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PERIODIC ORBITS OF MAPS OF Y

LLUfS ALSEDÀ, JAUME LLIBRE AND MICHAt MISIUREWICZ

Abstract. We introduce some notions that are useful for studying the be-
havior of periodic orbits of maps of one-dimensional spaces. We use them
to characterize the set of periods of periodic orbits for continuous maps of
Y = (z e C: z3 e [0,1]} into itself having zero as a fixed point. We also
obtain new proofs of some known results for maps of an interval into itself.

Introduction

In recent years, there has been growing interest in studying the periodic or-
bits of maps of one-dimensional spaces. One of the first results, and the most
spectacular one, is the Sarkovskii theorem. We shall recall it to the reader.

Let I be the family of all continuous maps of the interval [0,1] into itself
(one can take any closed interval, but we choose [0,1] to fix notation). For
/el, if fn(x) = x, then we call the set {x,f(x),... ,fn~x(x)} a periodic
orbit of /, and its period is the smallest positive integer m such that fm(x) =
x . We denote by Per(/) the set of periods of all periodic orbits of /.

Let N be the set of all positive integers. The Sarkovskii ordering of N is

3,5,7,9,...,13,15,17,19,...,
22.3,22.5,22.7,22.9, ....... ,23,22,2,1.

If k stands to the right of n in the above ordering, we shall write k >s n. If
k = 2p.k and n = 2q.ri, where k' and n are odd, then we have k >s n if
and only if one of the following cases occurs:

(i) k' > 1, n > 1, p > q .
(ii) k' > 1, n > 1, p = q, k' > n .

(iii) k' = 1, n > 1 .
(iv) k! = 1, n = 1, p < q .
We denote S(n) = {«} u {k: k >s n} for n G N, 5(2°°) = {2': i =

0,1,...},and Nî = Nu{2°°}.
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Sarkovskii Theorem, (a) If f G I, then Per(f) = S(n) for some n G N5.
(b) If n gNs, then there exists /el such that Per(f) = S(n).

Further research starting at this point can go in at least six directions:
( 1 ) Replace an interval and I by another space and another class of maps.
(2) Replace periodic orbits by more general orbits.
(3) Investigate closer the behavior of periodic orbits.
(4) Study other orbits in the presence of periodic ones.
(5) Derive some information about topological entropy.
(6) Try to simplify the proofs.

There have been many attempts to pursue these goals; for instance, see the
references.

The aim of this paper is to develop some tools that are useful for moving
in the first direction and to use them in a relatively simple case. This also
requires some work in the third direction. As a reward we get better insight
into some already known results, including the Sarkovskii theorem, the depen-
dence between simple and minimal orbits (see [St, B13, ALS]), and the results
of Mumbru [Mu].

When trying to generalize the Sarkovskii theorem, one should decide first
how such a generalization should look. We believe that it should be a complete
characterization of possible sets Per(/) for / from a class of maps under
consideration. The fact that in the Sarkovskii theorem there appears just a
total ordering of all positive integers seems to be only a coincidence. Therefore,
theorems stating that for / from some class of maps the existence of periodic
orbits of some periods implies the existence of periodic orbits of some other
periods should be regarded as generalizations of the theorem of Li and Yorke
[LY] rather than of the Sarkovskii theorem.

The main tool we use to generalize the Sarkovskii theorem is the notion of a
primary orbit. If we consider some class X of maps and P is a periodic orbit
of a map / € X, then P will be called primary if there exists g G X such that
f\p = g\p and there is no other periodic orbit of g of the same period as P
(they are the same as —»-minimal orbits of [Ba]).

The notion of a primary orbit plays a role similar to that of the notion of a
minimal orbit ([St, B13, C, ALS, H]; a periodic orbit P of period m of / e I
was called minimal if Per(/) = S(m)). In fact, the notions are similar to each
other (see Remark 9.2). However, the notion of a primary orbit is better since
it depends only on the behavior of a map on this orbit and its definition does
not use the a priori knowledge of Sarkovskii ordering (hence it is much more
general).

A general scheme for using the notion of primary orbits will be:
( 1 ) Prove the following condition:

. . If / € X has some periodic orbit, then it has a primary
orbit of the same period.
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PERIODIC ORBITS OF MAPS OF Y 477

(2) Find all primary orbits of maps / e X.
(3) Classify them.
(4) Find dependences between their occurrences.

Of course, this scheme works only for classes X for which (*) is true. Oth-
erwise, one has to look for some better tools.

We are going to apply this scheme to the family Y of all continuous maps
/ of the space Y = {z e C: z3 e [0,1]} into itself for which /(0) = 0. To
describe the result that we obtain, we need to introduce two new orderings.

Green ordering is the ordering of N \ {2} :
5,8,4,11,14,7,17,20,10,23,26,13, ... ,
3.3,3.5,3.7, ... , 3.13,3.15,3.17, ... , 3.22.3,3.22.5,3.22.7
...,3.23,3.22,3.2,3.1,1.

The first part of this ordering can be rewritten as
6-1,6 + 2,3+1,16-1,16 + 2,13+1,3.6- 1,3.6 + 2,3.3 + 1, ....

If zc stands to the right of n in the above ordering, we shall write k >   n .
In this paper, the symbol = will denote congruences mod 3.
We have k > n (remember that k ^ 2 and n ^ 2 ) if and only if n > 1

and one of the following cases occurs:
(i) k¿0, n£0, k = n, k>n.

(ii) k = l, n = 2, 2k>n.
(iii) zc = 2, n= I, k > 2n .
(iv) k = 0, Z2=É0.
(v) k = 0, « = 0, k/3>sn/3.

(vi) k = l.
Red ordering is the ordering of N \ {2,4} :

7,10,5,13,16,8,19,22,11,25,28,14,... ,
3.3, 3.5, 3.7, ... , 3.13,3.15, 3.17, ... , 3.22.3, 3.22.5,3.22.7, ... ,

3 23  3 22  3 2 3 1   1
The first part of this ordering can be rewritten as

6+ 1,6 + 4,3 + 2,16+1,16 + 4,13 + 2,3.6+1,3.6 + 4,3.3 + 2, ... .
If k stands to the right of n in the above ordering, we shall write k >rn . We
have k >r n (remember that k,n £ {2,4}) if and only if n > 1 and one of
the following cases occurs:

(1) k jáO, «pÉO, k = n, k> n.
(2) k = 2, n = l, 2k>n.
(3) k = 1, n = 2, k > 2n.
(4) k = 0, n£0.
(5) k = 0, n = 0, k/3>sn/3.
(6) k = 1.
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We denote

G(n) = {n}ö{k:k>gn}   forzzeN\{2},
R(n) = {n}\J{k:k >rn}   for n e N\ {2,4},

and additionally

C7(3.2°°) = R(3.2°°) = {1} u {3.z: i G S(2°°)}.
We also denote Ng = (N \ {2}) U {3.2°°} and Nr = (N \ {2,4}) u {3.2°°} .

Main Theorem, (a) // / e Y, then Per(f) = S(ns) U G(ng) U R(nr) for some
nsGNs, ngGNg, and nr e Nr.

(b) // ns G N5, ng G Ng, and nr e Nr then there exists f e Y for which
Per(f) = S(ns)uG(ng)öR(nr).

The paper is organized as follows. In § 1 we give basic definitions and prove
some preliminary results. In §2 we give different characterizations of primary
orbits and prove that (*) holds for Y. In §3 we introduce the notion of ex-
tensions, which allow us to construct new periodic orbits from given ones, and
we prove some properties of extensions. In §4 we define the periodic orbits
which are candidates for being primary. In §5 we prove that they are indeed
primary. In §§6, 7, 9, and 10 we prove that there are no other primary orbits.
To do this we use some properties of primary orbits which are extensions of
other ones. We state and prove these properties in §8. In §11 we prove that the
existence of some primary orbits implies (or does not imply) the existence of
some others. In §12 we develop the techniques of building examples necessary
to prove Main Theorem (b). In §13 we deduce the Main Theorem from results
proved in earlier sections and state some final remarks and conjectures.

Many notions and ideas of this paper can be found in earlier papers (see
references). In most cases, they were developed gradually and in parallel by
several authors. We shall not try to trace their origin and will use them without
referring to earlier papers. For instance, when working on this paper, we were
unaware of the papers [Be4, Ba], which contain (for maps of the interval) some
ideas very close to ours.

The reader is advised to draw figures when reading most of the proofs, es-
pecially in §§5-11. We recommend using the corresponding black, blue, green,
and red pens.

1. Basic definitions and preliminary results

From now on, X will denote indistinctly the interval [0,1] or the space
Y. Also, X will denote indistinctly the family I or the family Y. Depending
on the family of maps, E will denote the following: if the family is I, then
E = 0 ; if the family is Y, then E = {0} . In such a way, we can say that X is
the family of all continuous maps of X into itself for which f(E) = E (in other
words, for which f\E = Id|£ ). Most of the preliminary definitions and results
can be generalized, for example to more complicated trees. To avoid making
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this paper too long (although it is, anyhow), we leave such generalizations to
the eager readers.

Let P be a subset of I. We shall write EP for EöP. The set Span(P)
is the smallest connected subset of X containing P. If Span(/>) Ç Span(ß),
we say that P has strictly smaller span than Q.

The closures of components of F\{0} will be called branches. The meaning
of the word interval is obvious for subsets of [0,1]. For subsets of Y it will
be used in a geometric sense (not a topological one); i.e., an interval has to be
contained in one of the branches. When denoting intervals with use of their
endpoints, we shall not take into account the ordering; i.e., [x,y] = \y,x]. In
what follows, in most of the cases, the word interval will mean a closed interval.
If not, we say so explicitly and use the standard notation [x ,y) = (y,x],
(x,y] = [y,x),and (x,y) = (y,x).

If a finite set P is /-invariant (i.e., f(P) C P), then the closures of compo-
nents of Span(EP) \ EP will be called basic intervals (or EP-basic intervals, if
confusion may occur). Of course, they are intervals.

If / and J are intervals, we say that / f-covers J k times if there are k
subintervals of / with pairwise disjoint interiors, each of them mapped onto
J by /. If k > 1 but we do not specify it, we say simply that / f-covers
J. Then we shall write simply I —* J (or put k arrows if / /-covers J k
times).

If / e X and F is a finite /-invariant set, then the EP-graph of / is the
oriented graph with all basic intervals as vertices and having an arrow from /
to J if and only if / /-covers J. The generalized EP-graph of / has k
arrows from / to J if and only if / /-covers J k times.

We shall use generalized graphs only once and in a very simple case. To
avoid unnecessary complications, we shall not work with generalized graphs in
other places.

A loop of length k in an E /"-graph of / is a sequence of vertices IX,I2, ... ,
Ik such that /( /-covers /(+1 for i — 1,2, ... ,k-I and Ik /-covers /,. We
shall denote such a loop by /, —► I2 —►••■—► Ik —> Ix and identify it with each
of the loops /,—►/,+, -►•••-♦ Ik -f /, -» /2—*•• ■•-• ¿* /(_j -> /(. When talking
about loops we shall use expressions such as "we are moving along an arrow,"
"we are moving along the loops," and "we are making steps," which have (we
hope) obvious meanings.

We say that we add the loop /, —► I2 -►•••-> Ik -> /, to the loop Jx ->
J2 —»■■•—► Jj ~* Jx if they have a common vertex /; = /. and we form a new
loop

/, -» /2 -»■        > I. —> Jj+X —> Jj+2 -> ■ ■ ■

Usually it will be clear which common vertex we use. For adding a loop to itself
we shall also use descriptions such as "going along the loop twice" and "taking
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this loop twice," with obvious (again we hope) meaning, or we shall talk about
the repetition ( / times) of the loop.

A loop which is not a repetition of a shorter loop will be called nonrepetitive.
A loop which cannot be formed by adding two loops will be called elementary.

Note that the loop Ix -» /2 -► • • • —> Ik -+ /( is elementary if and only if i ^ j
implies /( ,¿ / .

We shall say that an interval I f-covers an interval J in k steps if I .re-
covers /. We shall then write /   —>   J .

k steps
The following result is not difficult to prove.

Lemma 1.1. Let I and J be intervals. If /(/) D J then I  f-covers J.

In §§1-10, if E = {0}, we shall not consider {0} as a periodic orbit. Of
course, when it comes to proving the Main Theorem we shall have to take it
into account again.

If a = /j —<■ I2 -* ■ ■ ■ —> Ik —<■ /[ is a loop in the .EP-graph of / and Q
is a periodic orbit of /, we shall say that a and Q are associated to each
other if there exists x G Q such that f'(x) G /,, for i = 0,1, ... ,k - I and
fk(x) = x.

Remark 1.2. Let P and Q be periodic orbits of / e X. Assume that Q is
associated to a loop a in the EP-graph of /. Then:

(a) The period of Q divides the length of a.
(b) Q is associated to all repetitions of a.

Lemma 1.3 [BGMY]. If f G X and a is a loop in an EP-graph of f, then
there exists a periodic orbit Q of f, associated to a.

Remark 1.4. Obviously, the above definition, remark, and lemma can be applied
not only to /sP-graphs but also to all graphs with intervals as vertices and arrow
from I to J if I /-covers J. In this more general situation, some serious
troubles may occur with establishing the period of Q. We shall comment on it
when this more general version is used.

If / c X is an interval and / e X, we shall say that / is linear on I
if / maps / homeomorphically onto its image and / can be divided into
subintervals such that each of them is mapped linearly (more precisely affinely)
onto its image and the rate of expansion on all these subintervals is the same.
Notice that since we work only with [0,1] and Y, the number of pieces into
which we divide / can be taken smaller than or equal to two (one in the case
of * = [0,1]).

We shall say that an elementary loop Ix -» 72 ->-► Ik-> /, is thin if each
I¡  /-covers only one basic interval.

Lemma 1.5. Let f G X and let P be a periodic orbit of f. Then there is at most
one thin loop in the EP-graph of f. Moreover, if a = Ix -* I2 —►•••—► Ik —> Ix
is a thin loop then one of two cases occurs:
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(a) X = Y, 0 is one of the endpoints of all /( 's, P has period I, 2, or 3,
and all points of P lie on different branches of Y.

(b) The endpoints of all /( 's belong to P, P has period 2k, and if I¡ =
[*,,)>,.], then /*(*.) - y i and f*(y¡) = x,.

Proof. Assume that a = /. -» I2 -+•••-»• Ik -* /, is a thin loop and /. =
[xnyA. Since /; /-covers only one basic interval, this interval is [f(x¡),
f(y¡)]. Hence the set Z = {x, ,x2, ... ,xk ,yx ,y2, ... ,yk) is /-invariant.
Since it contains at least two points, Z = EP or Z = P. If Z = EP then
obviously case (a) occurs. In this case there is no other elementary loop except
a.

Assume Z = P. The set P contains an extremal point of Span(£/>), i.e., a
point such that there is only one basic interval adjacent to it. We may assume
that this point is xx . Then the adjacent interval is Ix . We claim that j(xx) =

Suppose that fk(xx) = xx. Then fJ(xx) = yx for some j < k, and [yx, z],
where z = fJ(yx), is the interval ff. Since a is elementary, z ^ xx . We
have f2k~2j(z) = f2k~2i(f2j(xx)) = xx. Therefore, since /, is the only basic
interval containing xx , f2k~2j([yx ,z]) = Ix. Thus, f2k~2J(yx) = yx. This is
impossible because xx, yx , and z are three points of the same periodic orbit.
Hence, indeed, f*(xx) =yx.

Since / (xx) = yx and a is a thin loop, we have j(xt) = y¡ and / (y¡) = x¡
for all i. This follows from the fact that, for each /, f ° j = j ° f ■ From
this it follows that P has period 2zc . Hence, if Z = P then case (b) occurs.

If ß is another thin loop, then for a and ß case (a) cannot occur (there is
only one elementary loop then). Hence, (b) applies to a and ß. In particular,
the length of ß is also k. If ß goes through some basic interval J = [w , t],
then w = x¡ or w = y. for some i. But then fk(w) = t, ^(x.) = y., and
j(y¡) = x.. Hence J = I. and a = ß .   D

We shall call a thin loop a positive if (a) of Lemma 1.5 occurs and negative
if (b) of Lemma 1.5 occurs.

Definition 1.6. Let / € X and let P be a periodic orbit of /. We shall call /
EP-adjusted if:

(i) For every basic interval  [x, y],  f maps it homeomorphically onto
Span({ f(x),f(y)}).

(ii) f(X) = Span(EP).
(iii) If a = Ix —> I2 —►...—» Ik —► Ix is a thin loop then: if a is positive,

then / \j   has only the endpoints as fixed points; if a is negative, then
j\j   has only the endpoints as periodic points of period 2.

(iv) If a basic interval does not appear in a thin loop, then / is linear on it.
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Remark 1.7. Let / G X be EP-adjusted. Take the /?-graph of /, where
R = f~"(EP) n Span(EP) (clearly E c R and hence ER = R). If a = Ix -*
I2 -* ■ ■ • -* Ik -* /j is a thin loop in the /?-graph of /, then each /; is a
EP-basic interval and a is a thin loop in the EP-graph of /. Hence, if we
replace EP by R in Lemma 1.5, it will remain true.

