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Bellaterra, Barcelona, Spain, e-mail: jllibre@manwe.mat.uab.es

Abstract. In this paper we study symmetric periodic orbits of a collinear restricted
three body problem, when the middle mass is the largest one. These symmetric
periodic orbits are obtained from analytic continuation of symmetric periodic orbits
of two collinear two body problems.

Keywords: Periodic orbits, collinear restricted 3 body problem, analytic continua-
tion method.

1. Introduction

In the study of any dynamical system and, in particular, in the study
of the dynamical systems associated to the n−body problem, it is
very important to know the existence, stability and bifurcation of pe-
riodic orbits. Over the years many different methods have been used
to establish the existence and the nature of periodic solutions of the
n−body problem (for instance Poincaré’s continuation method, averag-
ing, Lagrangian manifold intersection theory, normal forms, numerical
analysis, majorant series, special fixed point theorems, symbolic dy-
namics, variational methods, ...). In some sense, the analytic study of
the periodic orbits of the n−body problem was started by Poincaré in
(Poincaré, 1892–1899), when he studied periodic orbits for the planar
circular restricted 3−body problem. There is a very extensive literature
on the existence of periodic solutions of the n-body problem, especially
in the restricted 3−body problems. In (Meyer, 1999) we find a good
discussion on the applicability of the Poincare’s continuation method
to different n−body problems.

In this paper we study symmetric periodic orbits of a collinear re-
stricted three body problem. We consider two primaries m1 and m2

moving in an elliptic collision orbit. We fix the primary m2 at the
origin of coordinates, and then we assume that the position of m1 is
on the negative x–axis, see Figure 1. The collinear restricted three body
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problem that we consider is to describe the motion of an infinitesimal
mass m3 = 0 moving on the positive x–axis under the newtonian
gravitational attraction of m1 and m2.

-u u u
−x1(t) x0

m1 = µ m2 = 1− µ m3 = 0

Figure 1. The collinear restricted three body problem.

We choose the units of mass, length and time in such a way that
m1 = µ and m2 = 1−µ, with µ > 0 sufficiently small; the gravitational
constant is G = 1; the major semiaxis of the collision orbit is 1; and the
time between two collisions of the primaries is 2π. Then, the equation
of motion for the infinitesimal mass becomes

ẍ = −1− µ

x2
− µ

(x+ x1(t))2
, (1)

where x1(t) is the distance between the primaries. Of course the dot
denotes the derivative with respect to the time t.

We remark that other collinear restricted three body problems can
be considered. For instance, if we put the center of mass of the two
primaries (moving in an elliptic collision orbit) at the origin of coor-
dinates, and we study the motion of an infinitesimal mass located on
the straight line determined by the collision orbit of the primaries and
contained on a side of the primaries, then the equation of motion of
this problem is not equivalent to equation (1). The periodic orbits of
this different collinear restricted three body problem have been studied
partially in Llibre and Simó (1980).

On the other hand, symmetric periodic orbits for the collinear three
body problem, when the three masses are positive, have been studied
numerically by Hénon (1977) and Broucke and Walker (1980), and
analytically by Kammeyer (1983).

Using the eccentric anomaly of the collision orbit followed by the pri-
maries, we regularize the binary collisions between the primaries. Then
we consider the Hamiltonian formulation of the problem in an extended
phase space by introducing the time as a new canonical coordinate. We
take the eccentric anomaly as a new time variable and we use the
Levi–Civita transformation to regularize the binary collisions between
m3 and m2. After the regularization, the resulting system is analytic
with respect to all its variables except at the triple collision. We show
that the resulting system is invariant under two discrete symmetries.
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These symmetries are used to obtain symmetric periodic orbits satisfy-
ing either one or the two symmetries (i.e. doubly–symmetric periodic
orbits).

In appropriate coordinates, we reduce our collinear restricted three
body problem for µ = 0 (after the regularization) to an integrable
system. We compute explicitly all its symmetric periodic orbits. Then,
using the analytic continuation method due to Poincaré, we continue
them to symmetric periodic orbits of the collinear restricted three body
problem (after the regularization) for µ > 0 sufficiently small. The main
results of this paper are summarized in the following theorem.

THEOREM 1. Each symmetric periodic orbit of the collinear restricted
three body problem for µ = 0 can be continued to a one parameter
family, that depends on µ, of symmetric periodic orbits of the collinear
restricted three body problem for µ > 0 sufficiently small. Moreover, the
continued symmetric periodic orbits satisfy the same symmetry than the
initial orbit.

To understand better the statement of Theorem 1 see Theorems 12
and 14.

This paper is structured as follows. In Section 2, we define our
collinear restricted three body problem and we give its equations of
motion after regularizing binary collisions. In Section 3, we analyze the
symmetries of the problem. These symmetries are used in Section 4 to
find symmetric periodic solutions of the collinear restricted three body
problem (after regularization) when the small primary has infinitesimal
mass. Finally, in Section 5, we continue those symmetric periodic so-
lutions to symmetric periodic solutions of the collinear restricted three
body problem (after regularization) for sufficiently small values of the
mass of the small primary.

2. Equations of motion

System (1) has three singularities: the binary collision between the
primaries (i.e. when x1 = 0), the binary collision between m2 and m3

(i.e. when x = 0), and the triple collision when x = x1 = 0.
We regularize the binary collision between the primaries by taking

x1(t) = 1− cosE ,

where E is the eccentric anomaly which is a function of t via the
Kepler’s equation

t = E − sinE , (2)
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see (Roy, 1978) for more details.
Equation (1) defines a Hamiltonian system of one and half degrees

of freedom with Hamiltonian

H(x, y, t, µ) =
y2

2
− 1

x
+ µ

(
1

x
− 1

x+ 1− cosE

)
, (3)

where y = ẋ is the conjugate momentum of the variable x. We note
that when µ is positive then H(x, y, t, µ) depends explicitly on the
time. Moreover, H(x, y, t, µ) is periodic of period 2π with respect to
the variable t.

We introduce the time (modulus 2π) as a new position variable u;
i.e. u = t. It can be shown that its conjugate momentum, which is
denoted here by v, satisfies v = −H. Then Hamiltonian (3) in the
extended phase space (x, y, u, v) ∈ R× R× S1 × R becomes

H(x, y, u, v, µ) =
y2

2
− 1

x
+ µ

(
1

x
− 1

x+ 1− cosE

)
+ v ,

where E = E(u) and it is given by (2). The flow of our collinear
restricted three body problem corresponds to the flow of the vector
field given by H on the energy level H = 0.

The equations of motion associated to the Hamiltonian H are

ẋ = y ,

ẏ = − 1

x2
+ µ

(
1

x2
− 1

(x+ 1− cosE)2

)
,

u̇ = 1 ,

v̇ = −µ
sinE

(x+ 1− cosE)2
1

1− cosE
.

