an approximate value of J1 above
the bifurcation energy and must clearly be considered to be zero
for E < Ec. The second expression connects at E = Ec with the
corresponding expression for the normal mode. Inserting these
into the solutions above and expanding in powers of E − Ec,
we are able to group terms according to their order. Clearly, this
grouping does not affect the series themselves (namely x(3)

NF and

y(3)
NF) but does influence the computation of the truncated frac-

tions: we obtain

x(3)
CF = 5

√
2a(E − Ec) cos κLt

(16 + 7b − 4b cos 2κLt)2

A1 + A2 cos 2κLt
, (64)

y(3)
CF = b3/2 sin κLt

(72 + 35b + 10b cos 2κLt)2

B1 + B2 cos 2κLt
, (65)

where

A1 = 4 (160 + 70b − (63a + 70c)(E − Ec)) , (66)

A2 = −8 (20b − (9a + 20c)(E − Ec)) , (67)

B1 = 18
√

2 (2b(72 + 35b)−3(21ab+35cb+34c)(E−Ec)) , (68)

B2 = 36
√

2b (10b − 3(6a + 5c)(E − Ec)) . (69)

For moderate values of the bifurcation energy corresponding to
large values of q in the range (2), a simple approximation is given
by the linear term in Eq. (45), Ec = 2(1 − q). At this level of
approximation, the constants appearing in the above solutions
are

a =
3
2
− q, (70)

b = 2 (1 − q) = Ec, (71)

c =
q
2

(72)

and can be used to plot the orbits and compare them with nu-
merical computations. With the choice of the parameters men-
tioned above, in Fig. 4 we compare a numerical computation of
the loop orbit (dots) with the analytic predictions given by x(3)

NF

(dashed line) and x(3)
CF (continuous line). It appears to be clear

how the rational solution originating in the continued fraction
truncated at order 3 is accurate overall in locating both the shape
and extrema of the orbit and achieves higher accuracy than the
prediction of the standard truncated series. In Fig. 5 we compare
the numerical computation of the same orbit (dots) with the ana-
lytic predictions given by x(5)

NF (dashed line) and x(5)
CF (continuous

line). The prediction with the higher order truncation does not
appear to be more accurate in terms of the shape of the loop.
However, in Fig. 6, we compare the plots of ΔE/E versus time
for the two truncations (order 3, continuous line; order 5, dashed
line) over a half period: the relative error is some 25% at order
5, in contrast to more than 40% with x(3)

CF.
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Fig. 4. An orbit of the loop family at E = 1.0 for q = 0.9: dots cor-
respond to the numerical solution; the continuous line corresponds to
the prediction given by the continued fraction truncated at order 3; the
dashed line that provided by the normal form truncated at order 3.
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Fig. 5. The same orbit of the previous figure (dots) compared with the
predictions truncated at order 5 (continued fraction, continuous line;
normal form, dashed line).
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Fig. 6. Relative energy error along the loop orbit with two different trun-
cations of the continued fraction.

5. Pendulum-like (banana) orbits

The bifurcation of the banana orbit from the major-axis occurs
along a curve in the (q, E)-plane starting from the point (1/2, 0)
(Scuflaire 1995; Belmonte et al. 2007). It can be expressed in
terms of the series

Ec(q) = 8
(
q − 1

2

) − 20
3

(
q − 1

2

)2
+

268
9

(
q − 1

2

)3 . . . (73)

As before, we adopt the same values of the parameters (up to a
suitable rescaling) used in CS90: the ellipticity is q = 0.6 with
transition energy Ec(0.6) = 0.76 and the energy level is fixed at
E = 1.15.