Lemma 1.8. If P is a periodic orbit of a map / e X, then there exists a map
g G X such that g\EP = f\EP and g is EP-adjusted.
Proof. It is very easy to construct h g X such that h\EP = f\EP and (i), (ii),
and (iv) of Definition 1.6 are satisfied. By Lemma 1.5 there is at most one
thin loop a = Ix —► I2 —* • • • —» Ik —► /, in the EP-graph of h . We can
adjust h (and then call it g ) on /, to satisfy (iii). If a is positive then this is
obvious. If a is negative, we choose a homeomorphism tp: Ix —► Ix, reversing
orientation and having only endpoints as periodic points of period two. Then
we set g\h =(hk~x\h)~x otp.   a

Remark 1.9. From Definition 1.6 it follows immediately that if f\EP = g\EP
and both / and g are EP-adjusted, then the EP-graphs of / and g are
identical. If only / is EP-adjusted, then the EP-graph of / is a subgraph of
the EP-graph of g.

Proposition 1.10. Let P be a periodic orbit of an EP-adjusted map /eX. Let
n>0 and let R = /_"(EP)nSpan(£P). Then, for every loop a of the R-graph
of f one of the following statements holds.

(a) a is an I times (/> 1) repetition of a thin loop ß of length k. Then:
(a. 1 ) If ß is positive, then only P is associated to a.
(a.2) If ß is negative and I is even, then there are two periodic orbits

associated to a: P of period 2k and some orbit of period k.
(a.3) If ß is negative and I is odd, then there is only one periodic orbit

associated to a ; this orbit has period k.
(b) a is not a repetition of a thin loop.  Then there is exactly one periodic

orbit associated to a.
Moreover, if an orbit associated to a is different from P and its period is smaller
than or equal to n + 1, then a is elementary.
Proof. Statements in case (a) follow from Lemmas 1.3 and 1.5, Remark 1.7,
and Definition 1.6(iii). Now assume that a is not a repetition of a thin loop.
Then if a = Ix -* I2 -* ■■ ■ -► Ik —► Ix, no /(- can appear in the thin loop.
Hence, by Definition 1.6(i) and (iv), /*|/in/-i(/2)n...n/-*+'(/*)n/-*(/,) is linear
and expanding and, therefore, it has exactly one fixed point. This proves the
statement of (b).

Let Q be a periodic orbit associated to a . Denote the period of Q by k .
Since Q is different from P (and E ) we can find a loop y = J0 —► Jx —►
• •• —* Jkx —* J0 in the EP-graph of / such that for some x G Q we have
f'(x) elnt(7.) for z = 0,l,2, ... ,zc-l . For each i, we have f'(x)Glnt(Ki),
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where K¡ = J¡nf \J¡+1) n • • • n / k+X(Ji+k_{), where the addition in the
subindices of / is modulo zc . Each interval K¡ is an f~ + (EP) n Span(EP)-
basic interval.  If Ki = K} for some i ^ j, then the loop y is a repetition
of some elementary loop ß  of length smaller than k.   The orbit which is
associated to ß is also associated to y. If ß is not thin, then by (b) this orbit
is equal to Q. This contradicts the fact that the period of Q is k. If ß is thin,
then we use (a) instead of (b). Since Q is different from P, we also obtain a
contradiction with the fact that the period of Q is k (we recall that E is not
considered a periodic orbit and, hence, Q±E).

Hence K ¿ K   for i ± j ■  If k < n + I, each /î-basic interval is eithert '     j i  j —
contained in some Ki or disjoint from all Int(^). Therefore it can contain at
most one point of Q. Consequently a is elementary.   D

Proposition 1.11. Let P and Q be periodic orbits of an EP-adjusted map /e
X. Assume that Card(EP) > 1. Then there is a unique loop in the EP-graph
of f, associated to Q and of length equal to the period of Q. This loop is
nonrepetitive unless it is a repetition two times of a thin negative loop and Q = P.

Proof. If Q t¿ P then the elements of Q belong to the interiors of EP-basic
intervals. Hence, the existence and uniqueness of the associated loop of length
equal to the period of Q are obvious.

Assume that Q = P. Consider all pairs (I,x) where / is an EP-basic
interval and jc is one of its endpoints. Let G be the graph with these pairs
as vertices and an arrow from (I,x) to (J,y) if y = f(x) and / /-covers
J . Clearly, for each vertex of G there is an arrow beginning at this vertex. If
we choose as x an extremal point of Span(EP) different from 0, i.e., a point
z G P such that there is only one basic interval K adjacent to it, then we obtain
a loop a in G going through (K, z), of length equal to m, the period of P.
Clearly a gives a loop of the same length in the EP-graph of /, associated to
P.

Each vertex of G is a beginning of only one arrow. Therefore, any loop
in G going through (K, z) has to be equal to a repeated / > 1 times. Let
ß = I0 —> /j —► • ■ • —> /m_, —► /0 be a loop in the EP-graph of /, associated to
P where m is the period of P. Then there exists x G P such that f'(x) G /(
for i = 0,1,2, ... ,m - I . By the definition of G, (I0,x) -* (Ix, f(x)) —►
•••—»• (/m_i ,/m_ (x)) -* (I0,x) is a loop in G. Since one of /'(jc) is equal to
z, this loop has to be equal to a. This proves uniqueness in the case Q = P.

Now let a be the loop in the EP-graph of / associated to Q and of length
equal to the period of Q. Assume that a is a repetition / times, with / > 2,
of some loop ß of smaller length. The periodic orbit associated to ß is also
associated to a. By Proposition 1.10 (for n = 0), it is Q unless ß is thin
positive or ß is thin negative and / is even. If the periodic orbit associated to
ß is Q, then we obtain a contradiction because the period of Q is larger than
the length of ß. If ß is thin and positive, then Q = P (we recall that E is
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not a periodic orbit and, hence, ß ^ E). Therefore, the period of ß is equal
to the length of ß , which is a contradiction. Hence ß has to be thin negative
and / equals two. Moreover, since the period of ß is larger than the length of
ß, Q = P.   D
Lemma 1.12. Let /eX EP-adjusted and let I and J be intervals such that I
and J are unions of basic intervals and I covers J in k steps. Then for every
basic interval Ik C J there are basic intervals I0,IX, ... , Ik_, such that /„ c /
and I0^Ix^-^Ik_x-+Ik.

Proof. There is a subinterval Kk of / which is mapped by / onto Ik and
such that no interior point of Kk is mapped to an endpoint of Ik. Since
EP is /-invariant, none of the intervals Kk , f(Kk), ■■■ ,j~X(Kk) can have
points of EP in its interior. Denote by /( the basic interval containing f'(Kk)
for i = 0,1,2, ... ,k - I . Since / is EP-adjusted and EP is /-invariant,
/(/,) D IM . By Lemma 1.1, /,   /-covers /.+1 .   D

Definition 1.13. Let f,g gX and let P be a periodic orbit of / and ß a
periodic orbit of g. Then P and ß are E-equivalent if there exists a homeo-
morphism h of Span(EP) onto Span(Eß) suchthat h\E = Id\E, h(P) = Q,
and ho f = g o h on P.

Clearly the above relation is an equivalence relation.
Remark 1.14. If f G X is EP-adjusted, g G X is Eß-adjusted, and P and ß
are E-equivalent, then h induces an isomorphism h* of the EP-graph of /
to the Eß-graph of g (i.e., h* is a bijective map from the set of vertices of
the EP-graph of / to the set of vertices of the Eß-graph of g such that, if /
and J are vertices of the EP-graph of /, then / /-covers / if and only if
h*(I) /-covers h*(J)). If only / is EP-adjusted, h induces an isomorphism
of the EP-graph of / onto some subgraph of the Eß-graph of g.

Lemma 1.15. Assume that f ,g e X, P is a periodic orbit of f, Q is a periodic
orbit of g, P and Q are E-equivalent, and f is EP-adjusted. Then for every
n > 0 there exists a homeomorphism hn of Span(EP) onto Span(Eß) such
that hn¡E = Id \E, hn(P) = Q,and hnof=gohn on f~n(EP) nSpan(EP).
Proof. We use induction. For n = 0 it follows from the definition of E-
equivalence. Assume that the statement is proved for n - 1. We set hn = hn_x
on /""'""''(EP) nSpan(EP), and then we have to define hn on all intervals of
the partition of Span(EP) by the points of f~(n~X)(EP). Let / = [x, y] be one
of these intervals. Since / is contained in some EP-basic interval and / is EP-
adjusted, / is mapped by / homeomorphically onto J = Span({/(jc) ,f(y)}).
The points of f~"(EP)C\I are inverse images of the points of f~(-"~x'(EP)r\J
by / (see Figure 1.16). Now fix some homeomorphism h: [0,1] —» hn_x(I).
By the induction hypothesis,

goh({0,l}) = g({hn_x(x),hn_x(y)}) = {hn_x(f(x)),hn_x(f(y))}.
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For each point z e / n(EP) n Int(Z), we set

hn(z) = h(inf{t G [0,1]: *(A(0) = hn_x(f(z))}).
Since A    i o/|7 is a homeomorphism of / onto

Span({hn_x(f(x)),hn_x(f(y))}),
h can be extended to a homeomorphism of the whole / onto An_,(/). For
each z G f'n(EP) n Int(/) we have g(hn(z)) = g(h(t)) = hn_x(f(z)) =
h„(f(z)) because /(z) G f~{n~X)(EP), where < is given in the definition of
hn(z). Hence we have hnof=gohn on f~n(EP) n Int(/). If we make the
above construction on each /, then we obtain hn satisfying our conditions.   G

*- r,fy

n-1

f (y(

*■-•-_       /f.

-K    V    ^

J>-¿
I  f (X)

'n-1
i      l
i     I

I      I
I      i

4-   v   v

Figure 1.16

Remark 1.17. Clearly, Remark 1.14 also holds if we replace EP-graph by
r"(EP)nSpan(EP)-graph, Eß-graph by /z„(/""(EP)nSpan(EP))-graph, and
h by hn , where hn is as in Lemma 1.15.

The following lemma plays a basic role in the rest of the paper. It allows us
to work mainly with adjusted maps.

Lemma 1.18 (Adjusting Lemma). Assume that f, g G X, P isa periodic orbit of
f, Q is a periodic orbit of g, P and Q are E-equivalent, f is EP-adjusted,
and f has a periodic orbit P' ¿ P. Then g has a periodic orbit Q' ¿ Q,
E-equivalent to P' and such that Span(ß') c Span(ß).
Proof. Denote the period of P' by n . Let hn be the homeomorphism obtained
from Lemma 1.15. Since / is EP-adjusted, by Remark 1.17, hn induces an
isomorphism of the /?-graph of / and some subgraph of the hn(R)-graph of
g, where R = f~"(EP) n Span(EP). Clearly, P' is associated to some loop
a of length n in the Zc-graph of /. Let ß be the corresponding loop in the
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hn(R)-graph of g. By Proposition 1.10, a is elementary and therefore ß is
also elementary. Let ß' be a periodic orbit of g associated to ß. If ß' = ß
then P is associated to a. Since P' ^ P and P' ¿ E (we recall that E is not
considered as a periodic orbit), by Proposition 1.10 we obtain that the period of
P is twice the period of P', which is strictly smaller than the length of a. This
is a contradiction since the period of P' is equal to the length of a. Hence
ßV Q ■ Clearly, we then have Span(ß') Ç Span(ß). To show that P' and ß'
are E-equivalent, we can obtain the homeomorphism required by the definition
of E-equivalence by modifying hn . This can be done because a and ß are
elementary and then in each Ä-basic interval there is at most one point of P'
and in each hn(R)-basic interval there is at most one point of ß'.   a

2. Primary orbits
First we recall the notion of primary orbit.

Definition 2.1. Let P be a periodic orbit of a map / € X. P will be called
primary if there exists g G X such that g\EP = f\EP and there is no other
periodic orbit of g of the same period as P. P will be called secondary if it
is not primary.
Remark 2.2. If P is a periodic orbit of / G X and of g G X, then whether P
is primary or secondary does not depend on whether we regard it as an orbit of
/ or g.

Theorem 2.3 (First Theorem). Assume that P is a periodic orbit of period m > 1
of an EP-adjusted map / e X. Let G be the EP-graph of f. Then the
following conditions are equivalent:

(a) P is primary.
(b) P is the unique periodic orbit of f of period m.
(c) Either there is a thin negative loop in G and there is no nonrepetitive

loop of length m in G, or there is no thin negative loop in G and there
is at most one nonrepetitive loop of length m in G.

(d) Either there is a thin negative loop in G, the repetition two times of
this loop is associated to P, and there is no nonrepetitive loop of length
m in G, or there is no thin negative loop in G, there is exactly one
nonrepetitive loop of length m in G, and this loop is associated to P.

Proof. By Definition 2.1, (b) implies (a).
Assume that (a) holds but (c) does not. By Proposition 1.11 there is a loop a

in the EP-graph of /, of length m, associated to P. This loop is unique and
nonrepetitive unless it is a repetition two times of a thin negative loop. If there
is a thin negative loop ß in G then, by Proposition 1.10, P is associated to
ß repeated two times. Hence, by Proposition 1.11, P is not associated to any
nonrepetitive loop of length m . Therefore, since (c) does not hold, in all cases
(independent of the existence of the thin negative loop) we obtain the existence
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of a nonrepetitive loop y ^ a in G, of length m and not associated to P. Let
ß be the periodic orbit associated to y . By (a), its period is smaller than m.
Since y is nonrepetitive of length m, this gives a contradiction. Therefore (a)
implies (c).

Assume that (c) holds. If there is a thin negative loop in G then, by Propo-
sition 1.10, its repetition two times is associated to P and (d) holds. If there
is no such loop in G then, by Proposition 1.11, there is a nonrepetitive loop of
length m associated to P, and (d) also holds. Therefore (c) implies (d).

Assume that (d) holds but (b) does not. Then / has a periodic orbit ß # P
of period m . By Proposition 1.11, ß is associated to a nonrepetitive loop a
of period m . By (d), there is no thin negative loop in G and a is associated
to P. In view of Proposition 1.10(b), this is a contradiction. Therefore (d)
implies (b).   D

Lemma 2.4. A periodic orbit E-equivalent to a primary orbit is primary.

Proof. Let P be a periodic orbit of a map / e X, E-equivalent to a periodic
orbit ß of a map g G X. Assume that P is primary. By Lemma 1.8, there are
maps f, g' GX such that f is EP-adjusted, g is Eß-adjusted, f\EP =
f\EP, and g'\EQ - g\EQ ■ By Remark 1.14, the EP-graph of f and the Eß-
graph of g are isomorphic. By using the First Theorem (2.3) for both f and
g , it follows that, if P is primary, so is ß.   G

Theorem 2.5 (Primary Theorem). If a map f G X has a periodic orbit P of
period m, then f has a primary periodic orbit of period m with span contained
in Span(P).

Proof. Let P be a periodic orbit of / of period m. By Lemma 1.8, there
exists an EP-adjusted map g such that g\Ep = f\Ep. The EP-graph of g
has only a finite number of loops of length m . By Propositions 1.10 and 1.11,
g has only a finite number of periodic orbits of period m. Hence, g has a
periodic orbit ß of period m such that there is no periodic orbit Q' of g of
period m with Span(ß') Ç Span(ß). Let A be an Eß-adjusted map. If A
has another orbit of period m then, by the Adjusting Lemma (1.18), g has a
periodic orbit ß', E-equivalent to this orbit (and consequently of period m )
with Span(ß') Ç Span(ß), a contradiction. Hence, A has no such orbit and,
by the First Theorem (2.3), ß is primary. By the Adjusting Lemma, / has
a periodic orbit E-equivalent to ß with span contained in Span(P). Clearly
this orbit has period m . By Lemma 2.4 this orbit is primary,   a

3. Extensions

In this section we assume that R is a periodic orbit of period « of a map
g Gl and that ß is a periodic orbit of period s > I of a map A G X.
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Definition 3.1. We shall call a periodic orbit P of period s.n of a map / G X
an n-extension of Q, if P can be divided into subsets PQ,PX, ... ,Ps_x of
cardinality « each such that:

(i) Span(P.) nE = 0, z = 0,1,2,...,5-1.
(ii) Span(P;) n Span(JV) = 0 for i^j.

(iii) There is a map tp: {0, ... ,s - 1} -> {0, ... ,s- 1} such that if x G P¡
then fix) G Pm .

(iv) If we collapse each Span(P() to a point then the periodic orbit P (ob-
tained from P ) of / (obtained from / ) is E-equivalent to ß.