(4)

We note that (4) continues having the three singularities: x = 0 that
corresponds to the binary collision betweenm2 andm3; x+1−cosE = 0
that corresponds to tripe collision; and 1− cosE = 0 that corresponds
to the binary collision between the primaries.

In order to avoid the singularity due to the binary collision between
the primaries, we take the eccentric anomaly as the new time variable;
i.e. we do the following change in the time variable

dt = (1− cosE)dE .
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Then equations of motion (4) become

dx

dE
= y(1− cosE) ,

dy

dE
=

(
− 1

x2
+ µ

(
1

x2
− 1

(x+ 1− cosE)2

))
(1− cosE) ,

du

dE
= 1− cosE ,

dv

dE
= −µ

sinE

(x+ 1− cosE)2
.

(5)

We note that system (5) is analytic with respect to all its variables
except when x = 0, that corresponds to binary collision between m3

and m2, and when x+1−cosE = 0 that corresponds to triple collision.
We remark that system (5) is non–autonomous with respect to the time
E.

Now we regularize the binary collision between m3 and m2 by using
the Levi–Civita transformation

x = ξ2 , y = ηξ−1 , u = u , v = v , dE = 2ξ2dw .

The equations of motion in the new variables are

dξ

dw
= η(1− cosE) ,

dη

dw
=

(
−2ξv + µ

(
2ξ(1− cosE)

(ξ2 + 1− cosE)2

))
(1− cosE) ,

du

dw
= 2ξ2(1− cosE) ,

dv

dw
= −µ

2ξ2 sinE

(ξ2 + 1− cosE)2
,

dE

dw
= 2ξ2 .

(6)

The energy relation H = 0 in the new variables becomes

η2 − 2 + µ
2(1− cosE)

ξ2 + 1− cosE
+ 2ξ2v = 0 . (7)

We note that system (6) is analytic with respect to all its variables
except when ξ2 + 1− cosE = 0 which corresponds to triple collision.

The regularization of the binary collisions allows us to look for
periodic orbits of m3 containing binary collisions with m2. Our aim
is to find periodic orbits of (6) for µ > 0 sufficiently small, satisfying
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the energy relation (7). In fact, we are looking for symmetric periodic
orbits which are easier to control than general periodic orbits.

3. Symmetries

In order to analyze the symmetries of system (6), we must rewrite this
system from a different point of view.

Applying to system (4) the Levi–Civita transformation

x = ξ2 , y = ηξ−1 , u = u , v = v , dt = 2ξ2ds ,

we obtain
dξ

ds
= η ,

dη

ds
= −2ξv + µ

(
2ξ(1− cosE)

(ξ2 + 1− cosE)2

)
,

du

ds
= 2ξ2 ,

dv

ds
= −µ

2ξ2 sinE

(ξ2 + 1− cosE)2
1

1− cosE
,

(8)

where E = E(u) is given through the Kepler’s equation (2). We note
that E(u) is not analytic when u = 2kπ with k ∈ N, then system (8) is
not analytic with respect to the variable u for all u ∈ R.

By definition, E(u) is the solution with respect to E of the equation
u = E − sinE. Then we claim that

E(kπ + u) = −E(kπ − u) + 2kπ , (9)

for all k ∈ N. Now we prove the claim. Since E(kπ + u) is the solution
of kπ + u = E − sinE, we must see that the equation

kπ + u = −E(kπ − u) + 2kπ − sin(−E(kπ − u) + 2kπ) ,

holds. Indeed,

−E(kπ − u) + 2kπ − sin(−E(kπ − u) + 2kπ)

= −E(kπ − u) + sin(E(kπ − u)) + 2kπ

= −(kπ − u) + 2kπ = kπ + u .

So, the claim is proved.
Since the variable u is taken modulus 2π and equation (9) is satisfied,

it is easy to check that system (8) is invariant under symmetries

(ξ, η, kπ + u, v, s) −→ (ξ,−η, kπ − u, v,−s) , (10)
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and
(ξ, η, kπ + u, v, s) −→ (−ξ, η, kπ − u, v,−s) , (11)

for all k ∈ N.
On the other hand, after the time reparametrization ds = (1 −

cosE)dw, system (8) is transformed into system

dξ

dw
= η(1− cosE) ,

dη

dw
=

(
−2ξv + µ

(
2ξ(1− cosE)

(ξ2 + 1− cosE)2

))
(1− cosE) ,

du

dw
= 2ξ2(1− cosE) ,

dv

dw
= −µ

2ξ2 sinE

(ξ2 + 1− cosE)2
.

(12)

We note that the four equations of system (12) have the same form
than the first four equations of system (6), but on the right–hand of
system (6) E is a function of w by means of

dE

dw
= 2ξ2 ,

whereas in system (12) E is a function of u through

u = E − sinE . (13)

Differentiating equation (13) with respect to w and using (12) we obtain

dE

dw
=

du

dw

1

1− cosE
= 2ξ2 .

Therefore the fifth equation of system (6) is satisfied also for the so-
lutions of system (12), and consequently (6) and (12) define the same
system of differential equations.

By means of the time transformation ds = (1 − cosE)dw, we see
that a change in the sign of the time s implies a change in the sign of
the time w. Then system (12) is invariant under the symmetries

(ξ, η, kπ + u, v, w) −→ (ξ,−η, kπ − u, v,−w) , (14)

and
(ξ, η, kπ + u, v, w) −→ (−ξ, η, kπ − u, v,−w) , (15)

for all k ∈ N.
We claim that

E(kπ + u) = kπ + E(u) , and E(kπ − u) = kπ −E(u) , (16)
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for all k ∈ N. Now we prove E(kπ + u) = kπ + E(u). The proof of
E(kπ − u) = kπ − E(u) follows immediately form the previous one.
First we consider that k is even. Since E(kπ + u) is the solution of
kπ + u = E − sinE, we must see that the equation

kπ + u = kπ +E(u)− sin(kπ + E(u)) ,

holds. Indeed, since k is even,

kπ + E(u)− sin(kπ + E(u)) = kπ + E(u)− sin(E(u)) = kπ + u .

Assume that k is odd. Then, to prove E(kπ+u) = kπ+E(u), by (9), is
equivalent to show that −E(kπ−u)+2kπ = kπ+E(u), i.e. E(kπ−u) =
kπ − E(u). Since E(kπ − u) is the solution of kπ − u = E − sinE, we
must see that the equation

kπ − u = kπ −E(u)− sin(kπ − E(u)) ,

holds. Indeed, since p is odd

kπ − E(u)− sin(kπ − E(u)) = kπ − E(u) + sinE(u) = kπ − u .

Hence, the claim is proved.
Since (12) and (6) define the same system of differential equations,

using symmetries (14) and (15) together with (16) the following result
follows easily.