In the normalization variables we have a solution in the form
of Eq. (19) with

X(t) =
√

2J1 cos κBt, Y(t) =
√

2J2 cos 2κBt. (74)

Starting from the normal form (A.13)–(A.15), to determine ac-
tions and frequencies, we locate the fixed points of the reduced
Hamiltonian K(R, ψ;E, q) with

E = J1 + 2J2, (75)

ψ = 2θ1 − θ2, (76)

R = 2J1 − J2. (77)

The fixed point corresponding to the banana is given by ψ = 0
and

J1(B)(E, q) = (E + 2RB(E, q)) /5, (78)

J2(B)(E, q) = (2E − RB(E, q)) /5, (79)

where RB(E, q) is the solution of the algebraic equation

∂K
∂R (R, 0;E, q) = 0. (80)

The frequency is then given by

κB =
1

2q
∂K
∂J1(B)

(RB, 0;E, q). (81)

RB(E, q) and, as a consequence J1(B), J2(B) and κB are quite
cumbersome algebraic expressions involving E and q. However,
simple expressions to represent orbits in the initial physical co-
ordinates can be obtained by replacing them with some suit-
able series expansions. We first compute the transformations

(22)–(26) using the generating function of Eqs. (A.16)–(A.17)
obtaining

x1 =
√

2J1(B) cos κBt, (82)

x3 =
1
24

√
2J1(B) cos κBt

(
7(2J2(B) + 3qJ1(B))

−(4J2(B) + 6qJ1(B)) cos 2κBt + 2J2(B) cos 4κBt
)
, (83)

y1 =
√

2J2(B) sin 2κBt, (84)

y3 =
1

48q

√
2J2(B)

(
24qJ1(B) + 6(3J2(B) + 2qJ1(B)) cos 2κBt

−8qJ1(B) cos 4κBt − 3J2(B) cos 6κBt
)

(85)

and analogous expressions for x5 and y5. In analogy with the
procedure followed for the loop orbit, a separation of terms of
different low orders is useful and is achieved by linearly expand-
ing the actions in the form

J1(B) = a0 + a1(E − Ec), (86)

J2(B) = b1(E − Ec). (87)

Inserting these into the solutions above and expanding in powers
of E − Ec, we are able to group terms according to their order.
Here again, this grouping does not affect the series themselves
(namely x(k)

NF and y(k)
NF, with k = 3, 5) but rather influences the

computation of the truncated fractions, namely the expressions
in Eqs. (40–41) and the analogous expressions for the y coordi-
nate.

For moderate values of the bifurcation energy (and of orbital
energy), corresponding to small values of q in the range indi-
cated by the expression in Eq. (2), a simple approximation is
given by the linear term in Eq. (73), Ec = 8(q − 1/2), so that

J1(B) =
1
2

E +
(
q − 1

2

) (
4 +

35
12

E

)
, (88)

J2(B) =
1
4

E − (
q − 1

2

) (
2 − 37

24
E

)
. (89)

In this way, the expansions can be written as series of the form

x(3)
NF =

4∑
j=1

A1 j cos (2 j − 1)κBt

+(E − Ec) cos κBt
4∑

j=0

A3 j cos 2 j κBt, (90)

y(3)
NF =

5∑
j=0

A2 j cos 2 j κBt

+(E − Ec)
5∑

j=0

A4 j cos 2 j κBt, (91)

so that, using Eq. (40), one can also construct x(3)
CF. Analogously,

we may proceed with the higher-order truncations x(5)
NF from

which we obtain x(5)
CF. A comparison of the structure of these

predictions with the rational solutions based on the Prendergast-
Contopoulos approach indicates that they have the same parity in
the trigonometric parts: although in the expansions of Eqs. (90)–
(91) many more harmonics appear, this is clearly not necessarily
an indication of higher accuracy.

With the choice of parameters mentioned above, in Fig. 7,
we compare a numerical computation of the banana orbit (dots)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810023&pdf_id=6
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Fig. 7. An orbit of the pendulum-like (banana) family at E = 1.15 for
q = 0.6: the dots correspond to the numerical solution; the continuous
lines correspond to the predictions truncated at order 3.
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Fig. 8. The same orbit as in the previous figure (dots) compared with
the predictions truncated at order 5 (continuous lines): for more clarity,
the y-scale has been expanded.

with the analytic predictions (continuous lines) given by x(3)
NF and

x(3)
CF. This rational solution that originates in the continued frac-

tion truncated at order 3, is characterized by a pair of singulari-
ties in y(3)

CF(t) due to the presence of poles. However, the predic-
tion is accurate overall in locating both the shape and extrema
of the orbit and exceeds the accuracy of the prediction with the
standard truncated series. In Fig. 9, we plot the corresponding
ΔE/E (continuous line) over a half period: the abrupt increase
in the relative error is evident at the poles of the solution.