This definition perhaps needs some comments:

1. Let it be the map X —► X which collapses each Span(P;) to a point (call
this point yi ). Then / can be defined in the following way:

f{x) = [nof°n~{W   ifxt{y0,yx,...,ys_x},

By (iii) and the continuity of /, / is well defined and continuous. P =
{y0 ,yx, ... , ys_x} is a periodic orbit of / of period 5 . Also X is homeomor-
phic to X. Hence, (iv) makes sense.

2. Notice that by (iii), all P( are periodic orbits of period n of f . If / is
EP-adjusted, then / is EP-adjusted (for a suitable choice of a homeomorphism
between X and X ; remember that the definition of adjusted maps was for maps
of X, not ofX), fon = ttof, and the set |J*~0' Span(P;) is /-invariant.

Remark 3.2. For given n and ß it is very easy to construct an «-extension of
Q-
Definition 3.3. We shall call a periodic orbit P of period sn of a continuous
map / G Y an R-extension of ß, if P is an «-extension of ß and

(v) The periodic orbit P0 of f is E-equivalent to R.
(vi) On all P., except at most one, / is monotone.

Lemma 3.4. Under assumptions (i), (ii), (iii), and (vi), condition (v) is equivalent
to

(v ' ) The periodic orbit P( of f is E-equivalent to R for each i.

Proof. Obviously (v) follows from (v'). Assume (i), (ii), (iii), (v), and (vi)
and prove (v' ). Without loss of generality we can assume that ip(i) = i + 1
(mods). By (vi), there is some j G {0,1, ... ,s- 1} such that / is monotone
on all P( for i ^ j. Hence, /' is monotone on P0 for i = 1,2,... ,j
and f~k  is monotone on Pk  for k = j + 1, ... ,s - 1.   The maps f\p
for i = 1,2,... ,j and f~ \p for k = j + I, ... ,s - I can be extended
to homeomorphisms of Span(P0) onto Span(P'.) for i = 1,2, ... ,j and of
Span(Pn.) onto Span(P0) for k = j + I, ... ,s - I, respectively. Since iterates
of / commute with one another, these homeomorphisms give equivalence of
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P0 and P; for i = I, ... ,j,j + I, ... ,s - I. By (v), P0 is E-equivalent to
R, and hence all P( are E-equivalent to R.   D
Remark 3.5. For given orbits R and Q, it is very easy to construct an R-
extension of ß.

Remark 3.6. If P is a 2-extension of ß then P is an Pv-extension of ß for
each periodic orbit R of period two (this follows from the fact that each map
on two points is monotone). Hence, for 2-extensions we may use results with
P-extensions in the hypotheses. Notice also that if / is EP-adjusted, then the
existence of a thin negative loop in the EP-graph of / is equivalent to P being
a 2-extension of some orbit.

Remark 3.7. In Definitions 3.1 and 3.3 we did not use g and A outside R
and ß, respectively. Hence, we may assume that g is P-adj usted and A is
Eß-adjusted.

In the next lemmas we shall use the notation of Definitions 3.1 and 3.3.

Lemma 3.8. Let P be an R-extension of Q. Assume that f is EP-adjusted
and that f has a periodic orbit P' ^ P. Then either P' is an R'-extension of
Q for some periodic orbit R' ^ R of g, or P' is E-equivalent to some periodic
orbit Q'^Qofh.
Proof. Since U*~0 Span(P() is /-invariant, there are two possibilities:

1. P' c (Js~o Span(P¿). Denote P\ = P'nSpantP,). Since / is EP-
adjusted, Span(P0) is f -invariant, and (vi) holds, we have that fs\Spm,P) is
P0-adjusted. Since P' ^ P, we have P' ^ P0. Therefore, by the Adjusting
Lemma (1.18) g has a periodic orbit R' ^ R E-equivalent to P'0. In view of
Lemma 3.4, P' is an P'-extension of Q.

2- /''nflXo Span(P,)) = 0. Then the orbit P' = it(P') of / obtained from
P' by collapsing each Span(P;) to a point is E-equivalent to P'. Since / is
EP-adjusted, / is EP-adjusted. Clearly, P' ^ P. By (iv) and the Adjusting
Lemma, A has a periodic orbit ß' ^ ß /s-equivalent to P'. Then P' is
E-equivalent to ß'.   D

Lemma 3.9. Let P be an n-extension of Q. Assume that f is EP-adjusted
and that for some i, fs\Span,Pi) has a periodic orbit P[ ^ Pj.. Then f has a
periodic orbit P' ^ P of period s.Card(P,¡).

Proof. Since / is EP-adjusted, we have fJ(P[) C Span(P ,.,) for each j ( \p
is from (iii) of Definition 3.1). Hence, P' = U*~0 fj(P[) is a periodic orbit of
/ of period Card(P/)j and P1 ¿ P.   D

Lemma 3.10. Let P be an R-extension of Q. Assume that g is R-adjusted
and has a periodic orbit R' ^ R. Then f has a periodic orbit P' ^¿ P of period
Card(R').s.
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Proof. In view of the Adjusting Lemma (1.18), we may assume that / is EP-
adjusted. Then, again by the Adjusting Lemma, /^sp.,!,,,,} has a periodic orbit
P'^P0, equivalent to R1. By Lemma 3.9, / has a periodic orbit P' ^ P of
period Card(R')^.   □

Lemma 3.11. Let P be an n-extension of Q. Then f has a periodic orbit
E-equivalent to Q. Moreover, if A is EQ-adjusted and has a periodic orbit
Q' ¿ Q, then f has a periodic orbit P' ^ P, E-equivalent to Q'.
Proof. Since Span(P() /-covers Span(P ...) for each i, / has a periodic orbit
E-equivalent to ß. Since A is Eß-adjusted and (iv) holds, by the Adjusting
Lemma (1.18), / has a periodic orbit P' ^ P E-equivalent to ß'. The orbit
P' is an image of some periodic orbit P' of / under it. Clearly, P' ^ P and
P' is E-equivalent to P'. Hence P' is E-equivalent to ß'.   D

Lemma 3.12. Let P be an R-extension of Q. If h has no periodic orbits of
period m = Card(P) and R is primary, then P is primary.
Proof. We may assume that / is EP-adjusted and g is P-adjusted. Suppose
that P is secondary. Then / has a periodic orbit P' ^ P of period m . Since
A has no periodic orbits of period m , by Lemma 3.8, P' is an P/-extension of
ß for some periodic orbit R' ^ R of g. Since g is P-adjusted, R is primary,
and periods of R1 and R are equal, in view of the First Theorem (2.3), we
obtain a contradiction.   D

Lemma 3.13. Let P be an n-extension of Q. If P is primary, then P; is a
primary orbit of f for each i. If additionally A is EQ-adjusted, then A has
no periodic orbit Q' ¿ Q of period m = Card(P).
Proof. We may assume that / is ¿'P-adjusted. Suppose that, for some z, the
orbit P( of f is secondary. Since Span(P(.) is /'-invariant, f has a periodic
orbit P\ c Span(P(), of the same period as P¡ and different from P(.. By
Lemma 3.9 / has a periodic orbit P' ^ P of period m. Since P is primary
and / is EP-adjusted, from the First Theorem (2.3), we get a contradiction.

Let us now make the additional assumption that A is Eß-adjusted. Suppose
that h has a periodic orbit ß' ^ Q of period m. By Lemma 3.11, / has a
periodic orbit P' ^ P, E-equivalent to ß'. The period of P' is m, P is
primary, and / is EP-adjusted, a contradiction.   D

4. Candidates for primary orbits

We denote the branches of Y by br0 , br, , br2 . Since we shall adjust this
notation to the periodic orbit under consideration, we do not specify which
branch has which number.

For x G Y \ {0} we define the index of x by ind(x) = i if and only if
x G br;. We shall write jc ~ y if and only if ind(jc) = ind(y).

If jc = 0 or x ~ y and x G [0,y), we say that x is smaller than y and
write x < y. Analogously, we define > , <, > .
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If P is a periodic orbit of / G X and jc € P, then we call the ordered pair
A = (jc,/(jc)) an arrow with the beginning b(A) = x and end e(A) = f(x).

If / e Y, then the direction of an arrow A is a number dir(^) €{-1,0,1}
such that dir(^) = ind(e(A)) -ind(b(A)) (we recall that the symbol = denotes
congruency modulo 3).

If P has at least one point on a branch br;, then we denote by sm; the
smallest point of P on this branch (remember that if / G Y we always assume
that {0} is not a periodic orbit of /). The arrow beginning at sm¿ will be
denoted by smA¡. We shall call the arrows sm^4( the smallest arrows.

A periodic orbit P of / e Y will be called directed if P has at least one
point on each branch and the direction of the three smallest arrows is the same
and different from 0. Otherwise we call P undirected.

We consider the undirected case first. In a parallel way, we shall make the
same definitions for maps of an interval. Hence, our assumptions now are
/ G X, P is a periodic orbit of / of period m, and, if / G Y, then P is
undirected. We shall distinguish five cases:

(I) /€*■
(II) / G Y, P lies on one branch.

(III) / G Y, P lies on two branches.
(IV) / g Y, P lies on three branches and all smallest arrows have direction

different from 0.
(V) / G Y, P lies on three branches, and some of the smallest arrows have

direction 0.
We have to introduce some new notation. In case III, we call one of the

branches on which P lies odd and the other one even. In case IV, since not all
smallest arrows have the same direction, there are two of them ending on the
same branch. We call this branch odd and the other two branches even.

With the above definitions, in cases III and IV we can talk about the parity
of branches on which elements of P lie.

In cases III and IV an arrow A will be called black if b(A) and e(A) lie on
branches of different parity and blue otherwise.

Definition 4.1. We define a pendulum orbit as follows (see Figures 4.2-4.16).
For w = l. The case is I or II. In this case P is always pendulum (however, we
have to remember that if / G Y we do not consider {0} as a periodic orbit).
For m > 1, m odd. In cases III and IV we say that P is pendulum if:

(i) P has exactly one blue arrow A .
(ii) If we denote x¡ = f'(e(A)), i = 0,1,2, ... ,m - I, then if jc, ~ jc ,

x; < jc   is equivalent to i < j.
In cases I and II we say that P is pendulum if / has a fixed point e g

Span(P) such that:
(i) P has exactly one arrow A with b(A) and e(A) on the same side of

e.
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(ii) If we denote jc; = f'(e(A)), i = 0,1, ... ,m-l, then for jc( , jc   lying
on the same side of e, xi G (e, x ) is equivalent to i < j (remember
that (e,Xj) = (Xj,e)).

In case V P is not pendulum.
Notice that in case IV we have m > 5. Notice also that in cases I and II we

have either

xm_x < Jcm_3 <      < jc2 < jc0 < e < xx < x3 < < Xm-4 < Xn or

*„,_,> *m_3> > jc2 > jc0 > e > xx > x3 > > Xm-4 > Xm-2 •

In case III we have

0<x0<x2<-<xm_3<xm_x on one branch

and
0 < jc, < jc3 < • • • < Jcm_4 < JCm_2   on another branch.

For m even. In cases I, II, and III we divide the definition into two steps:
( 1 ) If aw = 2 , k > 1, we use induction. If k = I, P is always pendulum.

If k > 1 and pendulum orbits of period 2 ~ ' are defined, then P is
pendulum if it is a 2-extension of a pendulum orbit of period 2 ~ .

(2) If m = 2 .n, k > 1, « is odd, and « > 3, then P is pendulum if
P is an P-extension of a pendulum orbit of period 2 , and R is a
pendulum orbit of period n .

In cases IV and V, P is not pendulum.

Figure 4.2. A pendulum orbit
of period 5 in case I.

Figure 4.3. A pendulum orbit
of period 5 in case II.

Figure 4.4. A pendulum orbit of period 5 in case III.
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odd  branch odd   branch odd   branch

Figure 4.5. Several types of pendulum orbits of period 5 in case IV.

Figure 4.6. A pendulum orbit
of period 7 in case I.

Figure 4.7. A pendulum orbit
of period 7 in case II.

Figure 4.8. A pendulum orbit of period 7 in case III.

odd branch odd branch

odd branch

Figure 4.9. Several types of pendulum orbits of period 7 in case IV.
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P ' 7^r^>,

Figure 4.10. Pendulum orbits
of periods 2, 4, and 8 in case
I, where P4 (resp. fg) is a
2-extension of P2 (resp. P4).

Figure 4.11. Pendulum orbits
of periods 2, 4, and 8 in case
II, where P'^ (resp. P£) is a
2-extension of P'2 (resp. P£).

Figure 4.12. Pendulum orbits of periods 2,4, and 8 in case III, where Q4
(resp.  08 ) is a 2-extension of Q2 (resp.  Q4 ).

Figure 4.13. A pendulum orbit of
period 10 in case I. R is the pendu-
lum orbit given in Figure 4.2 and
Q is the pendulum orbit of period 2.

Figure 4.14. A pendulum orbit of
period 10 in case I. R is the pendu-
lum orbit given in Figure 4.3 and
Q is the pendulum orbit of period 2.
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Figure 4.15. A pendulum orbit of period 20 in case I. R is the pendulum
orbit given in Figure 4.2 and Q is the pendulum orbit of period 4 given
in Figure 4.10.

Figure 4.16. Pendulum orbits of periods 10 and 20 in case III. In both
cases R is the pendulum orbit of period 5 given in Figure 4.3 (in the
interval instead of Y ) and Q is the pendulum orbit of Figure 4.12 of
periods 2 and 4, respectively.

Remark 4.17. It is easy to see that for every m there exist maps / € I and
g G\, each of them having a pendulum orbit of period m (see Remarks 3.2
and 3.5).
Remark 4.18. In the case of maps / e I, the definition of pendulum orbits
coincides with the definition of simple orbits (see [St, B13, C, ALS, H]).
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Now, we consider the directed case. Our assumptions are: / e Y and P is a
directed periodic orbit of / of period m . We assume without loss of generality
that the direction of smallest arrows is +1.

An arrow A will be called black if dir(A) = 1, red if dir(v4) = -1, and
green if dir(A) = 0. Red and green arrows will be called colored.

The branch br. will be called next after br   if /' = i' + 1 ; it will be calledj i      j '
previous if j = i - 1.

Now, we start to define directed orbits.

Definition 4.19.  P will be called a single green (red) orbit if (see Figures 4.20
and 4.21):

(i) P has exactly one colored arrow A and this arrow is green (resp. red),
(ii) If we denote xi = /' (e(A)), i = 0,1,2,... ,m-l, then x¡ < jc(+3 for

0 < i < m - 4.

Figure 4.20. Single green orbits of periods 4 and 7.

Figure 4.21. Single red orbits of periods 5 ana 8.

Remark 4.22. It is easy to see that for each m > 4 if m = 1 (resp. m = 2)
there exists a map / G Y having a single green (resp. red) orbit of period m
and that such orbit is unique up to E-equivalence.
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Definition 4.23. P will be called a box green (red) orbit if m is even and P
is a 2-extension of a single green (resp. red) orbit of period m/2 (see Figures
4.24 and 4.25).

Figure 4.24.  Box green orbits of periods 8 and 14 obtained by making
2-extensions of the single green orbits shown in Figure 4.20.

Figure 4.25.   Box red orbits of periods 10 and 16 obtained by making
2-extensions of the single red orbits shown in Figure 4.21.

Remark 4.26. From Remarks 4.22 and 3.2 it follows that for each m > 8 if
«i = 2 (resp. m = 1) and m is even, then there exists a map / G Y having a
box green (resp. red) orbit of period m.

Definition 4.27. P will be called a double green (red) orbit if (see Figures 4.28-
4.31):

(i) «j is odd.
(ii) P has exactly two colored arrows, A and B, and these arrows are both

green (resp. red),
(iii) If we denote by p and q the integers such that 0 < p < m - 2,

0 < q < m - 2, f(e(A)) = b(B), f(e(B)) = b(A), and set « =
(«i - 5)/2, xt = f(e(A)) for z = 0,1, ... ,p and y. = f(e(B)) for
i = 0,1, ... ,q , then
(iii. 1) y i < xp_n+i for max(0, « - p) < i < min(«, q),
(iii.2) jc. < yq_n+i for max(0 ,n-q)<i< min(n,p),
(iii.3) x( < jc/+3 for 0 < i < p - 3 ,
(iii.4) y i < y .+3 for 0 < /' < q - 3.
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Notice that p + q = m-2 = 2n + 3. Observe also that replacing A, p , x,
i by B, q, y , j and vice versa does not affect the above definition.

Figure 4.28.   Double green orbits of period 5, with q equal 0 and 1,
respectively.

Figure 4.29. Double green orbits of period 11, with q equal 2 and 4, respectively.

Figure 4.30. Double red orbits of period 7, with q equal 0, 1, and 2, respectively.

Figure 4.31. Double red orbits of period 13, with q equal 4 and 5, respectively.
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Lemma 4.32. From (iii.l) and (iii.2) of Definition 4.27 it follows that
(a) jc; < x;+3 for max(0,n - q) < i < min(«,p - 3).
(b) y i < yi+3 for max(0 ,n - p) < i < min(«, q - 3).