PROPOSITION 2. System (6) is invariant under symmetries

Sη : (ξ, η, kπ + u, v, kπ + E,w) −→ (ξ,−η, kπ − u, v, kπ − E,−w) ,

and

Sξ : (ξ, η, kπ + u, v, kπ + E,w) −→ (−ξ, η, kπ − u, v, kπ − E,−w) ,

with k ∈ N.

We note that the above symmetries can be written as

Sη : (ξ, η, u, v, E,w) −→ (ξ,−η, 2kπ − u, v, 2kπ − E,−w) ,

and

Sξ : (ξ, η, u, v, E,w) −→ (−ξ, η, 2kπ − u, v, 2kπ − E,−w) ,

We remark that in fact Sη and Sξ are a family of symmetries depending
on k ∈ N.

Symmetries Sη and Sξ can be exploited in a similar way as for in-
stance in (Howison and Meyer, 2000; Corbera and Llibre, 2000, 2001a,
2001b) to obtain symmetric periodic orbits of system (6). These sym-
metric periodic orbits are characterized by the following result.
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LEMMA 3. Let φ(w) = (ξ(w), η(w), u(w), v(w), E(w)) be a solution
of (6).

(a) If η(0) = 0, u(0) = kπ, E(0) = kπ and there exists W > 0 such that
η(W/2) = 0, u(W/2) = (k+ p)π and E(W/2) = (k+ p)π for some
k, p ∈ N, but there is no W ∈ (0,W/2) such that η(W ) = 0, u(W ) =
(k + p)π and E(W ) = (k + p)π, then φ(w) is a Sη−symmetric
periodic solution of (6) of period W .

(b) If ξ(0) = 0, u(0) = kπ, E(0) = kπ and there exists W > 0 such that
ξ(W/2) = 0, u(W/2) = (k + p)π and E(W/2) = (k + p)π for some
k, p ∈ N, but there is no W ∈ (0,W/2) such that ξ(W ) = 0, u(W ) =
(k + p)π and E(W ) = (k + p)π, then φ(w) is a Sξ−symmetric
periodic solution of (6) of period W .

It could be periodic solutions of (6) that are simultaneously Sη−
and Sξ−symmetric. These periodic solutions will be called doubly–
symmetric periodic solutions and they are characterized by the fol-
lowing result.

LEMMA 4. Let φ(w) = (ξ(w), η(w), u(w), v(w), E(w)) be a solution
of (6).

(a) If η(0) = 0, u(0) = kπ, E(0) = kπ and there exists W > 0 such that
ξ(W/4) = 0, u(W/4) = (k + p)π and E(W/4) = (k + p)π for some
k, p ∈ N, but there is no W ∈ (0,W/4) such that ξ(W ) = 0, u(W ) =
(k + p)π and E(W ) = (k + p)π, then φ(w) is a doubly–symmetric
periodic solution of (6) of period W .

(b) If ξ(0) = 0, u(0) = kπ, E(0) = kπ and there exists W > 0 such that
η(W/4) = 0, u(W/4) = (k+ p)π and E(W/4) = (k+ p)π for some
k, p ∈ N, but there is no W ∈ (0,W/4) such that ξ(W ) = 0, u(W ) =
(k + p)π and E(W ) = (k + p)π, then φ(w) is a doubly–symmetric
periodic solution of (6) of period W .

We note that the condition on E is not really necessary in order to
have symmetric periodic solutions of (6), because, by means of (13), if
u = (k+ p)π for some k, p ∈ N, then E = (k+ p)π. On the other hand,
we are only interested in periodic solutions of (6) satisfying the energy
relation (7). It is easy to check that relation (7) is constant along the
solutions of (6). So it is sufficient to prove that the energy relation is
satisfied for a fixed value of w. For our convenience we choose w = 0.
Then the necessary and sufficient conditions given in Lemmas 3 and 4
in order to have symmetric periodic solutions, taken into account the
energy relation (7), can be written as follows.
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PROPOSITION 5. Let φ(w) = (ξ(w), η(w), u(w), v(w), E(w)) be a
solution of (6) and let

f(ξ, η, u, v, E, µ) = η2 − 2 + µ
2(1− cosE)

ξ2 + 1− cosE
+ 2ξ2v .

(a) If η(0) = 0, u(0) = kπ and there exists W > 0 such that η(W/2) =
0, u(W/2) = (k + p)π and f(ξ(0), η(0), u(0), v(0), E(0), µ) = 0 for
some k, p ∈ N, but there is no W ∈ (0,W/2) such that η(W ) = 0,
u(W ) = (k + p)π and f(ξ(0), η(0), u(0), v(0), E(0), µ) = 0, then
φ(w) is a Sη−symmetric periodic solution of (6) of period W .

(b) If ξ(0) = 0, u(0) = kπ and there exists W > 0 such that ξ(W/2) =
0, u(W/2) = (k + p)π and f(ξ(0), η(0), u(0), v(0), E(0), µ) = 0 for
some k, p ∈ N, but there is no W ∈ (0,W/2) such that ξ(W ) = 0,
u(W ) = (k + p)π and f(ξ(0), η(0), u(0), v(0), E(0), µ) = 0, then
φ(w) is a Sξ−symmetric periodic solution of (6) of period W .

(c) If η(0) = 0, u(0) = kπ and there exists W > 0 such that ξ(W/4) =
0, u(W/4) = (k + p)π and f(ξ(0), η(0), u(0), v(0), E(0), µ) = 0 for
some k, p ∈ N, but there is no W ∈ (0,W/4) such that ξ(W ) = 0,
u(W ) = (k + p)π and f(ξ(0), η(0), u(0), v(0), E(0), µ) = 0, then
φ(w) is a doubly–symmetric periodic solution of (6) of period W .

(d) If ξ(0) = 0, u(0) = kπ and there exists W > 0 such that η(W/4) =
0, u(W/4) = (k + p)π and f(ξ(0), η(0), u(0), v(0), E(0), µ) = 0 for
some k, p ∈ N, but there is no W ∈ (0,W/4) such that ξ(W ) = 0,
u(W ) = (k + p)π and f(ξ(0), η(0), u(0), v(0), E(0), µ) = 0, then
φ(w) is a doubly–symmetric periodic solution of (6) of period W .

We remark that, in system (6), the triple collision is not regularized.
Therefore in our study we avoid the orbits of the collinear restricted
three body problem which start or end in triple collision. In the vari-
ables that we are working, triple collision takes place when ξ = 0 and
simultaneously E = 0 (mod. 2π) (or equivalently, u = 0 (mod. 2π)).

4. Symmetric periodic solutions for µ = 0

For µ = 0 system (6) becomes

dξ

dw
= η(1− cosE) ,

du

dw
= 2ξ2(1− cosE) ,

dη

dw
= −2ξv(1− cosE) ,

dv

dw
= 0 ,

dE

dw
= 2ξ2 .