In Fig. 8, we compare the numerical computation of the same
orbit (dots) with the analytic predictions given by x(5)

NF and x(5)
CF.

The two predictions now almost overlap but a superior perfor-
mance is achieved by the continued fraction truncation at the
extrema of the orbit. In Fig. 9, we plot the corresponding ΔE/E
(dashed line) over a half period: the relative error is now lower
than 20%, in contrast to the 30% for x(3)

CF.
A comparison with the results of CS90 is possible only in

terms of the reconstruction of the shape and location of the orbit
(we have used the same values of the parameters, when properly
rescaled). We are able to determine that the accuracy of our an-
alytic predictions is at least as good as that in CS90. There is no
statement in CS90 about the ability of their solution in conserv-
ing energy.

6. Conclusions

We have shown how to construct approximate solutions for the
main periodic orbits in the cored logarithmic potential. The guid-
ing line has been that of exploiting normal-form expansions trun-
cated to the first order incorporating the resonance of the given
family of periodic orbits. In this way, analytic approximate so-
lutions can be developed by a complete algorithmic procedure.
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Fig. 9. Relative energy error along the banana orbit with two different
truncations of the continued fraction.

Although all series are truncated to the first non-trivial orders,
the solutions have a simple form only in the case of the axial
orbits (normal modes). For the low-order boxlets (loops and ba-
nanas), even truncations at the first non-trivial order are cumber-
some and require the use of an algebraic manipulator. However,
further simplifications can be achieved if the algebraic solutions
for actions and frequencies are expanded about the energy and
ellipticity corresponding to the bifurcation of the family. In this
case, simple expressions of the expansions can be derived, both
as standard series and continued fractions.

A comparison with the rational (Prendergast-Contopoulos)
approach described by Contopoulos (2004), allows us to state the
following conclusions: the two methods are almost equivalent in
terms of the precision of the analytic prediction when evaluated
to the same order (Contopoulos & Seimenis 1990). However,
the normal form perturbation expansions, even if computation-
ally heavy to compute, are completely algorithmic and analytic
at every stage, whereas the evaluation of the coefficients in the
rational expansions require the numerical solution of non-linear
systems. We have shown that the analytic rational solutions ob-
tained in this way offer a degree of reliability such that both loops
and bananas are well reconstructed in both shape and dimen-
sion. We have extended the analysis of Contopoulos & Seimenis
(1990) to check energy conservation along the boxlets: although
for normal modes energy is conserved to within a few percent,
for loops and bananas, at this level of approximation, it is not
straightforward to achieve an accuracy better than 10%.

On the theoretical side, the usefulness of rational solutions
can be explained in terms of the more rapid convergence per-
formance of the truncated continued fractions. They are impor-
tant as a resummation method of the series expansions produced
in the usual way by the normalization approach. The generality
of the approach enables us to confront with higher-order reso-
nances and correspondingly higher commensurable boxlets.

In addition to the formal and algorithmic improvements, we
remark on the relevance of this work to specific problems in
galactic dynamics. The study of orbits in non-axisymmetric po-
tentials is usually performed numerically; however, an exhaus-
tive study with conventional integration methods is computer-
intensive and difficult to interpret (Touma & Tremaine 1997).
The availability of simple and accurate analytical recipes can be
useful in several contexts in which periodic orbits and boxlets
play an important role: we mention the study of the parameter
space of non-axisymmetric discs (Zhao et al. 1999; Zhao 1999)
and the orbit structure around massive black holes in galactic nu-
clei (Sridhar & Touma 1999). Even more promising is the pos-
sibility of deriving accurate solutions for periodic orbits in the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810023&pdf_id=7
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810023&pdf_id=8
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810023&pdf_id=9
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triaxial case with and without rotation, for which the analysis is
still at the level of the first-order averaging method applied to the
1:1:1 resonance by de Zeeuw (1985).