Proo/ (a) Let max(0,« - q) < i < min(n,p -3). By Definition 4.27(iii.2)
we then have x; < y , where y = q - « + i. We have max(0,n - p + 3)
= max(0,i? - «) = max(0,« - q) + q - n < j < min(n,p - 3) + q - « =
min(# ,/z - 3 + q - n) = min(«, q) (here we use the equality p + q = 2« + 3 ).
By Definition 4.27(iii.l), we get y. < X    +j = Jf¡+3 • Thus, jc; < jc(+3 .

We obtain (b) from (a) by replacing A , p, x, i by B, q, y, j and vice
versa.     D

Lemma 4.33. The following statements hold.
(a) For a single or double orbit, if x¡ ~ x¡ and i < j then jc. < Xj .
(b) For a double orbit, if yi ~ v   and i < j then y{ < yj.

Proof. It follows from the fact that all arrows (jc,,jc/+1) and (y¡,y¡+x) are black
and from Definition 4.19(ii) and Definition 4.27(iii.3, iii.4).   D

Lemma 4.34. For a double orbit let 0 < i < p and 0 < j < q. Then the
following conditions are equivalent:

(a) xt ~yj.
(b) i-j = n-q.
(c) j-imn-p.

Proof. Since p + q = 2« + 3 = 2« , (b) and (c) are equivalent. Without loss of
generality, we may assume that p > q . Then, since p + q = 2« + 3, we have
p > n . By Definition 4.27(iii.l), y0 < xpn . Hence, y0 ~ xp_n . Therefore,
xi ~ y. is equivalent to j - 0 = i - (p - n), i.e., to (c).   D

Lemma 4.35. For a double orbit let 0 < i < p, 0 < j < q, and x¡ ~ y ■ Then:
(a) If i - j < n - q then x¡ < y .
(b) If j - I <n-p then y} < jc, .

Proof, (a) Assume that i > n-q . Since i-j<n-q,we have i < n-(q-j) <
n. Hence, by Definition 4.27(iii.2), jc( < yq_n+j ■ Since q - « + i < j and
V„+, ~ *, ~ y,, by Lemma 4.33, x¡ < yj.

Assume that i < n - q. Since p = 2n + 3-q>n-q + 3, there exists zc
such that n- q < k < p and zc = z. Take the smallest such zc . Since jc( ~ v ,
by Lemma 4.34, we have n-q + j = i = k. By the minimality of zc , we obtain
k < n-q + j . By the part already proved, xk < y.. Hence, in view of Lemma
4.33, jc,. < yj.

(b) We obtain it from (a) by replacing A, p , x, i by B , q , y, j and vice
versa.   D

Lemma 4.36. For a single or double orbit, if w and z are beginnings of black
arrows and w < z, then f(w) < f(z).
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Proof. If w = x¡ and z = x¡, from Lemma 4.33(a), it follows that i < j.
Since w and z are beginnings of black arrows, f(w) =xi+x and f(z) = x. , .
Again from Lemma 4.33(a) we obtain f(w) < f(z).

If w = y. and z = y¡, we obtain f(w) < f(z) as above, by using Lemma
4.33(b).

Assume now that w = jc( and z = y.. By Lemma 4.34, we have i—j = n-q .
By Lemma 4.35(b), j - i > n - p . Hence i-j<p-n = 2n + 3-q-n =
« - q + 3 . Therefore, i - j < n - q. Since f(w) = xi+x, f(z) = y.+x , and
(i + 1) - (j + 1) < « - q , by Lemma 4.35(a), we obtain f(w) < f(z).

If w = y j and z = jc(. , we replace A, p, x, i by B, q , y, j and vice
versa and also obtain f(w)<f(z).   D

Lemma 4.37. For a double orbit let q < p . Then q < n + 1. Moreover,
(a) If q<n then xn_q <y0< xn_q+J.
(b) If q = n + 1 then x0 < yx < x3.

Proof. Since p + q = 2« + 3, we obtain q < (2« + 3)/2 and hence q < n + 1.
Assume that q < n . By Lemma 4.34, yQ ~ jc and y0 ~ jc = xn_ 3.

By Lemma 4.35, we obtain (a).
If q = « +1, then p = n + 2 and, by Lemma 4.34, yx ~ x0 ~ jc3 . By Lemma

4.35, we obtain (b).   D

Proposition 4.38. Assume that a directed periodic orbit of period m satisfies
(i) and (ii) of Definition 4.27. With the notation of Definition 4.27(iii), //
p > q, then the conditions (iii.l), (iii.2), (iii.3), and (iii.4) of Definition 4.27
are equivalent to the following conditions:

(i) If w and z are beginnings of black arrows and w < z, then f(w) <
/(*).

(ii) If Q <n, then xn_q < y0 < xn_q+i, and if q = n+l, then x0 < y, <
x3.

Proof. If (iii.l), (iii.2), (iii.3), and (iii.4) of Definition 4.27 are satisfied, then
(i) and (ii) follow from Lemmas 4.36 and 4.37.

Assume that (i) and (ii) are satisfied. Notice that q < n + 1 and, hence, (ii)
covers all possible cases. Notice that n-q + 3 = p - n and, if q = « + 1, then
1 = q - « and 3 = p - n + 1. Hence, we obtain (iii.l), (iii.2), and (iii.3) of
Definition 4.27 from (i) and (ii) by induction. Then (iii.4) follows easily,   o
Remark 4.39. Since in Definition 4.27 we may replace A, p, x, i by B,q,
y, j and vice versa and the definition will remain the same, we may assume
that p > q. Hence, Proposition 4.38 gives us another equivalent definition of
double orbits. From this new definition it is easy to see that for every m > 5, m
odd, and for every q G {0,1, ... ,(m - 3)/2} , if «z = 2 (resp. m = 1), there
exists a map / G Y having a double green (resp. red) periodic orbit of period
m, with the prescribed q, and such an orbit is unique up to E-equivalence.

Now we define the last type of primary orbits.
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Definition 4.40. Assume that / G Y and P is a directed periodic orbit of /
of period m . We say that P is a twist orbit in the following cases (see Figures
4.41 and 4.42).

(1) If «i = 3.2*, k > 0, we use induction. If k = 0, then P is twist. If
k— 1k > 1 and twist orbits of period 3.2       are defined, then P is twist if

it is a 2-extension of a twist orbit of period 3.2 ~  .
(2) If m = 3.2 .«, « is odd, and « > 3, then P is twist if it is an R-

kextension of a twist orbit of period 3.2  , where R is a pendulum orbit
of period «.

Figure 4.41. Twist orbits of period 3, 6, and 12. Each orbit with period
different from 3 is a 2-extension of the previous one.

Figure 4.42. Twist orbits of periods 15 and 30. The orbit of period 15
(resp. 30) is an Ä-extension of the twist orbit of period 3 (resp. 6) shown
in Figure 4.41, where R is the pendulum orbit of period 5 shown in Figure
4.3.

Remark 4.43. It is easy to see (use Remarks 4.17 and 3.5) that for each «i = 0
there exists a map / e Y having a twist orbit of period m .

5. Proofs of primarity

In this section we prove that the orbits defined in the previous section are
primary. We start with the undirected case. Again we consider it in parallel
with the case of maps of the interval. Hence the assumptions are that / G X
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and P is a pendulum orbit of / of period m . We have one of the cases I, II,
III, and IV of the previous section (There are no pendulum orbits in case V.)

Remark 5.1. Let P be a periodic orbit of an EP-adjusted map / G X. Since
we are only interested in the existence, nonexistence, and behavior of periodic
orbits of period larger than one, there is no basic difference between cases I,
II, and III. First notice that, since the map / is EP-adjusted, we only have to
take into account the EP-graph of / in Span(EP). Now the only difference
between cases I and II is that in case II, such a graph contains the interval
[0, min(P)]. Since /(0) = 0, in this interval there is no periodic orbit of period
larger than one. Hence case II can be reduced to case I. The difference between
case I and case III is that, in case III, always 0 G Span(P) and /(0) = 0. But
in case I, clearly there exists a fixed point e of / such that e G Span(P) (if
there exist many, choose one). Then we reduce case I to case III by letting e in
case I play the role of 0 in case III. If P is pendulum of odd period and we are
in case I, this fixed point is given by Definition 4.1. If P is pendulum of even
period and we are in case I, from the definition it follows that there exists a fixed
point e G Span(P) such that Card([min(P),é>]nP) = Card([?, max(P)]nP) =
Card(P)/2. This point e is the one which has to play the role of 0 to reduce a
pendulum orbit in case I to a pendulum orbit in case III. Therefore, from now
on we only consider cases III and IV.

Lemma 5.2. Let P be a pendulum orbit of period m = 2 , k>l,ofan EP-
adjusted map f G Y.   Then f has periodic orbits of periods 1,2,2 , ... ,2
and no others.
Proof. We use induction. For zc = 1 this is obvious. Assume that we know it
for pendulum orbits of period 2 ~~ . If m = 2 and P is a pendulum orbit of
period m , then by Definition 4.1, P is a 2-extension of a pendulum orbit ß of
period 2 ~ . We may assume that the map A for which ß is a periodic orbit
is Eß-adj usted. By the induction hypothesis, A has periodic orbits of periods
1,2,22, ... , 2 _1 and no others. By Lemmas 3.8 and 3.11 and Remark 3.6 it

2 kfollows that / has periodic orbits of periods 1,2,2 , ... ,2   and no others.   D

Lemma 5.3. Let P be an R-extension of Q. If Q is a pendulum orbit of period
2 and R is primary of period larger than one, then P is primary.
Proof. Since the period of R is larger than one, the period m of P is larger
than 2 . We may assume that ß is a periodic orbit of an Eß-adjusted map
A. From Lemma 5.2 it follows that A has no periodic orbits of period «i.
Hence, by Lemma 3.12, P is primary.   □

Proposition 5.4. Pendulum orbits are primary.
Proof. Let P be a pendulum orbit of period m of an EP-adjusted map /.
Assume first that «z is odd. Let jc( be as in the definition of pendulum orbits
of odd period. If a loop of the EP-graph of / changes the parity of a branch at
each step, then it has even length. Hence, if we have a loop of length m in our
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graph, it has to go through a step preserving parity of a branch. If we denote by
/( the basic interval with larger endpoint equal to xi for i = 0,1,2, ... ,m-
1, then this is the step from Im_x to /„ (this follows from the definition of
pendulum orbit). We claim that if /( /-covers / , then j < i+l. If i = m-l,
this is obvious. Assume that i < m - 1. Then f(Span{x0,xx, ... ,jc(}) =
Span({jc0, JCj, ... , jc(+1 }). Consequently, if /( /-covers L , then by (ii) of the
definition of pendulum orbit, j < i + 1 . This proves the claim. Therefore,
our loop is /0 —» /, —> I2 —► •• ■ —► Im_x —»/o- Hence, from Proposition
1.11, every periodic orbit of / of period m is associated to the above loop.
From statements (a.3) and (b) of Proposition 1.10 it follows that P is the only
periodic orbit of / of period m. By the First Theorem (2.3), P is primary.
This ends the proof for «j odd.

Now let m = 2 , k > 1. Clearly, if k = 1, then P is primary. If k > 1,
then by Definition 4.1 and Lemma 5.3, P is also primary (here we also use
Remark 3.6).

If «2 = 2 .« with n > 3, n odd, then by Definition 4.1, Lemma 5.3, and
the part of the proposition already proved, P is also primary.   D

Now we are going to consider the directed case.

Lemma 5.5. Let P be a twist orbit of period m = 3.2    with zc > 0 of an EP-
adjusted map f G Y. Then f has periodic orbits of period 3,3.2,3.22, ... , 3.2
and no others.

Proof. We use induction. For k = 0 it is obvious. Assume that we know
this for twist orbits of period 3.2 ~ . If m = 3.2 and P is a twist orbit of
period «, then by Definition 4.40 P is a 2-extension of a twist orbit ß of
period 3.2 _1 . We may assume that the map A for which ß is a periodic
orbit is Eß-adjusted.  By the induction hypothesis, A has periodic orbits of

• 2 k— 1periods 3,3.2,3.2 , ... ,3.2 and no others. By Lemmas 3.8 and 3.11 and
by Remark 3.6, / has periodic orbits of periods 3,3.2,3.22, ... , 3.2fc and no
others.   □

Lemma 5.6. Let P be an R-extension of Q. If Q is a twist orbit of period 3.2
and R is primary of period larger than one, then P is primary.
Proof. Since the period of R is larger than one, the period m of P is larger

kthan 3.2 . We may assume that ß is a periodic orbit of an Eß-adjusted map
A . From Lemma 5.5 it follows that A has no periodic orbits of period m.
Hence, by Lemma 3.12, P is primary.   D

Proposition 5.7. Twist orbits are primary.
Proof. Let P be a twist orbit of period m and let / be EP-adjusted. If
«z = 3, then P is obviously primary (use the First Theorem (2.3)).

If «j = 3.2 , P is primary by Definition 4.40 and Lemma 5.6 (recall that
every periodic orbit of period two is primary).
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If «î = 3.2 .« , « > 3, « odd, then P is primary by Definition 4.40, Lemma
5.6, and Proposition 5.4.   D

Now we are going to prove that single, box, and double colored orbits are
primary. First, we consider the cases of single and double colored orbits. In
both cases we assume that / has an orbit P of period m , this orbit is single
colored or double colored, and / is EP-adjusted. We shall investigate loops of
length m in the EP-graph of /. We take such a loop a. We use the notation
of Definitions 4.19 and 4.27. In what follows, we start by making several simple
observations.

Observation 5.8. In the green (red) case, when going along the loop a, we
cannot move to the previous branch (resp. stay at the same branch).

Observation 5.9. Let v be the number of times that we do not move to
the next branch. Then in the green (red) case we have m - v = 0 (resp.
(m -v) - v = 0). Since m = 2 in the single red and double green cases, and
«i = 1 in the single green and double red cases, we obtain v = 1 in the single
case and v = 2 in the double case.

Observation 5.10. When moving along the loop a we go from a basic interval
/ to a basic interval not in the next branch; then there are two possibilities. The
first is that one of the endpoints of / is the beginning of a black arrow and the
other is the beginning of a colored arrow. We call this arrow C. In this case
we move from / to some basic interval contained in [0,e(C)]. The second
possibility is that both endpoints of / are beginnings of colored arrows. Then
P is a double orbit and we move from / = [b(A), b(B)] to some basic interval
contained in [e(A) ,e(B)].

In the rest of the section we shall distinguish two cases:

Case A. No basic interval has both endpoints equal to beginnings of colored
arrows.

Case B. There is a basic interval with both endpoints equal to beginnings of
colored arrows.

Notice that the single case always satisfies Case A. To deal with Case B we
have to prove some auxiliary lemmas. However, we have to fix our notation
first.

Notation. In Case B, we assume that b(A) < b(B). We may make such an
assumption without loss of generality because in Case B, b(A) ~ b(B). We
should remember that b(A) = yq , b(B) = xp , n = (m - 5)/2, and p + q =
2«+ 3.

Lemma 5.11. In Case B, q = « and p = « + 3.
Proof. First, notice that p = q . Assume that q > n . Then p < n + 3 . Since
p = q, we have q > « + 3 and p < n . Hence, max(0,n-q) <p < min(« ,p),
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because p = 2n + 3 - q > « - q. Therefore, by Definition 4.27, we have
xp < yq„n+p - y„+3 < yq , a contradiction. Hence q < n .

Assume that q < « . Then p > « + 3. Since q = 2n + 3-p>n-p and
q < n, we have max(0,« -p) < q < min(«,r7).  By Definition 4.27, we get
y   < x     +   = JCn+3 < x , which contradicts our assumption that y   and x
are endpoints of a basic interval. Hence q > n .   D

Lemma 5.12. In Case B, b(B) is the largest point of P on its branch.
Proof. If x( ~ jc   for some i, then i = p and, by Definition 4.27, x( < xp . If
y( ~ xp for some i, then yi ~ y? and i = q. By Definition 4.27, y. < yq and,
since by Lemma 5.11 and Definition 4.27 y  < xp , we obtain y( < xp . Hence,
the point x  = b(B) is the largest point of P on its branch.   D

Lemma 5.13. In Case B the points e(A) and e(B) are the endpoints of some
basic interval. Moreover, e(A) < e(B).
Proof. Recall that e(A) = x0 and e(B) = y0 . By Lemma 5.11 and Definition
4.27, we have x0 < y0 < jc3 . Hence, again by Definition 4.27, there are no
points of P between x0 and y0.   D

In Case A, we call the situation described in Observation 5.10 as the first
possibility moving along C. In Case B, this applies to C = A. By moving
along B we shall mean a step from [b(A),b(B)] to [e(A),e(B)] (by Lemma
5.13, this interval is basic).