(17)
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In order to solve system (17), we take the first four equations of system
(17) and we do the following change in the time variable,

(1− cosE)dw = ds , (18)

obtaining in this way

dξ

ds
= η ,

du

ds
= 2ξ2 ,

dη

ds
= −2ξv ,

dv

ds
= 0 .

(19)

System (19) can be integrated easily, and their solutions are given in
the following proposition.

PROPOSITION 6. The solution (ξ(s), η(s), u(s), v(s)) of (19) with
initial conditions

ξ(0) = ξ∗0 , η(0) = η∗0, u(0) = u∗0, v(0) = v∗0, (20)

is given by

ξ(s) = ξ∗0 cos(
√
2v∗0s) +

η∗0√
2v∗0

sin(
√
2v∗0s) ,

η(s) = −ξ∗0

√
2v∗0 sin(

√
2v∗0s) + η∗0 cos(

√
2v∗0s) ,

u(s) =
η∗0

2 + 2v∗0ξ
∗
0
2

2v∗0
s+

η∗0ξ
∗
0

v∗0
sin2(

√
2v∗0s)−

√
2(η∗0

2 − 2v∗0ξ
∗
0
2)

4v∗0
3/2

sin(
√
2v∗0s) cos(

√
2v∗0s) + u∗0 ,

v(s) = v∗0 .

The solutions of (17) can be obtained from solutions of (19) as it is
shown in the next result.

PROPOSITION 7. Let (ξ(s), η(s), u(s), v(s)) be a solution of (19) with
initial conditions (20). Assume that there is no s ∈ R such that ξ(s) =
0 and u(s) = 0 (mod. 2π). Then (ξ(s(w)), η(s(w)), u(s(w)), v(s(w)),
E(s(w))) is a solution of (17) with initial conditions (20). Here s(w)
is the inverse function of

w(s) =

∫ s

0

dσ

1− cosE(σ)
, (21)
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and E(s) is given implicitly by equation

E − sinE = u(s) . (22)

Proof. Using the change in the time variable (18) and the last equa-
tion of (17) we have that

(1− cosE) dE = 2ξ2 ds .

Integrating the last equation, we obtain E as a function of s through

E − sinE =

∫
2ξ2(s) ds+ C = u(s) + C ,

where C is an integration constant. For our convenience we take C = 0
obtaining in this way (22). Integrating equation (18), with E = E(s)
given through (22), we get w as a function of s through (21). We note
that in the last integration we have chosen the integration constant in
such a way that w = 0 when s = 0.

The integrand of (21) becomes singular when E = 0 (mod. 2π).
Thus, if there is s ∈ [0, s] such that E(s) = 0 (mod. 2π), then (21)
is an improper integral. Now we analyze the convergence of (21), in
particular we claim that if there is no s ∈ R such that ξ(s) = 0 and
E(s) = 0 (mod. 2π), then (21) is convergent for all s ∈ R.

Now, we shall prove the claim. From the Kepler’s equation (2), we
have that

E =

∫ t

0

1

1− cosE(t)
dt . (23)

The integrand of (23) becomes singular when t = 0 (mod. 2π). Nev-
ertheless the integral (23) is convergent for all t ∈ R because, by (2),
E = ∞ if and only if t = ∞. On the other hand, from (22), E(s) = 0
(mod. 2π) if and only if u(s) = 0 (mod. 2π).

Assume that s ∈ [0, s] is such that u(s) = 0 (mod. 2π), or equiva-
lently, E(s) = 0 (mod. 2π) (see (22)). Expanding u(s) in power series
of (s− s) we get

u(s) = u(s) + 2ξ2(s)(s− s) + 0((s− s)2) .

Since ξ(s) ̸= 0 when u(s) = 0 (mod. 2π), we have that u(s) ∼ u(s) +
2ξ2(s)(s− s) when s is close to s. Then, for s near s, we have that

1

1− cosE(u(s))
∼ 1

1− cosE(2ξ2(s)(s− s))
.
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Therefore the integral (21) converges in a neighborhood of s = s if and
only if the integral (23) converges in a neighborhood of t = 0. This
proves the claim.

In short, we have just seen that if there is no s ∈ R such that
ξ(s) = 0 and u(s) = 0 (mod. 2π), then w(s) given by (21) is defined
for all s ∈ R. Moreover, since the integrand of (21) is positive, w(s) is
always injective, therefore we can find the inverse function s(w).

Finally, it is easy to see that (ξ(s(w)), η(s(w)), u(s(w)), v(s(w)),
E(s(w))) with s(w) and E(s(w)) defined as above is a solution of (17)
with initial conditions (20), which proves the result.

We are interested in periodic solutions of (17) satisfying the relation
(7), which for µ = 0 becomes

η2 − 2 + 2ξ2v = 0 . (24)

These periodic solutions are characterized in the following proposition.

PROPOSITION 8. Let (ξ(s), η(s), u(s), v(s)) be a solution of (19) with
initial conditions (20).

(a) If v∗0 =

(
q√
2p

)2/3

for some p, q ∈ N coprime and η∗0
2−2+2ξ∗0

2v∗0 =

0, then (ξ(s), η(s), u(s), v(s)) is a periodic solution of (19) with

period S∗ =
q2π√
2v∗0

that satisfies the energy relation (24).

(b) If there is no s ∈ R such that ξ(s) = 0 and u(s) = 0 (mod.
2π), then the solution (ξ(s(w)), η(s(w)), u(s(w)), v(s(w)), E(s(w)))
of (17) defined as in Proposition 7 is periodic with period W ∗, where
W ∗ = w(S∗) is given by (21).

Proof. Using the expression of the solutions of (19) given in Propo-
sition 6, we see that ξ(s) and η(s) are periodic functions of period

S =
2π√
2v∗0

. Then S∗ must be a multiple of S; that is, S∗ = q
2π√
2v∗0

for

some q ∈ N. On the other hand, since the variable u is taken modulus
2π, in order to have a periodic solution of (19) with period S∗, we need
that u(s) = u(s+ S∗) + p2π for some p ∈ N; that is we need that

q2π√
2v∗0

η∗0
2 + 2v∗0ξ

∗
0
2

2v∗0
= p2π , (25)
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for some p, q ∈ N. Since we only are interested in periodic solutions
satisfying the energy relation (24), from (25), we have that v∗0 must
verify

v∗0 =

(
q√
2p

)2/3

,

for some p, q ∈ N. We note that if p and q are coprime, then S∗ is the
minimal period. This proves statement (a).

Statement (b) is an immediate consequence of Proposition 7.

We remark that the number q in Proposition 8 represents the number
of binary collisions between m3 and m2 during a period, whereas p
represents the number of binary collisions between the primaries.