Acknowledgements. We thank G. Contopoulos for inspiring our original interest
in this problem.
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Appendix A: Resonant normal forms
for the logarithmic potential

To implement the normalization algorithm, the original
Hamiltonian (6) is rescaled according to

H :=
m2H
ω2
= m2qH, (A.1)

so that we redefine the Hamiltonian as the series

H(p, x) =
∞∑

k=0

Hk =
1
2

[m1(p2
x + x2) + m2(p2

y + y
2)]

+
1
2

m2δ(p2
x + x2) +

∞∑
k=0

Vk(x2, y2), (A.2)

where the detuning was introduced in Eq. (11) and the poten-
tial is the series expansion given by Eq. (3). The normalization
is performed with the technique of the Lie transform (Gerhard
& Saha 1991; Yanguas 2001). Considering a generating func-
tion G, new coordinates P and X are produced by the canonical
transformation

(P, X) = MG(p, x). (A.3)

The Lie transform operator MG is defined by (Boccaletti &
Pucacco 1999)

MG ≡
∞∑

k=0

Mk (A.4)

where

M0 = 1, Mk =

k∑
j=1

j
k

LGj Mk− j. (A.5)

The linear differential operator LG is defined in terms of the
Poisson bracket, LG(·) = {G, ·} and the functions G j are terms in
the expansion of the generating function. We fing that G0 = 1 so
that, in practice, the first term in its expansion can be neglected
as in Eq. (10). The terms in the new Hamiltonian are determined
through the recursive set of linear partial differential equations

Kn = Hn +

n−1∑
j=0

Mn− jH j, n = 1, 2, . . . ,N. (A.6)

Solving the equation at the n-th step consists of a twofold task, to
find Kn and Gn. We observe that, in view of the reflection sym-
metries of the Hamiltonian (A.2), the chain of Eq. (A.6) is com-
posed only of members with even index and so the normal form
and generating function are composed of even-index terms only.
The unperturbed part of the Hamiltonian, H0, determines the
specific form of the transformation. In fact, the new Hamiltonian
K is said to be in normal form if, analogously to Eq. (8),

{H0,K} = 0, (A.7)

is satisfied. In the following formulas, we list the normal form
and the generating function for the expansion of the logarithmic
potential in the cases of the 1:1 and 1:2 resonances (Belmonte
et al. 2007). The normal form is given in the more compact ver-
sion given by using the action-angle–like variables J , θ: the re-
sulting expressions are in agreement with the general structure
of (15). For the generating function, it is more useful to write
the explicit version in standard P, X variables which, although

cumbersome, is that used in the transformation back to the origi-
nal p, x variables. For the 1:1 resonance, the terms of the normal
form are

K0 = J1 + J2, (A.8)

K2 = δJ1 − 3q
8

J2
1+

3
8q

J2
2+

1
2

J1J2+
1
4

J1J2 cos(2θ1 − 2θ2), (A.9)

K4 =
q
4

(
5
3
− 17q

16

)
J3

1 +
29

192q2
J3

2

+
1
8

(
39
8
− 3q

)
J2

1 J2 − 3
8

(
3
8
− 1

q

)
J1J2

2

+
1
8

[(
3− 5q

4

)
J2

1 J2 −
(
1− 11

4q

)
J1J2

2

]
cos(2θ1−2θ2) (A.10)

and those of the generating function are

G2 = −3q
32

P3
X X − 3

32
PXP2

Y X − 5q
32

PX X3 − 3
32

P2
X PYY

− 3
32q

P3
YY − 5

32
PY X2Y − 5

32
PX XY2 − 5

32q
PYY3, (A.11)