Now we go along the loop a, perhaps many times. We call the consecutive
colored arrows along which we are moving C0,CX,C2, ... . We consider several
possible cases.
Lemma 5.14. Assume that P is a double orbit and C, = C,,, for some i. Then
between moving along C{ and C(+1 we make at least « + 3 steps (where n is
from Definition 4.27).
Proof. In Case A we may assume that C; = C/+1 = A. In Case B we may
not make this assumption only in the following situation: we use in the proof
the definition of moving along A , and its consequences are false if we replace
A,p, x ,i by B ,q,y ,j and vice versa. However, we have to use the definition
of moving along A only in two places: to conclude that after moving along
A we are in one of the basic intervals contained in [0,x0], and to conclude
that to move again along A we need to be in an interval containing b(A).
But, in Case B, if we replace A,p,x,i by B,q,y,j and vice versa, both
consequences stay true. The first one follows from the fact that, by Lemma
5.13, e(A) < e(B) = y0. The second one is obvious. Hence, the situation
described in the beginning of this paragraph never arises, and therefore even in
Case B we may assume that Ci = C,, = A .

The above explanations may become clearer after reading the rest of the
proof.

After moving along C( we are in one of the basic intervals contained in
[0,x0]. Since during the next k steps which we do before moving along C¡+x ,
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we move to the next branch each time, by Lemma 4.36, we are in the intervals
[0, Xj], [0, x2], ... , [0, xmin(p k)] after 1,2,..., min(p, k) steps, respectively.
Two cases are possible:

1. p > k. Since in the next step we move along A and min(p ,k) = zc we
have b(A) g [O^]. Hence b(A) < xk . We have three subcases.

(l.i) max(0, n-q) < k < min(« ,p). Then, by Definition 4.27, xk < yq_n+k ■
But since xk > b(A) = yq , we get yq < yq_n+k and, again by Definition 4.27.
q < q - n + k. Hence zc > « .

(1 -ii) zc < max(0,« - q). Then we have 0 < k < n - q and we replace zc
by k' = n-q , n- q+l, or n- q + 2 such that k' = n . Since n-q < « and
zc' = « , we have k' < n . Also we have « - q + 2 < p, because p + q = 2« + 3.
Hence, zc' < min(« ,p). On the other hand, q + p - n = « + 3 = « = zc'.
Hence, q - k' = n - p and, by Lemma 4.34, we have y ~ xk,. Therefore
y = b(A) < xk < xk, because k' > k and by Definition 4.27(iii.3). Thus, we
can proceed as in (l.i). Then we obtain k' > n . This is a contradiction.

(l.iii) zc > min(«,p). Since zc < p, we have k > n. Hence in case 1 we
have x > « .

2. p < k. Suppose that k < n. Then p < n and, hence, q > n + 3 > «
(because p + q = 2« + 3). Therefore, by Definition 4.27(iii.l, iii.2) we have
y„ < x < yn+i. Moreover, if p > 3, then x 3 < yn . Hence the largest
point z of P such that z < xp is equal to yn. We continue moving along
the loop a starting from the (p + 1 )th step. At each step we move to the next
branch and we are consecutively in [0,yn+1], [0,yn+2], ... ,[0,yn+k_p]. Since
in the next step we have to move along A , we have b(A) G [0,yn+k_p]. Hence
b(A) < yn+k_p ■ Since b(A) = yq , by Definition 4.27, we get q < n + k - p
and, consequently, « + 3 < zc, a contradiction. Hence, in case 2 we also have
zc > «.

Clearly, in the green case we have zc = 0 and in the red case zc = 1. We
note that, by Definition 4.27, in the green case we have m = 2 and « = 0, and
in the red case m = 1 and « = 1. Hence, zc = «. Since k > « we obtain
zc > n + 3.   D

We denote by /; the basic interval with larger endpoint equal to x(, and by
/ the interval with larger endpoint equal to y . Also, in the single case we set
p = m — 1.
Lemma 5.15. Assume that either P is a double orbit and C. = A, Cj+X = B for
some i, or P is a single orbit. Then between moving along Ci and Cj+X we
make at least p steps (where p is from Definition 4.27 in the double case and
p = m - I in the single case). Moreover, if we make exactly p steps, then we
move through the intervals I0,IX,I2, ... ,Ip.
Proof. We move through basic intervals contained in [0,x0], [0,x,], ... ,
[0,x ] consecutively. Hence, by Lemma 4.36, we cannot reach b(Ci+x) = xp
in less than p steps. Since the only point of [0,Xy] which is mapped to xj+x
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is x for j = 0,1, ... ,p - 1 (we recall that / is EP-adjusted), if we make ex-
actly p steps, we have to use the intervals /0, /,, ... , Ip_l consecutively. The
next step is along Ci+X. Hence, the corresponding basic interval has b(Ci+x)
as endpoint.  But since it is contained in [0,xp] = [0,b(Ci+x)], it has to be
V n
Lemma 5.16. Let P be a double orbit, C¡ = B, and Ci+X = A for some i.
Then between moving along Ci and Cj+X we make at least q steps (where q
is from Definition 4.27). Moreover, if we make exactly q steps, then we move
through the intervals J0,JX, ... ,Jq.
Proof. In Lemma 5.15, we may replace A,p ,x ,i by B ,q,y ,j and vice versa.
In case A it is obvious. In case B we can do that by the reasons given at the
beginning of the proof of Lemma 5.14.   D

Proposition 5.17. Single and double colored orbits are primary.
Proof. Let P be a periodic orbit of a map / e Y of period m. We may
assume that / is EP-adjusted.

Assume first that P is a single colored orbit. From Observation 5.9 it follows
that when going along a loop of the EP-graph of / of length m we have to
move along the colored arrow. By Lemma 5.15, the loop associated to P is
the only loop of length m in the EP-graph of /. From Proposition 1.11
and statements (a.3) and (b) of Proposition 1.10, it follows that P is the only
periodic orbit of / of period m . By the First Theorem (2.3), P is primary.

Now assume that P is a double colored orbit. From Observation 5.9 it
follows that when going along a loop of the EP-graph of / of length m we
have to move along a colored arrow at least twice. If we move twice in a row
along the same colored arrow, then in the whole loop we either use only one
arrow to move along it or we use both arrows. In the first case, by Lemma 5.14,
m > 2(n + 3) + 2 = «i + 3, a contradiction. In the second case, by Lemmas 5.14,
5.15, and 5.16, m>p + q + n + 3 + 3 = m + n + 4, again a contradiction. Hence,
we do not move along the same colored arrow twice in a row. By Lemmas 5.15
and 5.16, we get that the loop associated to P is the only loop of length m of
the EP-graph of /. As above, by Proposition 1.11, statements (a.3) and (b) of
Proposition 1.10, and the First Theorem (2.3), it follows that P is primary.   D

Proposition 5.18. Box colored orbits are primary.
Proof. Since a periodic orbit of period two is primary, in view of Lemma 3.12
and Remark 3.6, it suffices to prove that if ß is a single colored orbit of an
Eß-adjusted map A of period /, then A has no periodic orbits of period 2/.
If a is a loop in the Eß-graph of A , associated to a periodic orbit of period
2/, it has to go along the colored arrow at least twice. To see this, denote by
v the number of times that we move along a colored arrow, as in Observation
5.9. We have 2/ - v = 0 in the green case and 2/ - 2v = 0 in the red case.
From Remark 4.22, we have / s 1 (resp. / = 2 ) in the green (resp. red) case.
Hence v = 2.
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Since a goes twice along the colored arrow, by Lemma 5.15, a is a repeti-
tion two times of the loop associated to ß. Hence, ß is associated to a. By
Proposition 1.10, a does not give a periodic orbit of period 2 , a contradic-
tion.   D

6. General rule for primary orbits

Lemma 6.1 (General Rule). If P is a primary periodic orbit of period m > 1
of f G Y such that the points of P lie on at least two branches, then there is no
point x G P such that f(x) > x.
Proof. Assume that there exists x e P such that f(x) > x (notice that this
implies m > 3 ). We may assume that x is the largest point on its branch with
this property. Then x is the smaller endpoint of some basic interval I = [x ,y]
and / /-covers itself. Since we only take into account the behavior of / on
EP, we may assume that / is EP-adjusted.

We set Vi = /'(/), i = 0,l,2,.... Since VQ c Vx, we have V0 c Vx c
V2 ■ ■ ■ . Since / is EP-adjusted, we have

rV. D Span({fJ(x): j = 0,1,2, ... ,i}u{fJ(y): j = 0,1,... ,/})■
Therefore, for some r, VQÇ Vx Ç V2Ç ■ ■ ■ Ç Vr = Span(EP) (since the points
of P lie on at least two branches, Span(P) = Span(EP)). Since

Card(P n VM) > Card(P n V,)   if i < r
and Card(P n V0) = 2, we obtain r < m - 2.

Let zc be the smallest integer such that Vk contains a basic interval J / /
which /-covers /. Since the interval [0,x] /-covers /,such zc exists, and if
0 G Vt then k < i. Therefore, we have

1 step
r.    k   steps
/ <=»      J.

1 step

By Lemma 1.12, there is a loop / —» • • • —► J —> / in the EP-graph of / of
length zc + 1. Adding to this loop the loop / / times, we get a loop of length
zc + 1 + / which goes through / / + 1 times. If / > 2, since / contains only
two points of P, this loop cannot be associated to P. By construction it is
nonrepetitive and, by Lemma 1.3, there is a periodic orbit of period k + 1 + /
associated to it. Hence, by the First Theorem (2.3), we cannot have m-(k+1 ) >
2. Thus, k > m - 3 . Since zc<r<m-2,we obtain k = r = m - 2. Since
r = «i-2, Card(Pn^+1) = Card(PnK) + l for i = 0,1,2, ... ,r-I. Since
k = r, we have 0 ^ V x.

Now we claim that there is a point z G P such that / (z) is the only
point of P lying on a branch different from brind(;c), and the ordering of the

points z. = f'(z), i = 1,2, ... ,m -2, is either

(Í)    Zm-2 < Zm-4 < < Z < < Zm-5 < Zm-3   0f
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(ii) zm_3 < zm_5 <      <z<      < zm_A < zm_2.
In the case m = 3, since P has points in at least two branches, the claim

holds for z = x and (ii) is satisfied. If m > 4, since 0 £ V{, we have
ind(/(y)) = ind(x). Since Card(F0 n P) = 2 and Card^ n P) = 3, we have
either f(x) = y, f(y) < x , and (f(y),x) n P = 0, or f(y) = x, f(x) > y,
and (/(x),y)nP = 0.

We prove the claim in the first case. In the other case it follows similarly.
We set z = x . If m = 4, then the claim holds and (i) is satisfied. If m > 5,
Vy = [f(y),y] = [z2>ZJ • since Card(K, nP) = Card(F¡ nP) + 1, z G Vx, and
0 $. V2 , we get that z3> zx and (z3, z,) n P = 0. Iterating this process, we
have either (i) or (ii). Hence the claim holds because P has points at least in
two branches.

Case (i) is impossible, since then [zm_2, zm_4] /-covers /, in contradiction
to the minimality of k (notice that [zm_2, zm_4] c Vm_3).

In case (ii) we set K = [0, zm_3] and L = [zm_4, zm_2]. We have K^± L.
Then we have the loop K —y K —►•••—* K —> L ^ K of length m in the EP-
graph of /. This loop is nonrepetitive and, by Lemma 1.3, there is a periodic
orbit of period m associated to this loop and contained in one branch. By the
First Theorem, this is a contradiction.   D

7. Undirected theorem (first part)

Now we start proving the following result.

Theorem 7.1 (Undirected Theorem). Let P be a periodic orbit of f G X. If P
is undirected and primary, then P is pendulum.

In this section we only state and prove some preliminary results. The Undi-
rected Theorem will be proved in §9.

In the rest of this section we shall assume that P is a periodic orbit of an
EP-adjusted map / e X of period m , and P is undirected. We shall also use
the notation of §4 for undirected orbits. We consider here only cases I, II, III,
and IV (see §4).

By Remark 5.1, it is enough to consider only case III or IV. Indeed, in the
reduction of cases I and II to case III we did not use the assumption that P
is pendulum. Here any fixed point e G Span(P) can play the role of 0 in the
reduction. Recall that cases III and IV are:

(III) / g Y, P lies on two branches.
(IV) / g Y, P lies on all three branches and all smallest arrows have direc-

tion different from 0.
Hence, in the rest of the section, m>2.

Lemma 7.2. Assume that P is pendulum, m>3, and m is odd. Then, for every
« such that n >s m, f has a periodic orbit Q of period n with Span(ß) $
Span(P).
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Proof. If « = 1, then Lemma 7.2 follows from Definition 4.1. Now we assume
that « is even. There is i < m - 1 such that x; ~ x(+2 but f(x¡) and
f(xi+2) lie on different branches (we use the notation of Definition 4.1 ). Denote
K = [0,xi], L = [x.,x/+2],and M = [0,x(+1]. We have K +± M +± L, which
gives us a periodic orbit ß of period « , with Span(ß) C Span(P). Now, we
consider the case n odd, n > m. Denote by /( the basic interval with x; as
the larger endpoint. Clearly, /0 —► /, —► • • • —► ImX —* IQ is a loop of length m
of the EP-graph of / (cf. the proof of Proposition 5.4). From the definition
of undirected orbit it follows that there are two basic intervals adjacent to 0 on
branches of different parity, which cover each other. Hence, we can add to our
loop of length m the necessary number of times the loop of length two given
by these two intervals to get a loop of length « . This loop is nonrepetitive and
gives a periodic orbit ß, of period « , with Span(ß) C Span(P).   D

We shall need some new definitions and notation.
In case III we denote by Io and / the basic intervals adjacent to 0 on the

odd and even branches, respectively.
In case IV we denote by Io the basic interval adjacent to 0 on the odd branch.

I0 /-covers one of the basic intervals adjacent to 0 on the even branches. We
denote this interval by Ig.

Clearly I0*±Ie. Set V0 = I0 U Ie and V, = f'(Vo) for i = 1,2, ... . We
have Vo c Vx and, hence, V¡ c V¡+x for all i. We denote by y0, ye the end-
points of Ig and Ie , respectively, different from 0. Then V0 = Span({yo,ye})
and, since / is EP-adjusted, Vt D Span({/J(yo): j = 0,1, ... ,i}U {fJ(ye):
j = 0,1,2, ... , /}). Since no proper subset of P is invariant, we have Vo Ç
Vx C ... C VT = Span(EP) for some r > 0. Since, Card(Fo n P) = 2 , we have
r < m — 2.

Lemma 7.3. In case IV, if P is primary, then P has a blue arrow.

Proof. Assume that P is primary but P has only black arrows. Then obviously
«i is even. Denote by zc the smallest integer such that VknP has nonempty
intersection with all three branches. We have k < r < m -2. There is a point
x G PC\Vk_x such that f(x) is on that even branch which does not contain Ig.
We may assume that x is the smallest such point. Let J be the basic interval
contained in [0, x], adjacent to x . Since P has only black arrows, / lies on
the odd branch. Clearly, J /-covers Ig. Since J c Vk_x, then either Io or
Ig /-covers J in at most k- 1 steps. From Lemma 1.12, the EP-graph of /
has either the loop I0 —► • • • -+ J —> Ig —> I0 or ^-»■■■-»/-»/f of length at
most m - 1. However, since all the arrows are black, the lengths of all loops
of the EP-graph of / are even. Hence, our loop has length at most m - 2
(recall that m is even). Adding to our loop the loop /0 <=t Ig enough times,
we get a loop of length m going through Ig at least two times. This loop is
nonrepetitive and, by Lemma 1.3, gives a periodic orbit of / of period m.
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Clearly this orbit is different from P. From the First Theorem (2.3), we get a
contradiction.   G

Lemma 7.4. Assume that P has a blue arrow. Then f has a pendulum orbit Q
of period I odd, 1 < / < m + 1, such that Span(ß) c Span(P).
Proof. Let k be the smallest integer such that Vk contains a beginning of a
blue arrow. We have k < r < m - 2.

In case IV, let Jg be the basic interval adjacent to 0 on the even branch
different from the one on which Ig lies. Clearly, Jg  /-covers I0 .

There is a basic interval J C Vk such that one of its endpoints is a beginning
of a black arrow and the other one is a beginning of a blue arrow. Then J
/-covers I0 . Moreover, in case III, J /-covers Ie and in case IV / /-covers
h or J„.e e

Since J C Vk, either Ig or Ig /-covers J in zc steps. By Lemma 1.12,
there are basic intervals K0,KX, ... ,Kk such that Ko is one of I0 , Ig, Kk = J
and K( /-covers Ki+X for i = 0,1, ... ,k- I. Clearly, K¡ c Vi and, by the
minimality of zc, we obtain K¡ c V¡\V¡_X for i = 1,2, ... ,k. Also, by
minimality of k, K{ and K¡+[ lie on branches of different parity, for z =
0,l,...,k-l.

Now in various cases we take various loops of length / :

(i) k even, K0 »i0:10 ^Kx - -.-Kk -J0, l = k+l.
(ii) k even, KQ = Ig, J /-covers Ig:Ie-*Kx-+-► Kk -> Ig, I = zc+1.

(iii) fc even, K0 = Ig, J  /-covers Jg: Ig ^ Kx ^-> Kk -+ Je ^ Ig ^
Ie, l = k + 3.