In the next proposition we give initial conditions for the symmetric
periodic solutions of (17) satisfying the energy relation (24).

PROPOSITION 9. Let (ξ(s), η(s), u(s), v(s)) be a periodic solution of
(19) satisfying (24) with initial conditions

ξ(0) = ξ∗0 , η(0) = η∗0, u(0) = u∗0, v(0) = v∗0,

and period S∗ =
q2π√
2v∗0

, with v∗0 =

(
q√
2p

)2/3

for some p, q ∈ N

coprime.

(a) If ξ∗0 = ± 1√
v∗0

, η∗0 = 0, u∗0 = 0 and p ̸= 4n for all n ∈ N or

ξ∗0 = ± 1√
v∗0

, η∗0 = 0, u∗0 = π and p ̸= 4n − 2 for all n ∈ N, then

(ξ(s(w)), η(s(w)), u(s(w)), v(s(w)), E(s(w))) defined as in Propo-
sition 7 is a Sη−symmetric periodic solution of (17) with period
W ∗ = w(S∗). Moreover, if p is even, then it is a doubly–symmetric
periodic solution, whereas if p is odd, then it is a Sη−symmetric
periodic solution but not a doubly–symmetric periodic solution.

(b) If ξ∗0 = 0, η∗0 = ±
√
2, u∗0 = π and p is even, then (ξ(s(w)), η(s(w)),

u(s(w)), v(s(w)), E(s(w))) defined as in Proposition 7 is a Sξ−sym-
metric periodic solution of (17) with period W ∗ = w(S∗). These
periodic solutions are always doubly–symmetric periodic solutions.

Proof. We only prove statement (a), statement (b) would be proved
in a similar way.
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If (ξ(s), η(s), u(s), v(s)) satisfies the hypotheses of Proposition 8(b),
then φ(w) = (ξ(s(w)), η(s(w)), u(s(w)), v(s(w)), E(s(w))) is a periodic
solution of (17) with period W ∗ = w(S∗). Since we are interested in so-
lutions of (17) satisfying the energy relation (24), the initial conditions
of φ(w) must verify η∗0

2 − 2 + 2ξ∗0
2v∗0 = 0. Hence, if η(0) = η∗0 = 0 (or

equivalently, ξ0 = ±1/
√
v∗0) and u(0) = u∗0 = kπ for some k ∈ Z, then

φ(w) is a Sη−symmetric periodic solution (see Proposition 5(a)).
We claim that

s(W ∗/2) = S∗/2 for all p, and s(W ∗/4) = S∗/4 for all even p. (26)

Now we prove the claim. From (21), w(S∗) is given by

w(S∗) =

∫ S∗

0

ds

1− cosE(s)
, (27)

where E(s) is given through (22). Since u(s) is a periodic function of
period S∗, also is E(s). Moreover, using symmetry (10), equation (9)
and the fact that the cosinus function is even, we see that cos(E(s)) =
cos(E(−s)). Hence (27) becomes

w(S∗) =

∫ S∗/2

−S∗/2

ds

1− cosE(s)
= 2

∫ S∗/2

0

ds

1− cosE(s)
.

Therefore w(S∗/2) = w(S∗)/2, or equivalently, s(W ∗/2) = S∗/2.
On the other hand, if p is even, then u(s) is also a periodic function

of period S∗/2. Thus, proceeding in a similar way we see w(S∗/4) =
w(S∗)/4, or equivalently, s(W ∗/4) = S∗/4. This completes the prove
of the claim.

It is easy to see from the expression of ξ(s) and u(s) given in
Proposition 6, that if p is even, then ξ(S∗/4) = 0 and u(S∗/4) =
(k + p/2)π. Thus, by means of (26), ξ(W ∗/4) = 0 and u(W ∗/4) =
(k+ p/2)π. Therefore (ξ(s(w)), η(s(w)), u(s(w)), v(s(w)), E(s(w))) is a
doubly–symmetric periodic solution (see Proposition 5(c)).

It only remains to see for which values of p and q the solution
(ξ(s), η(s), u(s), v(s)) satisfies the hypotheses of Proposition 8(b); that
is, there is no s ∈ R such that ξ(s) = 0 and u(s) = 0 (mod. 2π). From

the expression of ξ(s), we see that ξ(s) = 0 if and only if s =
π/2 +mπ√

2v∗0
for some m ∈ Z. Since u is taken modulus 2π, we are only interested
in values of u∗0 = kπ for k = 0, 1. If k = 0, then using the expression of
u(s), we see that u(s) = 0 (mod. 2π) if and only if

p(2m+ 1)

2q
= 2l ,
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for some l ∈ Z; that is, if and only if p = 4n for some n ∈ N. If k = 1,
then u(s) = 0 (mod. 2π) if and only if

p(2m+ 1) + 2q

2q
= 2l ,

for some l ∈ Z. Thus u(s) = 0 (mod. 2π) if and only if p = 4n− 2 for
some n ∈ N.

In Proposition 9, we give different initial conditions for the symmet-
ric periodic solutions of the collinear restricted three–body problem
with µ = 0. Now we will analyze which of these initial conditions really
give different periodic orbits.

The Sη− and Sξ−symmetric periodic orbits of the collinear re-
stricted three body problem are characterized for having two points
of the phase space into the sets

Zη = {(ξ, η, u(mod. 2π), v, E(mod. 2π)) : η = 0, u = E = kπ, k = 0, 1},

and

Zξ = {(ξ, η, u(mod. 2π), v, E(mod. 2π)) : ξ = 0, u = E = π} ,

respectively (see Proposition 5). Then these symmetric periodic orbits
can be classified, as in (Corbera and Llibre, 2000), using their “po-
sitions” at the points of intersection with Zη and Zξ. The points of
Zη (respectively, Zξ) are denoted P±

η and A±
η (respectively, A±

ξ ) where
the symbol P corresponds to k = 0, the symbol A corresponds to
k = 1 and the sign + corresponds to ξ > 0 and the sign − corresponds
ξ < 0 (respectively, the sign + corresponds to η > 0 and the sign −
corresponds η < 0). We note that positions P±

ξ are not possible because
they correspond to triple collision orbits.

We use the notation pos1
w−→ pos2 to say that at an instant w0 the

orbit is at position pos1 and at w0 + w it is at position pos2. Then
the classification of the positions for the symmetric periodic orbits of
the collinear restricted three body problem with µ = 0 is given by the
following result.

THEOREM 10. The following statements hold.