G4 =
5q
96

P5
X X − 13q2

256
P5

XX +
9

128
P3

X P2
Y X − 13q

192
P3

X P2
Y X

− 13
768

PXP4
Y X+

7
384q

PX P4
Y X− 19

768
PXXY4

− 19
384

PY X2Y3 +
9

128
PX P2

Y X3 − 37q
384

PX P2
Y X3

+
25

192q
PY X2Y3 − 19q2

256
PXX5 − 9

256
P4

X PYY

−13q
384

P4
XPYY − 13

384
P2

X P3
YY +

7
192q

P2
X P3

YY

+
25

384q
PX XY4 +

9
64

P2
XPY X2Y − 5q

64
P2

XPY X2Y

− 5
384

P3
Y X2Y − 5

384q
P3

Y X2Y +
23

256
PY X4Y

−19q
384

PY X4Y +
9

128
P3

XXY2 − 37q
384

P3
XXY2

− 7
64

PX P2
Y XY2 +

11
64q

PXP2
Y XY2 +

23
128

PX X3Y2

−19q
192

PXX3Y2 − 5
384

P2
XPYY3 − 5

384q
P2

X PYY3

+
1

288q2
P3

YY3 +
5q
36

P3
XX3 − 13q2

96
P3

X X3 +
11q
96

PX X5

+
31

768q2
PYY5 +

1
768q2

P5
YY +

δq
32

(
3P3

XX + 5PXX3
)

+
δ

64

(
7PXP2

Y X − P2
XPYY + PY X2Y + 9PXXY2

)
. (A.12)

For the 1:2 resonance, the terms of the normal form are

K0 = J1 + 2J2, (A.13)

K2 = 2δJ1 − 3
4

(
qJ2

1 +
1
q

J2
2

)
− J1 J2, (A.14)

K4 = q

(
5
6
− 17

16
q

)
J3

1 +
29

96q2
J3

2

+

(
13
12
− 3

2
q

)
J2

1 J2 −
(

5
12
− 3

4q

)
J1 J2

2

+
1
8

qJ2
1 J2 cos(4θ1 − 2θ2) (A.15)
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and those of the generating function are

G2 = −3q
16

P3
X X − 1

3
PX P2

Y X − 5q
16

PX X3

+
1
24

P2
X PYY − 3

32q
P3

YY − 7
24

PY X2Y

−1
6

PXXY2 − 5
32q

PYY3, (A.16)

G4 =
5q
48

P5
X X − 13q2

64
P5

XX +
19

144
P3

X P2
Y X

−53q
192

P3
X P2

Y X − 4
45

PXP4
Y X +

1
32q

PXP4
Y X

−13
90

PX XY4 − 17
2880

PY X2Y3 +
25

144
PXP2

Y X3

−67q
192

PXP2
Y X3 +

65
768q

PY X2Y3

−19q2

64
PXX5 − 1

144
P4

X PYY − 19q
384

P4
X PYY

− 67
2880

P2
X P3

YY +
7

256q
P2

X P3
YY +

9
64q

PX XY4

+
1
24

P2
X PY X2Y − 5q

64
P2

X PY X2Y − 83
2880

P3
Y X2Y

− 1
256q

P3
Y X2Y +

17
144

PY X4Y − q
128

PY X4Y

+
5
36

P3
X XY2 − 73q

192
P3

X XY2 − 13
60

PX P2
Y XY2

+
7

64q
PXP2

Y XY2 +
19
72

PXX3Y2 − 83q
192

PXX3Y2

− 73
2880

P2
X PYY3 +

25
768q

P2
XPYY3 +

1
288q2

P3
YY3

+
5q
18

P3
X X3 − 13q2

24
P3

XX3 +
11q
48

PX X5 +
31

768q2
PYY5

+
1

768q2
P5

YY +
δq
8

(
3P3

XX + 5PXX3
)

+
δ

9

(
2PXP2

Y X + 2P2
XPYY − 2PY X2Y + 7PXXY2

)
. (A.17)

Concerning these formulas, two remarks are in order:

1. The monomials associated with the detuning (i.e. for which
δ appears in the coefficients) are of degree 2 less than that of
the specific term of a given series. For example, in G4 (degree
6) they appear with degree 4. This is due to the choice to
consider the detuning term in Eq. (A.2) of 2nd order in the
perturbation: it can be shown (Pucacco et al. 2008) that this
choice, in principle not unique, is the “optimal” one. Since
they are present in G at order 4, they appear in K only at
order 6.

2. The normalizing variables P, X have to be considered as new
canonical variables at each step of the normalization: so, for
example, the P, X arguments of G2, when truncating G at
N = 2, are different from the arguments of G2 when truncat-
ing G at N = 4. A notation able to represent these features
could be introduced but it would be complicated and we pre-
fer to stay with the standard practice of ignoring these sub-
tleties. However, this observation justifies the extra Poisson
brackets in the transformations of the form of Eq. (26).
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