(iv) k odd, tf0 = /0, J   /-covers /, : /0 -> K{ -->Kk^Ig^ Ig,
l = k + 2.

(v) zV odd, *0 = /0 , /  /-covers /,: /0 - ^ -....-» Kk .-* J, -* /0,
/ = /c + 2.

(vi) zc odd, Ko = Ig:Ig^Kx^-^Kk-^Io^Ig, l = k + 2.
Of course, cases (iii) and (v) can occur only in case IV. Notice that / is always
odd and /<zc + 3<«i+l. Moreover, the loop obtained is nonrepetitive.
Hence it gives a periodic orbit ß of period / with Span(ß) c Span(P).

Assume that / > 3. We claim that ß is undirected. This is obvious in
case III. In case IV, we note that each time we move along a black arrow, we
change parity of the branch. Hence, by construction, we change parity of the
branch at each step of the loop, except at the step beginning at Kk . Therefore,
if Kk is not the closest interval to 0 on its branch among the intervals appearing
in the loop, obviously ß is undirected. However, if it is the closest one, by
construction, it is the only one on its branch. Hence, Kk has to be on an even
branch. Thus, we are in case (ii), (iv), or (v) and in the next two steps we go
through the intervals closest to 0 on the remaining two branches (during these
two steps we cannot come to the branch on which Kk is, since / > 3 ). Then
we move in different directions and this proves the claim.
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In both cases (III and IV) the only possibility of not changing parity of the
branch when we move along the loop is to make a step from Kk . Hence, by
construction, ß has at most one blue arrow. Since / is odd, it has exactly one
blue arrow. Thus, ß satisfies condition (i) of Definition 4.1 for the odd case.

Observe that always, when we use some other intervals than KX,K2, ... ,
Kk , they are I0 , Ig, Jg. Moreover, each of them is used at most once and
they appear in the loop following Kk and preceding Kx . Since / , / , Jg are
adjacent to 0 (each on its branch) and Kt g V¡ ,\ Vi_x , we obtain condition (ii)
of Definition 4.1 for the odd case. This proves the lemma in the case / > 3.

If / = 3 then we add to our loop the loop I0 z± Ig. Then we obtain a
loop of length 5 and an associated periodic orbit ß of period / = 5 with
Span(ß) c Span(P). Obviously it is undirected and has exactly one blue arrow.
If we have in our loop intervals / G {I0,Ie,Je} and K G {Kx ,K2) lying on
the same branch, then / is closer to 0 than K. Since / is EP-adjusted this
proves condition (ii) of Definition 4.1 for the odd case. This ends the proof if
«i > 4.

If «i = 2, then P has only black arrows, a contradiction.
If «i = 3, then P is pendulum and we can take ß = P.   D

Lemma 7.5. Let P be a primary orbit of an EP-adjusted map /eX. Assume
that P is undirected and has period m>2. Then,

(a) If m is even, then all arrows are black and we have case III.
(b) If m is odd, then P is pendulum.

Remark 7.6. One should remember that cases I and II were reduced to case III.
So, in fact, cases I and II may occur under the assumptions of (a) of Lemma
7.5 as well as case III.

Proof of Lemma 7.5. (a) Assume that P has a blue arrow. From Lemma 7.4 /
has a pendulum orbit ß of period / odd, such that Span(ß) c Span(P). Let
A be an Eß-adjusted map. By Lemma 7.2, A has a periodic orbit R of period
«i such that Span(P) C Span(ß). From the Adjusting Lemma (1.18), / has
a periodic orbit R E-equivalent to R, such that Span(.P) c Span ß. By the
First Theorem (2.3), this is a contradiction. Hence, P has all arrows black. By
Lemma 7.3, we have case III.

(b) Since m is odd, P has a blue arrow. By Lemma 7.4, / has a pendulum
orbit ß of period / odd, 1 < / < m + 1, such that Span(ß) c Span(P). Since
both / and m are odd, I < m . If I < m then, by Lemma 7.2 and the Adjusting
Lemma, / has a periodic orbit R of period m such that Span(P) c Span(P).
By the First Theorem, this is a contradiction. Hence, I = m. Again, by the
First Theorem, ß = P because P is primary. Hence P is pendulum.   D

8. Primary extensions

In this section we study some properties of extensions of primary orbits.
Throughout the section we shall assume that P is a periodic orbit of a map
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/ € X and P is an «-extension of ß. We also use the notation of Definitions
3.1 and 3.3, simplified by assuming that ip(i) = z'+ 1 (mod 5 ) (we renumerate
P( 's if necessary). In this section we shall not take into account whether P is
directed or undirected.

In fact, the results of this section and other results about extensions are
fairly general and apply to a large class of maps of one-dimensional spaces
(cf.   [BCJM]). We denote the elements of P¡ by x'0,x'x, ... ,x'nX  in such a
way that f(x',) = x'+1 (mod « ). When using this notation we shall keep the
convention that addition at subindices of P and superindices of x is mod s
and at subindices of x is mod « .

Lemma 8.1. // f(x)) = x¡+p, then f(xl]+q) = x\++pq , for q = 1,2, ... ,n-I.

Proof.  f(x)+q) = f+«s(x]) = r(x¡+P) = x% .   D

Lemma 8.2. Let P be primary and let n be even. Then P is an « /2-extension
of a 2-extension of Q.
Proof. By Lemma 3.13, each P. is a primary orbit of f . Denote P° = {x' : j
is odd}, Pf = {x'j,: j even}. Since Span(P;) is an interval, from Lemma 7.5(a)
and Remark 7.6 it follows that Span(P;°) n Span(P^) = 0 (see also Remark
5.1). From Lemma 8.1, we have {f(P°),f(P¡)} = {P°+x,Pe¡+x} for each i.
Hence, P is an «/2-extension of a 2-extension of ß, where this 2-extension
of ß is obtained by collapsing each of the sets P° , P\ to a point (as in (iv)
of Definition 3.1).   G

Lemma 8.3. Let P be primary, n odd, and « > 3. Then for each i we can
renumerate x) 's in such a way that still /J(x') = x'+l and either

i i i i i i i i

or
i i i i i i i i

Proof. By Lemma 3.13, each P. is a primary orbit of f . Since Span(P() is an
interval, from Lemma 7.5(b), Remark 7.6, and Definition 4.1, there is a point
ei G Span(P() such that (perhaps after renumeration of x', 's, which keeps the
property that f(xlj) = x'j+x) all x'j's with ;' even are on the same side of e¿,
and all x' 's with /' odd are on the other side of e,. Moreover, we know that
x'j g (e¡,x'k) is equivalent to j < k. From this the statement of the lemma
follows easily.   D

In the rest of this section we shall use the assumptions, results, and notation
of Lemma 8.3.

Lemma 8.4. Under the assumptions of Lemma 8.3, if p < s then between
fp(x'Q) and fp(x\) there are no points fp(x'j) for j < « - 1.
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Proof. We may assume that / is EP-adjusted. Suppose that fp(x') G
(fP(x'0), fP(x[)) for some j < n - 1. Clearly j > 1. Then

f([x'0,x'x])Df-p([f(xl0),fp(xix)])Df-p([fp(x,0),fp(x'J)])
=> [f(x'0),f(x'j)] = [x\ ,x'j+x] D [Xj_x ,x'j+x].

Thus, in the P,-graph of f we have the loop

[x0,x,] - [Xj_x ,xj+x] - [x.,x.+2] -^ ... ^ [xn_2,xn] -+ [x0,xx]

of length smaller than « . With addition of the loop [x¿, x¡ ] —► [x¿, x¡ ] re-
peated enough times, we get a periodic orbit P[ of f of period « with
Span(P(') C Span(P(). By Lemma 3.9 and the First Theorem (2.3), this is a
contradiction.   D

Lemma 8.5. Under the assumptions of Lemma 8.3, if « > 3 and p < s, then
either fp(x'0) = xfp or fp(x'0) = x\+p .
Proof. Let fp(x'0) = Xj+P . Then, by Lemma 8.1, fp(x\) = *£* . By Lemma
8.4, there are two possibilities:

1. P n (x'j+p ,x'7p) = 0. Then, from the ordering of the points x\+p,
I = 0,1,2,...,«- 1, we get 7 = 0 (here we use the assumption that « > 3 ).

2. P n (x'j+p ,x'7p) has exactly one element. Then, from the ordering of the
points x'i+p , I = 0,1,2, ... , « - 1, we get j = 1.   D

Lemma 8.6. Under the assumptions of Lemma 8.3, there is exactly one t < s
such that f(x'0) ¿ x'0+x.

Proof. Since fs(x'0) = x[ , such t exists. Suppose that there are t, r < s , t ^ r,
such that f(x'0) ^ x'0+x and f(xrQ) ^ Xq+1 . We may assume that r < t and that
t is the smallest integer larger than r such that f(x'0) ^ x¿+ .

Assume that « > 3. By Lemmas 8.1 and 8.5, we have f'~r+ (xr0) = x'2+ .
Since t - r + 1 < s, this contradicts Lemma 8.5.

Assume that « = 3. We may assume that / is EP-adjusted. In each
Span(P() we have two basic intervals: /' and J'. One of the intervals Ir, f
/-covers both Ir+X, Jr+X. Analogously, one of /', /' /-covers both /'+ ,
J,+ x. Clearly, for all i, either /' /-covers Ii+X and f /-covers JM , or /'
/-covers J'+x and J' /-covers /'+ . Hence, one of the intervals Is, Js (say
Is)   fs-covers one of the intervals Is, Js at least twice and the other one at

rx _ i^
least once. Clearly Js fs-covers Is. Then we have either Is ^ Js or Is ?± Js.
In both cases we obtain a periodic orbit P's ¿ Ps of f of period 3 (here we use
generalized graphs, cf. [BGMY]; the reader will easily see how we get period
3). By Lemma 3.9 and the First Theorem (2.3), this is a contradiction.   G
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9. Undirected Theorem (second part)

In this section we complete the proof of the Undirected Theorem (7.1). To
do this we use the preliminary results given in §§7 and 8.

Lemma 9.1. Assume that P is a periodic orbit of an EP-adjusted map f gX of
period m = 2k.n, k > 0. Assume also that P is primary and undirected. Then
P is an n-extension of Q, where Q is a pendulum orbit of period 2 .
Proof. By the General Rule (6.1), we have case I, II, III, or IV (we use the
notation of §4). Hence, as in §7, from Remark 5.1, we may assume that the
case is III or IV.

We use induction. From Lemma 7.5(a) we have case III and all arrows are
black. Hence, P is a 2 ~ '.«-extension of some orbit ß, of period 2. Clearly,
ß is pendulum. Now, assume that P is a 2 .«-extension of a pendulum
orbit Q¡ of period 2 , and 1 < / < « . Then, by Lemma 8.2, P is a 2 ~( .«-
extension of some orbit ß/+1 which is a 2-extension of Q¡. By Definition 4.1,
Q¡+, is a pendulum orbit of period 2 + . This finishes the induction, a
Proof of Undirected Theorem (7.1). Again, by General Rule (6.1) and Remark
5.1, we may assume that the case is III or IV. Also, we may assume that / is
EP-adjusted. Let m be the period of P. If m is odd, we use Lemma 7.5(b). If
«1 = 2 , k > 0, we use Lemma 9.1 with « = 1. If «i = 2 .« , « is odd, « > 3,
and zc > 0, then, by Lemma 9.1, P is an «-extension of a pendulum orbit ß
of period 2  . By Lemmas 8.1, 8.3, and 8.6, condition (vi) of Definition 3.3

2*is satisfied. With the notation of §§3 and 7, we set R = P0 and g = f .By
Lemma 3.13, R is primary. Since the period of R is odd and larger than one,
by Lemma 7.5(b) and Remark 5.1, R is pendulum. Hence by Definitions 3.3
and 4.1, P is pendulum,   a
Remark 9.2. By Proposition 5.4, the Undirected Theorem (7.1), and Remark
4.18, in the case of maps of the interval, all primary orbits are pendulum and
vice versa. Thus, if P is a periodic orbit of period «z of a P-adjusted map
/ G I and P is primary, then it is minimal. Moreover, the converse is true
if m is not of the form 3.2', i > 1 (see [C, ALS, or H]. We can understand
the relation between the ideas of minimality and primarity as follows. We can
say that a periodic orbit P forces a periodic orbit ß if an EP-adjusted map
has a periodic orbit different from P and E-equivalent to Q. Let P be a
periodic orbit of / G X of period m . Then P is primary if P does not force
any orbit of period «j. P is minimal if P does not force any orbit of period
different from m which in turn forces a different periodic orbit of period m .
This shows that these notions are indeed close to each other.

As a corollary to Remark 9.2 and the Primary Theorem (2.5) We obtain the
following result of Block and Coppel.

Theorem 9.3 (see [BC]). ///el and « G Per(f), then f has as simple periodic
orbit of period «.
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10. Directed Theorem

In this section we prove the following result (we use the notation of §4 and
all congruences are mod 3).

Theorem 10.1 (Directed Theorem). Let P be a periodic orbit of a map f G Y.
If P is directed and primary, then the following hold.

(a) If P has only black arrows, then P is twist.
(b) P cannot have both red and green arrows.
(c) If P has only one green (red) arrow, then P is single green (resp. red).
(d) P cannot have more than two colored arrows.
(e) If P has two green (red) arrows and its period is even, then P is box

green (resp. red).
(f) If P has two green (red) arrows and its period is odd, then P is double

green (resp. red).

We note that, to prove the Directed Theorem, we may assume that / is EP-
adjusted. Hence, in the rest of the section we assume that P is a directed orbit
of an EP-adjusted map / G Y of period m . Since P is directed, m > 3. We
also assume that P is primary.

The following is analogous to Lemma 9.1.

Lemma 10.2. If P has only black arrows and m = 3.2 .n, k > 0, then P is an
n-extension of Q for some twist orbit Q of period 3.2  .
Proof. We use induction. Clearly P is a 2 «-extension of some twist orbit ß0
of period 3. If P is a 3.2 ~ .«-extension of a twist orbit Q¡ of period 3.2 and
0 < I < k then, by Lemma 8.2, P is a 3.2 ~( +1'.«-extension of some orbit
ß/+1 which is a 2-extension of Q¡. By Definition 4.40, ß/+1 is a twist orbit of
period 3.2 +1. This finishes the proof,   a
Proof of (a) of Directed Theorem (10.1). If m = 3.2 , we use Lemma 10.2
with « = 1 . If m = 3.2k.n, « odd, « > 3, then by Lemma 10.2, P is an
«-extension of a twist orbit ß of period 3.2 . By Lemmas 8.6, 8.3, and 8.1,
condition (vi) of Definition 3.3 is satisfied. We set R = P0 and g = f .By
Lemma 3.13, R is primary. By the Undirected Theorem (7.1), R is pendulum.
Hence, by Definitions 8.3 and 4.40, P is twist,   a

Now we define the sets V0,VX,V2, ...  as follows.

V0 = Span({sm0, sm,, sm2})

and Vi = f'(V0) for /= 1,2,.... We have V0 c Vx and hence Vi c VM for
each i. Since / is EP-adjusted, V. D Span({/J(smt): j = 0,1, ... ,i;k =
0,1,2}). Since no proper subset of P is invariant, we have Vj+X ̂ V¡ unless
Vi = Span(P). Hence, VQ Ç Vx C V2 Ç ... C Vr_x C Vr = Span(P) for some
r > 0. Since Card(F0 n P) = 3, we have r<m-3.
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Lemma 10.3. Let k be the smallest integer such that there exist arrows A and
B such that b(B) < e(A), b(A) < e(B), and b(A) g Vk or b(B) GVk;or let
k = r if such arrows do not exist. Let i < k. If a colored arrow C begins in Vi
then it also ends in K .
Proof. Suppose the lemma is not true. Then we can take the smallest i < k
such that there exists a colored arrow C which begins in Vi and does not end
in Vi. Since V, = Span(I^), by the General Rule (6.1), C cannot be green.
Hence it is red. Let x be the largest point of Vj on the same branch as b(C).
Then x = e(D) for some arrow D such that b(D) G Vj_x (i > 0 since all
arrows beginning in V0 are black). D cannot be black since then we would
have b(D) < e(C), b(C) < e(D), and b(D) G V¡_x c Vk_x, a contradiction
with the minimality of zc . This contradicts the minimality of z.   a

Lemma 10.4 (Directed Rule). There are no arrows A and B such that b(B) <
e(A) and b(A) < e(B).
Proof. We assume the Directed Rule does not hold. Then we can take A, B,
and k as in the hypotheses of Lemma 10.3. Since A and B have opposite
directions, one of them is red and the other is black. We may assume that A is
red and B is black. We may also assume that ind(b(A)) = 0 (see Figure 10.5).

We set /. = [0, smj for i = 0,1,2, K = [sm0,b(A)] (since A is red,
sm0 ¿ b(A)), L = [0,b(B)]. We have the graph (i) shown in Figure 10.5.
Since b(A) G Vk or b(B) G Vk , we have K c Vk or L c Vk , respectively.