(a) Each Sηsymmetric periodic orbit of the collinear restricted three
body problem for µ = 0 with period W is of one of the following
types:

(i) P+
η

W/2−→ A+
η

W/2−→ P+
η when p is odd and q is even,

kcolres.tex; 13/01/2002; 20:55; p.16



17

(ii) P+
η

W/2−→ A−
η

W/2−→ P+
η when p is odd and q is odd,

(iii) P−
η

W/2−→ A+
η

W/2−→ P−
η when p is odd and q is odd,

(iv) P−
η

W/2−→ A−
η

W/2−→ P−
η when p is odd and q is even,

(v) P+
η

W/2−→ P−
η

W/2−→ P+
η when p is even,

(vi) A+
η

W/2−→ A−
η

W/2−→ A+
η when p is even.

Moreover the types (v) and (vi) correspond to doubly–symmetric
periodic orbits.

(b) Each doubly–symmetric periodic orbit of the collinear restricted
three body problem for µ = 0 with period W is of one of the following
types:

(i) P+
η

W/4−→ A+
ξ

W/4−→ P−
η

W/4−→ A−
ξ

W/4−→ P+
η when p = 4n − 2 and

q = 4l + 3,

(ii) P+
η

W/4−→ A−
ξ

W/4−→ P−
η

W/4−→ A+
ξ

W/4−→ P+
η when p = 4n − 2 and

q = 4l + 1,

(iii) A+
η

W/4−→ A+
ξ

W/4−→ A−
η

W/4−→ A−
ξ

W/4−→ A+
η when p = 4n and q =

4l + 3,

(iv) A+
η

W/4−→ A−
ξ

W/4−→ A−
η

W/4−→ A+
ξ

W/4−→ A+
η when p = 4n and q =

4l + 1.

Here n ∈ N and l ∈ N ∪ {0}.

Proof. Let φ(s) = (ξ(s), η(s), u(s), v(s)) denote a symmetric periodic

solution of (19) with period S∗ =
q2π√
2v∗0

, where v∗0 =

(
q√
2p

)2/3

for

some p, q ∈ N coprime. In the following tables we give the points into
the sets Zη and Zξ corresponding to the solution φ(s) for each one of the
initial conditions given in Proposition 9. By means of (26), these points
will be the same for the solution φ(w) = (ξ(s(w)), η(s(w)), u(s(w)),
v(s(w)), E(s(w))) of (17) given by Proposition 7, except when there is
s ∈ R such that ξ(s) = 0 and u(s) = 0 (mod. 2π). In this last case the
solution φ(w) is not defined because it corresponds to a triple collision
orbit.

We distinguish six cases: when p and q are odd, when p is odd and q
is even, when p = 4n−2 and q = 4l+1 for some n ∈ N and l ∈ N∪{0},
when p = 4n − 2 and q = 4l + 3, when p = 4n and q = 4l + 1, and
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finally when p = 4n and q = 4l + 3. We note that the case p even and
q even is not possible because p and q are coprime.

In order to simplify the notation, we set ξ∗ =
1√
v∗0

and η∗ =
√
2.

In the last column of each table we give the configuration type of the
orbit according with Theorem 10.

φ(0) φ(S∗/2)

(ξ∗, 0, 0, v∗0) (−ξ∗, 0, π, v∗0) (a, ii)

(−ξ∗, 0, 0, v∗0) (ξ∗, 0, π, v∗0) (a, iii)

(ξ∗, 0, π, v∗0) (−ξ∗, 0, 0, v∗0) (a, iii)

(−ξ∗, 0, π, v∗0) (ξ∗, 0, 0, v∗0) (a, ii)

Case p odd, q odd.

φ(0) φ(S∗/2)

(ξ∗, 0, 0, v∗0) (ξ∗, 0, π, v∗0) (a, i)

(−ξ∗, 0, 0, v∗0) (−ξ∗, 0, π, v∗0) (a, iv)

(ξ∗, 0, π, v∗0) (ξ∗, 0, 0, v∗0) (a, i)

(−ξ∗, 0, π, v∗0) (−ξ∗, 0, 0, v∗0) (a, iv)

Case p odd, q even.

φ(0) φ(S∗/4) φ(S∗/2) φ(3S∗/4)

(ξ∗, 0, 0, v∗0) (0,−η∗, π, v∗0) (−ξ∗, 0, 0, v∗0) (0, η∗, π, v∗0) (b, ii)

(−ξ∗, 0, 0, v∗0) (0, η∗, π, v∗0) (ξ∗, 0, 0, v∗0) (0,−η∗, π, v∗0) (b, ii)

(0, η∗, π, v∗0) (ξ∗, 0, 0, v∗0) (0,−η∗, π, v∗0) (−ξ∗, 0, 0, v∗0) (b, ii)

(0,−η∗, π, v∗0) (−ξ∗, 0, 0, v∗0) (0, η∗, π, v∗0) (ξ∗, 0, 0, v∗0) (b, ii)

Case p = 4n− 2, q = 4l + 1.
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φ(0) φ(S∗/4) φ(S∗/2) φ(3S∗/4)

(ξ∗, 0, π, v∗0) (0,−η∗, π, v∗0) (−ξ∗, 0, π, v∗0) (0, η∗, π, v∗0) (b, iv)

(−ξ∗, 0, π, v∗0) (0, η∗, π, v∗0) (ξ∗, 0, π, v∗0) (0,−η∗, π, v∗0) (b, iv)

(0, η∗, π, v∗0) (ξ∗, 0, π, v∗0) (0,−η∗, π, v∗0) (−ξ∗, 0, π, v∗0) (b, iv)

(0,−η∗, π, v∗0) (−ξ∗, 0, π, v∗0) (0, η∗, π, v∗0) (ξ∗, 0, π, v∗0) (b, iv)

Case p = 4n, q = 4l + 1.

φ(0) φ(S∗/4) φ(S∗/2) φ(3S∗/4)

(ξ∗, 0, 0, v∗0) (0, η∗, π, v∗0) (−ξ∗, 0, 0, v∗0) (0,−η∗, π, v∗0) (b, i)

(−ξ∗, 0, 0, v∗0) (0,−η∗, π, v∗0) (ξ∗, 0, 0, v∗0) (0, η∗, π, v∗0) (b, i)

(0, η∗, π, v∗0) (−ξ∗, 0, 0, v∗0) (0,−η∗, π, v∗0) (ξ∗, 0, 0, v∗0) (b, i)

(0,−η∗, π, v∗0) (ξ∗, 0, 0, v∗0) (0, η∗, π, v∗0) (−ξ∗, 0, 0, v∗0) (b, i)

Case p = 4n− 2, q = 4l + 3.