If e(B) > b(A) then set x = e(B). If not, then e(A) > b(B) and we set
x = e(A). We have x ^ Vk_x, by the minimality of k . If r = m - 3, then
Card((^+1\K)nP)= 1 for i = 0,1,2, ... ,r - 1, and we have x £ Vk.

We claim that zc < «i - 4. To see this consider two cases. If r < m - 3,
then zc<r<z«-4. If r = m - 3, then x £ Vk . Hence, k < r.

Notice that x 6 P \ (/0 U /, UI2 U K u L).
One of the intervals /0, /[, /2 (call it J0 ) covers one of the intervals K,

L (call it Jk ) in zc steps. Since x <£ Vk_x, we have x £ J0, x $ f(J0),
x £ f (J0), ... ,x £ }~ (J0), x £ Jk . Therefore, for each loop obtained
from graph (i) and the path J0 -» /(/„) - f2(J0) '->-► /*-I(/0) - Jk,
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of length zc, the associated periodic orbit does not contain x. Hence, this
orbit is different from P. This is true also for k = 0 (i.e., the case when
J0 = I2 = L = Jk).

By Lemma 10.3, instead of sets f(J0), f2(J0), ... ,fk X(J0) we can take
the sets JX,J2, ... ,Jk_x where Ji = [0,y(] and y¡ is the largest point of K
on the branch next after the one on which J._, lies. Then we still have

(ii) J0^Jl^J2^-^Jk-l^Jk-
This is because Lemma 10.3 states that, for i < k, the increment of Vi+X
with respect to Vi is due to black arrows. We note that still x <£ /. for
i = 0,l,2,...,k.

Now we are going to construct a loop a of length «j by using path (ii), some
path of the graph (i), and path K —> L repeated / times. We have to consider
several cases.

(1) J0 = I0 and Jk = K.
1.1. m-k even, / = (m - k)/2, and

a = I0 -» Jx -»-► Jk_'^ K^L^K^L-*->K^L^ /„ .
1.2. «j - zc odd, I = (m-k - 3)/2, and

a = K —► /j —> I2 —> /0 —► Jx —<■■■■

-► Jk_7^ K -» L — K -► L —->K^L'^K.
(2) J0 = I0 and Jk = L.

2.1. «j - zc even, I = (m-k- A)/2, and

a = K^Ix^I2^I0-+ 7, ^-► /fc_,
^L,->K->L-+K->L^->K^L'^K.

2.2.  m-k odd, I = (m - k - l)/2, and

a = /„ -» J, -»-► «^-l -> L'^K-*L^K^L->->K^L'-+ IQ.

(3) J0 = Jx and 7fc = AT.
3.1. m-k even, / = (m -/: - 4)/2, and

^Jk_x'-^K^L-+K^L^->K^L'^K.
3.2. m - zV odd, I = (m- k - l)/2, and

a = K->Ix -►/, ->-> Jk_x'-^ K ^ L ^ K ^ L ^->K^L'-+K.
(4) 70 = /, and Jk = L.

4.1. «î - Ä: even, I = (m - k -2)/2, and

a = /¡: ^/, ^y, -»—►/k_1

L^K-+L^K^L^->K^L^K.
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4.2. «i - zc odd, I = (m - k - 5)/2, and

a ■ K -» Ix -> I2 -» 70 -+7, -» /, -+-► /fc_!
^L^K^L^K^L^->K^L'^K.

(5) 70 = /2 and 7fc = # .
5.1. m - k even, I = (m-k- 2)/2, and

a = # — J, — Iz '— Jx -* ■ ■ •
-► Jk_i-> K -» L - # -* L -►->K^L'^K.

5.2. m - zc odd, I = (m-k - 5)/2, and

-+Jk_x'-^K^L^K^L^->K^L'^K.
(6) 70 = /2 and Jk = L

6.1. m-k even, I = (m - k - 2)/2, and

a = K^I2^Jx -*-► ,£_,
-+L'^K^L^K^L^->K^L'^K.

6.2. «z - zV odd, I = (m-k- 3)/2, and

a = 70 "* 71 -» 72 ~* ̂ 1 ~*-> 4-1

-» L'— A.-+L-^/C—L —-► Ä" -► L'-» 70.

(7) Ä: = 0. Then 72 = L and «z > 5 .
7.1. «j even, I = (m- 6)/2, and

a = JC-f 7,-»L-»/„-»/,-» L'-^K-+L-^K^L-+->K^L'^K.

7.2. «i odd, I = (m- 3)/2, and
a = ,K-»7, ->L'-*K^L^K^L->->K^L'^K.

We note that since zc < m-4 incases 1.1, 1.2, 2.2, 3.2, 4.1, 5.1, 6.1, 6.2, and
7.2 we have / > 0. Hence, in all cases a goes through AT. Thus, the periodic
orbit associated to a is different from {0}.

Notice that in graph (i) with path (ii) we always move to the next branch,
except when we go from K to L or I2 . In this case we move to the previous
branch. Hence, if / > 0, inspection of cases 1-7 assures us that the periodic
orbit associated to a has period «z. Hence, we are left with the case 1 = 0.
Then we have one of the cases 2.1, 3.1, 4.2, 5.2, and 7.1. Notice that a goes
through I0 and, when we move along a, each time we move to the next branch.
Hence, «i = 0 and the periodic orbit associated to a has only black arrows.
Thus, its period is 3.« , « > 1, and 3« | m . Clearly, this orbit is an «-extension
of a twist orbit of period three. Therefore, it we look at /3 restricted to br0
we have a periodic orbit of /3 of period «. Clearly « | «z/3. Hence, if «i
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is odd, then « is odd. Moreover, « > 1 since the orbit has points in both K
and /0. Thus « <s m/3 .

If m is even, then we add to a the loop /0 —► Ix —► 72 —► 70 and we get a
new loop of length m + 3. We repeat the above process for the periodic orbit
associated to this new loop.

Summarizing, in the case / = 0, we have a periodic orbit ß of period 3.« ,
« odd, « > 3, which is an «-extension of a twist orbit of period three, where
« <s m/3 . Clearly x <£ ß and then Span(ß) C Span(P).

Let A bean Eß-adjusted map. If we look at A , ßnbr0 is a periodic orbit
of A of period « . By the Primary Theorem (2.5), A has a primary periodic
orbit Q' of period « suchthat Span(ß') c Span(ßnbr0). By the Undirected
Theorem (7.1) this orbit is pendulum. Let g be a ß' adjusted map. By Lemma
7.2, g has a periodic orbit ß" of period m/3 suchthat Span(ß") C Span(ß').•i
By the Adjusting Lemma (1.18) A has a periodic orbit of period «2/3 with
span strictly contained in Span(ß') c Span(ß n br0). By Lemma 3.9, A has a
periodic orbit of period «j with span contained in Span(ß). By the Adjusting
Lemma, / has a periodic orbit of period m different from P.

In all cases, we have a periodic orbit of period m different from P. By the
First Theorem (2.3) this is a contradiction with the primarity of P.   a

Corollary 10.6. If a colored arrow begins in Vt, it also ends in Vi.
Proof. By the Directed Rule (10.4), in Lemma 10.3 we have k = r. Hence, the
statement of the corollary holds for i < r. However, if i > r, then Vi = Vf.   u

Lemma 10.7. Let P be a single green (red) orbit of period « of an EP-adjusted
map f G Y. Then f has:

(a) Single green (resp. red) orbits of periods m+ 3, m + 6, m+ 9, ... .
(b) Twist orbits of periods 3,6,9, ... .

Proof. To prove (a) it is enough to prove that / has a single green (resp. red)
orbit of period m + 3 (then one can use induction).

We use the notation of Definition 4.19. Set /( = [0,x(] for ¿,= 0,1,2 and
I i - [x¡_3,x¡] f°r 1 = 3,4,...,m-l. We have the loop /0 —► Ix —► 72 —>
70 -» /, —►•••-> 7m_, -> /0 of length m + 3 in the EP-graph of /. Clearly
this loop is nonrepetitive and, by Lemma 1.3, / has a periodic orbit Q of
period m + 3 associated to it. ß has two points in each of the intervals /(,
/ = 0,1,2. Since / is EP-adjusted, the point of /( n ß which needs a longer
time to get to 73 is smaller than the other one. Hence ß is single green (resp.
red).

To prove (b), we consider the loop Im_3 —► Im_2 —> 7m_i —► 7m_3 and

ifm>6:        /m_6-/m_5--►/„,_,-*/m_6

if m < 6 :        /0 —► /, —> /2 —► 70.

All steps in these loops are made to the next branch. Combining these loops
(repeating them if necessary) we can obtain a nonrepetitive loop of length «
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for every « such that 3 | « . By Lemma 1.3, this loop has associated a periodic
orbit Qn of period « . Qn is directed and has all arrows black. Let us take an
EQn -adjusted map A. By the Primary Theorem (2.5), A has a primary orbit R
of period « with all arrows black. Hence, by the Directed Theorem (10.1)(i),
R is twist. By the Adjusting Lemma (1.18), / has a twist orbit of period «
for each « such that 3 | « .   D

Lemma 10.8. Let k > 0.  Let AX,A2, ... ,Ak_x  be black arrows and let Ak
be a colored arrow such that b(Ai+x) < e(A¡) for i = 1,2, ... ,k - 1  and
b(Ax) < e(Ak). Then f has a periodic orbit Q of period k which is single of
the same color as Ak .
Remark 10.9. Under the assumptions of Lemmas 10.7 and 10.8 and with the
notation of Lemma 10.8, if Ak is green then zc = 1 and if Ak is red then
k = 2.
Proof of Lemma 10.8. Clearly, k > 3. Set /,. = [0,b(At)] for i = 1,2, ... ,k-
1 and Ik = [b(Ak_3),b(Ak)]. If b(Ak_3) < b(Ak), then we have 7, ~*J2 -t
• • • -» 7fc_j -> Ik -» 7,. If b(Ak_3) > b(Ak), then (note that by the General
Rule (6.1), zc > 4 ) we have /, —> 72 —> • • • —» Ik_4 -* Ik -* Ix. In both cases
we get a periodic orbit R = {xx,x2, ... ,x¡} of some period I < k, such that
x, ~ b(A¡) for i = 1,2,...,/, f(x¡) = xi+x for i = 1,2,...,/- 1, and
f(x¡) = xx .

We may assume that R is the orbit with the smallest period having these
properties (otherwise we take an orbit with the smallest period). We claim that
R is single of the same color as Ak . Otherwise we would have xi > x;+3 for
some i € {1,2,... ,7- 3}.

If x/-3 > xt, then
[0,x,] -»-► [0,x¡_4] -♦ [x/,x/_3] -» [0,x,].

If x,_3 < x,, then x¡ > x(+3 for some i < I - 3. Thus,

[0,x,] —-► [0,x(_,] -+ [0,x;+3] -»-► [0,x¡_x] -* [x/_3,x/] -^ [0,xj.
In both cases we obtain a periodic orbit with the same properties as R but of
a smaller period, which is a contradiction. This proves our claim.

Now if / = zc , the proof is finished. If / < zc, then the lemma follows from
Lemma 10.7(a) and the Adjusting Lemma (1.18)   G

Lemma 10.10. If A is a colored arrow, then f has a periodic orbit Q of period
smaller than or equal to m which is single of the same color as A.
Proof. We consider an integer zc and points x0,x,, ... ,xk_x defined as fol-
lows. x0 = Smind( .^j. If z > 0, then x( is the largest point of Vi on the
next branch after the one on which x(_, lies. Let k be the smallest inte-
ger such that xk_x > b(A) (obviously such zc exists). Observe that each x(
(i = 1,2, ... ,k-l) isan end of an arrow Ai beginning in V¡_, . By Corollary
10.6, these arrows are black. Since V0nP has only one point on each branch,
we have x0 = b(Ax). Therefore e(A) > b(Ax).
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For i = 2,3, ... , zc - 1 we have b(A¡) G VjX and b(A¡) ~ e(A¡_x). The
point e(A¡_x) is the largest point of V¡_x on its branch. Hence, e(Ai_x) >
b(At). Also, e(Ak_x) > b(A). Then, by Lemma 10.8 (set Ak = A), we obtain
a periodic orbit ß of / of period zc which is single of the same color as A.

Since V¡ = Span(P) for all i > r, we have zc - 1 < r + 2 (we have to add 2
since we have to reach with x. the branch brind(é(/)))). Therefore, k < m .   a

Corollary 10.11. (a) // P has a green arrow and m = 1 then P is single green.
(b) // P has a red arrow and « = 2 then P is single red.
Proof. This follows immediately from Lemma 10.10, Lemma 10.7(a), the Ad-
justing Lemma (1.18), the First Theorem (2.3), and the assumption that P is
primary,   a
Proof of (b) of Directed Theorem (10.1). Assume that P has both a green and
a red arrow. If m = 0 then from Lemma 10.10, Lemma 10.7(b), and the
Adjusting Lemma (1.18) it follows that / has a twist orbit of period m . By
the First Theorem (2.3), this is a contradiction. If «i = 1 or m = 2, then it
follows from Corollary 10.11 that P is single colored, also a contradiction,   a
Proof of (c) of Directed Theorem (10.1). If P has only one green (red) arrow,
then clearly m = 1 (resp. «z = 2). Hence, by Corollary 10.11, P is single
green (resp. red),   a

Now, we are left with two cases: either P has only green arrows (at least
two of them) and m = 2, or P has only red arrows (at least two of them) and
«i = 1. In the rest of this section we shall assume that one of these cases holds
and we shall call them green case and red case, respectively.

There is also some difference between the cases of m even and m odd. We
shall call these cases even case and odd case, respectively. Thus, we can have
four cases: even green, even red, odd green, and odd red.

Our next goal is to prove Directed Theorem (10.1)(d). For this we shall need
several lemmas and new notation.

Set E0 = Pr\V0, Ei = Pn(Vi\Vi_x) for i= l,2,...,r. Then {E0,EX,
... ,Er} is a partition of P.

For an arrow A , denote by s (A) the integer such that b(A) G E,A. and by
t(A) the integer such that e(A) G Et(A). Notice that t(A) < s (A) + 1, and if A
is a colored arrow, then, by Corollary 10.6, t(A) < s(A).

For a colored arrow A, set

S(A) = {e(A),f(e(A)),...,fJ(A)(e(A))},

where
e(A),... ,fA)-[(e(A)) G Vs(A)_x ,jJ{A\e(A)) G Es(A).

Lemma 10.12. If A, B are colored arrows and A£B, then either
S(A)nS(B) = 0 or
S(A)cS(B)\{e(B),fl{B)(e(B))},or
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S(B)cS(A)\{e(A),fl{A)(e(A))}.
Proof. Assume that S(A) n S(B) ¿ 0. Then either e(A) G S(B) or e(B) G
S(A). We may assume that e(A) g S(B) (in the other case one has to replace
A by B and B by A ). Since A ■£ B, we have e(A) ¿ e(B). Hence, b(A) G
S(B) \ {f'{B\e(B))} c Vi{B)_x .   Thus, s(A) < s(B) - 1.   Therefore, by the
definition, we obtain S(A) c S(B) \ {e(B), fl{B)(e(B))} .   a

For a colored arrow A , set T(A) = S(A) \ \J{S(B): B is a colored arrow,
B ¿ A , and S(B) c S(A)} . By Lemma 10.12, if A + B, then T(A) n T(B) =
0. Set u(A) = s(A) - t(A) + 1.
Lemma 10.13. For every colored arrow A, Card(T(A)) > u(A). If Card(T( A))
= u(A), then no element of T(A) \ {e(A)} belongs to E0.

Proof. We look at the sequence w0,wx, ... ,w¡.A) defined by f'(e(A)) G Ew¡,
i = 0,1, ... , 1(A). This sequence has the following property:

(**) For each term v of the sequence, the next term is smaller than
or equal to v + 1.

To obtain T(A) from S(A), we have to remove some sets of the form S(B)
from it. For the sequence of wt 's this is removing some sequences of the
form Wj , Wj+X, ... ,Wj+l,B) from it. Since then fj~x(e(A)) = b(B), we have
Wj_x = s(B). But also wj+t(B) = s(B). Hence, such an operation again gives a
sequence satisfying (**).

Therefore, the sequence of w¡ 's corresponding to T(A) also satisfies (**).
Hence, its length is greater than or equal to the last term, minus the first term
plus 1. By Lemma 10.12, w0 and wt.A) are not removed from the sequence.
Thus, Card(T(A)) > w,(A) -wQ + l= s(A) - t(A) + 1 = u(A).

If some element of T(A) \ {e(A)} belongs to E0, then the corresponding
term v of the sequence of w¡ 's is Q and the preceding term cannot be equal
to v - 1. Therefore, in this case we obtain a strict inequality.   G

Lemma 10.14. Let P be a single colored orbit of period m of an EP-adjusted
map f G Y. 77ze« / has periodic orbits of periods 2m + 3, 2«z + 6, 2«i + 9, ...
vvz'iA span strictly smaller than Span(P).
Proof. We use the notation of the proof of Lemma 10.7. We have the loops

70 - 7,-•••-*/„,_, ^70   and   70-*72-7¿.