φ(0) φ(S∗/4) φ(S∗/2) φ(3S∗/4)

(ξ∗, 0, π, v∗0) (0, η∗, π, v∗0) (−ξ∗, 0, π, v∗0) (0,−η∗, π, v∗0) (b, iii)

(−ξ∗, 0, π, v∗0) (0,−η∗, π, v∗0) (ξ∗, 0, π, v∗0) (0, η∗, π, v∗0) (b, iii)

(0, η∗, π, v∗0) (−ξ∗, 0, π, v∗0) (0,−η∗, π, v∗0) (ξ∗, 0, π, v∗0) (b, iii)

(0,−η∗, π, v∗0) (ξ∗, 0, π, v∗0) (0, η∗, π, v∗0) (−ξ∗, 0, π, v∗0) (b, iii)

Case p = 4n, q = 4l + 3.

We note that if two different initial conditions for fixed values of p
and q give the same configuration type, then they are different initial
conditions of the same periodic orbit.

5. Continuation of symmetric periodic solutions

In this section using the classical analytic continuation method of Poin-
caré (see for details (Siegel and Moser, 1971), or (Meyer, 1999)) we shall
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continue the symmetric periodic orbits of the collinear restricted three
body problem (6) for µ = 0 to symmetric periodic orbits of (6) for
µ > 0 sufficiently small.

First we will analyze the continuation to doubly–symmetric peri-
odic solutions. After we will analyze the continuation to Sη− and
Sξ−symmetric periodic solutions.

5.1. Continuation to doubly–symmetric periodic solutions

Let φ(w; ξ0, 0, kπ, v0, µ) = (ξ(w; ξ0, v0, µ), η(w; ξ0, v0, µ), u(w; ξ0, v0, µ),
v(w; ξ0, v0, µ), E(w; ξ0, v0, µ)) denote the solution of (6) with initial
conditions

ξ(0) = ξ0 , η(0) = 0 , u(0) = kπ , v(0) = v0 , E(0) = kπ .

From Proposition 5(c), φ(w; ξ0, 0, kπ, v0, µ) is a doubly–symmetric peri-
odic solution of the collinear restricted three body problem with period
W if

ξ(W/4; ξ0, v0, µ) = 0 ,

u(W/4; ξ0, v0, µ) = (k + l)π , (28)

f(ξ0, 0, kπ, v0, kπ, µ) = 0 ,

for some l ∈ N. Since u is taken modulus 2π, we are only interested in
k = 0, 1.

By Proposition 9(a), we have that if p is even and p ̸= 4n for all
n ∈ N when k = 0 and if p is even and p ̸= 4n − 2 for all n ∈ N when

k = 1, then W = W ∗ = w(S∗), ξ0 = ξ∗0 =
1√
v∗0

, v0 = v∗0 =

(
q√
2p

)2/3

,

µ = 0, and W = W ∗, ξ0 = ξ∗0 = − 1√
v∗0

, v0 = v∗0 =

(
q√
2p

)2/3

, µ = 0,

are two solutions of (28). Moreover these solutions correspond to the
known doubly–symmetric periodic solutions φ(w; ξ∗0 , 0, kπ, v

∗
0, 0) of (6),

for µ = 0. Our aim is to find solutions of (28) near the known solutions
for µ > 0 sufficiently small.

We note that, for fixed values of p and q, some of the initial condi-

tions ξ0 = ±1/
√
v∗0, η0 = 0, u0 = kπ, v0 = v∗0 =

(
q√
2p

)2/3

given by

Proposition 9(a) provide the same periodic orbit of (6) (according with
Theorem 10). Since the collinear restricted three body problem (6) is
autonomous, if we continue different initial conditions defining the same
periodic orbit, then we will obtain the same continued periodic orbits.
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Nevertheless here we will analyze the continuation of the four above
initial conditions, and then we will see which of them give different
periodic orbits.

Applying the Implicit Function Theorem to system (28) in a neigh-
borhood of the known solution we have that if∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ξ

∂w

∂ξ

∂ξ0

∂ξ

∂v0
∂u

∂w

∂u

∂ξ0

∂u

∂v0
∂f

∂w

∂f

∂ξ0

∂f

∂v0

∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
w = W ∗/4
ξ0 = ξ∗0
v0 = v∗0
µ = 0

̸= 0 (29)

then we can find unique analytic functions ξ0 = ξ0(µ), v0 = v0(µ),W =
W (µ) defined for µ ∈ [0, µ0) with µ0 sufficiently small, such that
ξ0(0) = ξ∗0 , v0(0) = v∗0,W (0) = W ∗ and the solution of (6) with initial
conditions ξ(0) = ξ0, η(0) = 0, u(0) = kπ, v(0) = v0 is a doubly–
symmetric periodic solution with periodW . That is, if determinant (29)
is different from zero, then the periodic solution φ(w; ξ∗0 , 0, kπ, v

∗
0, 0) can

be continued to a family of doubly–symmetric periodic solutions of (6)
for µ > 0 sufficiently small.

The derivatives ∂ξ/∂w and ∂u/∂w evaluated at w = W ∗/4, ξ0 =
ξ∗0 , v0 = v∗0, µ = 0 can be obtained directly from system (6) for µ = 0,
evaluating it at the solution φ(w; ξ∗0 , 0, kπ, v

∗
0, 0) at time W ∗/4. On the

other hand, since f does not depend on w, ∂f/∂w is equal to zero.
The derivatives of φ(w; ξ0, 0, kπ, v0, µ), with respect to the initial

conditions ξ0 and v0, evaluated at w = W ∗/4, ξ0 = ξ∗0 , v0 = v∗0, µ = 0
are given by the derivatives of φ(w; ξ∗0 , 0, kπ, v

∗
0, 0), with respect to the

initial conditions ξ0 and v0, evaluated at w = W ∗/4, ξ0 = ξ∗0 , v0 = v∗0.
Let γ(s) = (ξ(s), η(s), u(s), v(s)) be the solution of (19) with initial
conditions

ξ(0) = ξ∗0 , η(0) = 0, u(0) = kπ, v(0) = v∗0 .

Since we know explicitly the expression of γ(s) as a function of the ini-
tial conditions (see Proposition 6) we can obtain, by simple derivation,
the derivatives of γ(s) with respect to the initial conditions ξ0 and v0.
We can see that the derivatives of φ(w; ξ∗0 , 0, kπ, v

∗
0, 0), with respect to

the initial conditions ξ0 and v0, evaluated at w = W ∗/4, ξ0 = ξ∗0 , v0 =
v∗0 are given by the derivatives of γ(s), with respect to the initial condi-
tions ξ0 and v0, evaluated at s = s(W ∗/4) = S∗/4, ξ0 = ξ∗0 , v0 = v∗0. In
this way we can compute the four derivatives ∂ξ/∂ξ0, ∂ξ/∂v0, ∂u/∂ξ0
and ∂u/∂v0 evaluated at w = W ∗/4, ξ0 = ξ∗0 , v0 = v∗0.
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After some computations we see that determinant (29) is given by

((−1)k cos

(
πp

2

)
− 1)

[
25/3((−1)q + 1)

(q/p)4/3
cos

(
πq

2

)
+

3

q
22/3πp2

(
q

p

)2/3

sin

(
πq

2

)]
.

We note that p is even (i.e. p = 2n for some n ∈ N) and consequently
q must be odd. Thus the last expression can be written as

((−1)k+n − 1)

[
12

q
πn2

(
q

n

)2/3

sin

(
πq

2

)]
.

Thus determinant (29) is different from zero if and only if n and k have
different parity. In short we have proved the following result.

PROPOSITION 11. Let p = 2n for some n ∈ N. If n and k have differ-
ent parity, then the symmetric periodic solution φ(w;±1/

√
v∗0, 0, kπ, v

∗
0,

0) can be continued to a family of doubly–symmetric periodic solutions
φ(w; ξ0(µ), 0, kπ, v0(µ), µ) of the collinear restricted three body problem
with period W (µ), for µ ∈ [0, µ0) with µ0 sufficiently small.

Analyzing which of the initial conditions correspond to different
doubly–symmetric periodic orbits (see Theorem 10), we arrive to the
following theorem.

THEOREM 12. Each doubly–symmetric periodic orbit of the collinear
restricted three body problem (6) for µ = 0 can be continued to a one
parameter family, depending on µ, of doubly–symmetric periodic orbits
of the collinear restricted three body problem (6) for µ > 0 sufficiently
small.

We note that we could continue the doubly–symmetric periodic so-
lutions of (6), for µ = 0, that have initial conditions φ(w; 0,

√
2, π, v∗0, 0)

and φ(w; 0,−
√
2, π, v∗0, 0), but the continuation of those periodic solu-

tions does not give us new periodic orbits of (6).

5.2. Continuation of Sη− and Sξ−symmetric periodic
solutions

We start continuing the Sη−symmetric periodic solutions. Let φ(w; ξ0,
0, kπ, v0, µ) be as in Subsection 5.1. From Proposition 5(a), φ(w; ξ0, 0,
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kπ, v0, µ) is a Sη−symmetric periodic solution of the collinear restricted
three body problem with period W if

η(W/2; ξ0, v0, µ) = 0 ,

u(W/2; ξ0, v0, µ) = (k + p)π , (30)

f(ξ0, 0, kπ, v0, kπ, µ) = 0 ,

for some p ∈ N.
We note that if p ̸= 4n for all n ∈ N when k = 0 and if p ̸= 4n−2 for

all n ∈ N when k = 1, then W = W ∗ = w(S∗), ξ0 = ξ∗0 =
1√
v∗0

, v0 =

v∗0 =

(
q√
2p

)2/3

, µ = 0, and W = W ∗, ξ0 = ξ∗0 = − 1√
v∗0

, v0 = v∗0 =(
q√
2p

)2/3

, µ = 0, are two solutions of (30). These solutions correspond

to the Sη−symmetric periodic solutions φ(w; ξ∗0 , 0, kπ, v
∗
0, 0) of (6), for

µ = 0, (see Proposition 9(a)). As in the previous subsection we will
analyze the continuation of all of these initial conditions although some
of them give the same Sη−symmetric periodic orbits.

Applying the Implicit Function Theorem to system (30) in a neigh-
borhood of the known solution we have that if∣∣∣∣∣∣∣∣∣∣∣∣∣

∂η

∂w

∂η

∂ξ0

∂η

∂v0
∂u

∂w

∂u

∂ξ0

∂u

∂v0
∂f

∂w

∂f

∂ξ0

∂f

∂v0

∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
w = W ∗/2
ξ0 = ξ∗0
v0 = v∗0
µ = 0

̸= 0 , (31)

then we can find unique analytic functions ξ0 = ξ0(µ), v0 = v0(µ),W =
W (µ) defined for µ ∈ [0, µ0) with µ0 sufficiently small, such that
ξ0(0) = ξ∗0 , v0(0) = v∗0,W (0) = W ∗ and the solution of (6) with initial
conditions ξ(0) = ξ0, η(0) = 0, u(0) = kπ, v(0) = v0 is a Sη−symmetric
periodic solution with period W .

Evaluating the terms that appear in (31) we see that determinant
(31) is given by

12πp (−1)q
[
(−1)k+p − 1

]
.

Thus determinant (31) is different from zero if and only if p and k have
different parity . In short we have proved the following result.

PROPOSITION 13. If p and k have different parity, then the Sη−sym-
metric periodic solution φ(w;±1/

√
v∗0, 0, kπ, v

∗
0, 0) can be continued to
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a family of Sη−symmetric periodic solutions φ(w; ξ0(µ), 0, kπ, v0(µ), µ)
of the collinear restricted three body problem with period W (µ), for
µ ∈ [0, µ0) with µ0 sufficiently small.

If p is odd, then φ(w;±1/
√
v∗0, 0, kπ, v

∗
0, 0) is a Sη−symmetric peri-

odic solution but it is not a doubly–symmetric periodic solution because
ξ(W ∗/4) and u(W ∗/4) (mod. 2π) are not simultaneously zero (see
Proposition 5). Hence, if µ > 0 is sufficiently small, then ξ(W (µ)) and
u(W (µ)) (mod. 2π) are not simultaneously zero. Therefore the contin-
ued periodic solutions are not doubly–symmetric periodic solutions.

On the other hand, if p is even, then φ(w;±1/
√
v∗0, 0, kπ, v

∗
0, 0) is a

doubly–symmetric periodic solution. So this solution has already been
continued, in the previous subsection, to a family of doubly–symmetric
periodic solutions. Since the doubly–symmetric periodic solutions are
also Sη−symmetric periodic solutions, we have that a solution of (28)
is also a solution of (30). Therefore, if p is even and the solution
φ(w;±1/

√
v∗0, 0, kπ, v

∗
0, 0) can be continued, then the continued peri-

odic solutions are doubly–symmetric periodic solutions.
Analyzing as in the previous subsection which of the initial condi-

tions correspond to different Sη−symmetric periodic orbits (see Theo-
rem 10), we have the following.

THEOREM 14. Each Sη−symmetric but not doubly–symmetric peri-
odic orbit of the collinear restricted three body problem (6) for µ = 0
can be continued to a one parameter family, that depends on µ, of
Sη−symmetric but not doubly–symmetric periodic orbits of the collinear
restricted three body problem (6) for µ > 0 sufficiently small.

We note that all Sξ−symmetric periodic solutions of the collinear
restricted three body problem for µ = 0 are doubly–symmetric periodic
solutions (see Proposition 9(b)). So they have already been continued
in Subsection 5.1 to doubly–symmetric periodic solution. We could
continued them to Sξ−symmetric periodic solutions, but if we do that,
then we will not obtain new symmetric periodic orbits.

In short, Theorem 12 together with Theorem 14 prove Theorem 1
stated in the introduction.
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