By going around the first loop twice and around the second loop z times (z > 1),
we obtain a loop of length 2m + 3i which is nonrepetitive. By Lemma 1.3, there
is a periodic orbit associated to it. Clearly this periodic orbit has period 2m + 3i
and span strictly smaller than Span(P).   a

Lemma 10.15. If A is a colored arrow, then u(A) is larger than or equal to
(m - 6)/2 (resp. (m - 3)/2) in the even (resp. odd) case. If additionally e(A)
is the largest point of Vt,A, on its branch, then the inequality is strict.
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Proof. We make a construction similar to the one used in the proof of Lemma
10.10. In the general case, x0 will be the largest point of Vt.A,x on the same
branch as e(A). Also, x(. (for i > 0) is the largest point of Vt,A)_x+i on the
next branch after the one on which x(_1 lies. In the special case when e(A) is
the largest point of Vt.A. on its branch, we set x0 = e(A) and x( (for i > 0 )
is the largest point of V,,A)+i on the next branch after the one on which x/_1
lies. Notice that if t(A) = 0, then necessarily we have this special case. We
stop at xk_x when we have for the first time xk_x > b(A). Since b(A) G VS,A),
we obtain t(A) -l + (k-I) < s(A) + 2 (t(A) + (k - 1 ) < s(A) + 2 in the special
case). As in the proof of Lemma 10.10, at the right-hand side we have to add
2 to s(A) since we have to reach with x; the branch on which b(A) lies.

Now, as in the proof of Lemma 10.10, we use Lemma 10.8 (with Ak = A)
and we get a periodic orbit ß of period zc which is single of the same color as
A.

Also, we have u(A) > k - 3, and in the special case the inequality is strict.
Hence, from Lemma 10.14 and the Adjusting Lemma (1.18) it follows that

/ has periodic orbits of periods 2zc + 3z for any integer i > I, and all these
orbits have span strictly smaller than Span(ß). Thus, they have span strictly
smaller than Span(P). Since P is primary, from the First Theorem (2.3) it
follows that m ^ 2k + 3i for any integer i > I .

We know that in the green case m = 2 and zc = 1, and in the red case m = 1
and k = 2. Hence, m = 2k always. Therefore, m <2k.

In the even case we obtain u(A) > k - 3 > (m - 6)/2 and in the special case
the inequality is strict.

In the odd case, since m <2k, m = 2k, and m is odd, we get m < 2k - 3.
Hence, we obtain u(A) > k — 3 > (m — 3)/2 and in the special case the inequality
is strict.   G
Proof of (d) of Directed Theorem ( 10.1 ). Let v be the number of colored arrows.
Then P has m - v black arrows. Now we can proceed as in Observation 5.9.
In the green case m - v = 0, and since m = 2 we obtain v = 2. In the red
case (m - v) - v = 0, and since m = 1 we also obtain v = 2. Hence, in both
cases v = 2.

The sets T(A) and T(B) for different colored arrows A and B are disjoint.
Therefore, by Lemma 10.13, we obtain 2^,u(A) < m, where the sum is taken
over all colored arrows. In view of Lemma 10.15, we get

f v.(m - 6)/2   in the even case,
( * * * ) «i > <I v.(m - 3)/2   in the odd case.

Assume that the equality holds. Then by Lemmas 10.13 and 10.15 we have:
(i) For each colored arrow A, the point e(A) is not the largest point of

V(.A) on its branch.
(ii) For each colored arrow A , Card(T(^)) = u(A).

(iii) U(^(^)) - P > where the union is taken over all colored arrows.
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Now we look at sm; (i G {0,1,2}). By (iii), it belongs to T(A) for some
colored arrow A. By (i), it is not equal to e(A). By Lemma 10.13, this
contradicts (ii). Hence, the inequality (* * *) is strict.

Since there are at least three black arrows and v = 2, we have m > 5.
Consider the odd case. We obtain v < 2m/(m - 3) = 2 + 6/(«i - 3) < 2 +
6/(5 - 3) = 5 . Since v = 2, we get v = 2.

Now consider the even case. Since m ^ 0, we have zn > 8. If «z > 10,
then v < 2m/(m-6) = 2+ 12/(«i - 6) < 2+ 12/(10-6) = 5. But v = 2,
and hence v = 2. Therefore, the only possible exception is m = 8 and v = 5 .
This is in the green case.

We shall examine this exceptional case. P has three black arrows and five
green ones. Then by the General Rule (6.1), for each black arrow A , b(A) is
the smallest point of P on its branch and e(A) is the largest point of P on
its branch. There must be two green arrows, B and C, such that e(B) = b(C)
and e(C) is the smallest point of P on its branch. We may assume that this
branch is br0. We consider the intervals / = [b(B) ,e(B)], J = [b(C),e(C)],
M = [0,e(C)], K = [0, smj, L = [0, sm2]. Then we have

K
/     \

L    -   M
I Î
/    -    J

and we obtain the loop K^L^M-*K^L^I—>J—>M^K of length
8. Clearly this loop gives us a periodic orbit of period 8. This orbit is different
from P because it has only two green arrows (given by / —> J and J —► M).
From the First Theorem (2.3) this is a contradiction with the primarity of P.
Thus, the case m = 8 and v = 5 is not possible. This ends the proof of (d) of
the Directed Theorem,   a

It remains to prove statements (e) and (f) of the Directed Theorem (10.1) In
the even case set r = (m - 2)/2.

Lemma 10.16. Let m be even. Let A and B be colored arrows, A^B. Then
there exists an integer p such that 0 < p < r and fp(e(A)) = b(B).
Proof. Clearly, there exists an integer p such that 0 < p < m-2 and fp(e(A))
= b(B). Suppose that p > r. Set x = fp~r(e(A)). Then f(x) = b(B).

In the green case r = 0 and in the red case r = 1. By (d) of the Directed
Theorem (10.1), all arrows along the orbit from x to b(B) are black. Hence,
in both cases x ~ e(B).

Set q = m - 2 - p. We then have f(e(B)) = b(A). Since p > r and
p + q = 2.r, then q + 1 < r. Now, we consider two possibilities (notice that
x = e(B) is impossible).

1. x<e(B). We set K = [0,b(B)], L = [0,x], M = [x,e(B)]. Clearly K
/-covers L and M. Since f(x) = b(B) and f(0) = 0, L  /-covers K in
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r steps. Moreover, since the arrows along the orbit from x to b(B) are black,
going from L to K, we always move from one branch to the next one. Since
Q + 1 < r, f+x(x) and fq+x(e(B)) = e(A) lie on different branches. Hence,
0 G f+X(M) and consequently 0 G f(M). Also, b(B) = f(x) G f(M).
Thus, M /-covers K in r steps. Here we also follow the arrows along the
orbit from x to b(B) and therefore we always move from one branch to the
next one. We obtain the loop

K^M-->K-*L->K,
r steps r steps

where we do not move to the next branch but to the same one (green case) or
to the previous one (red case) only when we go from K to M and from K to
L. Since LP\M = {x} G P, this loop gives us a periodic orbit of period «z.
Since P is primary, from the First Theorem (2.3) this orbit is equal to P . But
for this orbit p = r, a contradiction.

2. x>e(B). We set K = [0,e(A)], L = [0,e(B)], M = [e(B),x], and we
have fp~r(0) = 0, fp~r(e(A)) = x. Hence, K /-covers L and M in p - r
steps. Since we follow the orbit of x for p - r < p steps, we always move
from one branch to the next one. Since f+x(0) = 0 and f+x(e(B)) = e(A),
L /-covers K in q + 1 steps. Here we move from one branch to the next one
except at the last step, when we follow A . Since q + 1 < r, the points f+ (x)
and fq+x(e(B)) = e(A) lie on different branches. Hence, M /-covers K in
q + 1 steps. Here again we move from one branch to the next one except at the
last step, when we follow A . Then we have the loop

K--— M->K->L->K.
p-r steps q+\ steps p — r steps q+\ steps

We do not move to the next branch but to the same one (green case) or to the
previous one (red case) only when we make the last step from L to K and
the last step from M to K. Since LnM = {e(B)} c P, this loop gives us a
periodic orbit of period 2(p -r + q + l) = m . Since P is primary, by the First
Theorem, this orbit is equal to P. But for this orbit p = r, a contradiction.   G

Corollary 10.17. In the even case, if A and B are colored arrows and A ^ B,
then f(e(A)) = b(B) and f(e(B)) = b(A).
Proof. From Lemma 10.16, we have f(e(A)) = b(B) for some p such that
0 < p < r. If we apply Lemma 10.16, with A instead of B and vice versa,
we obtain fq(e(B)) = b(A) for some q such that 0 < q < r. Clearly p + q =
m - 2 = 2r. Hence p = q = r.   o

In the rest of this section we take A,p ,x ,i and B ,q,y ,j as in Definition
4.27. Also, we set « = (m - 5)/2 if m is odd (as in Definition 4.27) and
n = r-3 = (m- 8)/2 if «z is even. Since m > 5, m = 2 in the green case,
and «i = 1 in the red case, we have « > 0. Also we note that « = 0 in the
green case and « = 1 in the red case.
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Lemma 10.18. y■ ~ X +j for max(0,n-p) < j < min(«,a).
Proof. First consider the case p > «. Since p - n < p we have y0 =
f+l(xp_n), ind(y0)-ind(x/,_n) = « in the green case, and ind(y0)-ind(xp_„)
= « - 1 in the red case. In both cases ind(y0) - ind(xpn) = 0 and y0 ~ xp_n .
Since min(« ,q) <p and min(« ,q) < q , this ends the proof in the case p > «.

Now assume that p < « . By Corollary 10.17, m is odd. Then q+p = 2«+ 3
and q>n-p. Hence, yn_p = fp+x+"-p(xQ) = fn+x(xQ), ind(y„_p)-ind(x0) =
« in the green case, and ind(y ) - ind(x0) = « - 1 in the red case. As above
we get y ~ x0 . Since p < n and p + q = 2« + 3 we have q > « + 3 . Hence,
p - « + min(«,q) = p . Since min(« ,q) < q, this ends the proof in the case
p < « .   G

Lemma 10.19. In the even case, if conditions (iii.l), (iii.2), (iii.3), and (iii.4) of
Definition 4.27 are satisfied, then P is a box orbit of the same color as A and
B.
Proof. From Corollary 10.17. we have p = q = « + 3. Hence, p - « =
q - n = 3 , max(0,« — p) = max(0,« - q) = 0, and min(n,p) = min(n,q) =
«. From (iii.l) and (iii.3) it follows that x0 ~ y0. Hence, y( ~ x; for
z = 0,l,2,...,« + 3. Also, from (iii.l), (iii.2), (iii.3), and (iii.4) it follows
that max{x(,y(} < min{xi+3,y(+3} for i = 0,1,2,...,«. Clearly, P is a
2-extension of a periodic orbit ß of period « + 4, and ß is a single orbit of
the same color as A and B. By Definition 4.23, P is a box orbit,   a
Proof of (e) and (f) of Directed Theorem (10.1). From Lemma 10.19 and Def-
inition 4.27 it follows that it is enough to show that conditions (iii.l), (iii.2),
(iii.3), and (iii.4) of Definition 4.27 are satisfied.

From Lemma 10.18 we have y ~x for all j suchthat max(0,«-/z) <
/ < min(n,q).   Suppose that for some j, y. > x .   Consider the ar-
rows Ax = (y0,y,),... ,Aj = 0>,_, ,yj), Aj+X = (xp_n+j,xp_n+j+x), ...,An =
(xp_i >xp),An+x = B = (xp,y0). By Lemma 10.8, / has a periodic orbit ß
of period « + 1 which is single of the same color as B. From Lemma 10.14
and the Adjusting Lemma (1.18), / has periodic orbits of periods 2(« + 1 ) + 3
and 2(« + 1) + 6 with span strictly smaller than Span(ß). Thus, they have
span strictly smaller than Span(P). If m is odd, then 2(« + 1) + 3 = m , and
if «z is even, then 2(« + 1) + 6 = m. From the First Theorem (2.3) this is a
contradiction. This proves that (iii. 1 ) is satisfied.

By replacing A,p,x,i by B,q,y,j and vice versa, we obtain (iii.2).
To prove (iii.3) and (iii.4) we shall consider separately the odd and even

cases.

Even case. From Corollary 10.17 it follows that p = q = n + 3. Hence, y0 =
/"+ (x0). Then, similarly to the proof of Lemma 10.18 we get y0 ~ x0 . We
may assume that yn+3 = b(A) < b(B) = xn+3. Assume that x; > x(+3 for some
z e {0,1,2,...,«}. Consider arrows Ax = (x0,x,), ... ,Ai = (xi_l,xi),
Ai+i = (xi+3,xi+4), ... , An = (xn+2,xn+3), An+X = A = (b(A),x0).  Since
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xn+i > b(A), we can use Lemma 10.8 and we obtain a periodic orbit ß of
period « + 1, which is single of the same color as A. In the same way as
before, this is a contradiction. This proves (iii.3).

Suppose now that yj > yj+3 for some / G {0,1,...,«} . We cannot just
replace A, p, x, i by B ,q,y ,j and vice versa, because we have the assumption
that b(A) < b(B). Hence, we have to use more complicated arguments. Notice
that [0,x„+2] /-covers [xn+3,yn+3] because yn+3 < xn+3. [xn+3,yn+3] f-
covers [x0,y0]. [xj_x,yj_x] /-covers [Xj,yJ+3] because Xj <yJ+3 <yj (here
we use (iii.2)). [xn ,yn+3] /-covers [0,x0] because yn+3 = b(A), e(A) = x0 ,
and (xn,xn+x) is a black arrow. Also, [0,x2] /-covers [0,x0] because x3 >
x0 . Therefore we have the loop

[0,x0] - [0,x,] - [0,x2] — [0,x0] —-► [0,x„+2] - [xn+3,yn+3]

-> lx0,y0] -► • • • -» [Xj_x ,yj_x] - [Xj,yJ+3] -■■•-[*,, ,yn+3] - [0,x0]

of length 3 + (« + 3) + l + « + l = 2« + 8 = «z. When we move along it,
we move to the next branch each time except the steps [xn+3,yn+3] —> [x0,y0]
and [xn , yn+3] —► [0, x0]. Since the numbers of steps between these two moves,
from the first to the second and from the second to the first, are not equal (they
are « + 6 and « , respectively), we obtain a periodic orbit of period m from
the loop. From the First Theorem, this orbit is P. But for this orbit we have
p / q , a contradiction. This proves (iii.4).
Odd case. We may assume that p > q . Since p + q = 2« + 3 we have q - 3 <
« < p . Then (iii.4) holds from Lemma 4.32(b).

To prove (iii.3), by Lemma 4.32(a), it is enough to prove that x¡ < x¡+3
only for 0 < i < n - q (if « - q > 0 ) and for min(« ,p-3)<i<p-3 (if
n<p-3).

Suppose that x; < x(+3. Consider the case 0 < i < n - q. Then q < n
and, by (iii.l), we obtain yq < xp_n+q = xn+3. We take the arrows Ax =
(x0,xx), ... ,A¡ = (x(_j, x¡), Ai+X = (x¡+3, x¡+4), ... ,An = (xn+2, xn+3), An+X
= A = (yq,x0). Since x¡ > xj+3, by Lemma 10.8, we obtain a contradiction in
the same way as before.

Consider the case min(« ,p - 3) < z < p - 3. Then p - 3 > «, which
implies q < «.   By (iii.2) we have x       < y0.   We take the arrows Ax =
(Xn-q'Xn-q+\}' ■■• ->Ai-n+q   =   (Xt-l>X¡)>    Ai+\-n+q   =   (Xi+3 » Xi+4' » ' ' * ' \   =
(xp_i ,xp), An+X =B = (xp,y0) (we have i>n-q since i > min(p - 3, «) =
« ). Since x. > xi+3, by Lemma 10.8 we obtain a contradiction in the same
way as before. This ends the proof of (iii.3).   G

11. Dependences between periodic orbits
In this section we study which primary orbits are forced and not forced by

other primary orbits (see Remark 9.2). In this and the next sections, we must
sometimes again consider {0} as a primary orbit of / G Y of period 1. It will
be clear where we do that.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



periodic orbits of MAPS OF Y 529

Lemma 11.1. If P is a pendulum orbit of an EP-adjusted map f GX, then f
has no directed orbits.
Proof. In cases I, II, and III (here we use the notation of §4) it is obvious. So
we assume that we have case IV. If there is no arrow beginning and ending on
two different even branches, it is also obvious. Hence, we assume that P has
an arrow A such that b(A) and e(A) lie on different even branches. Since we
have case IV and P is pendulum we know that the period m of P is odd,
m > 5 , and A is the only blue arrow of P.

Assume that ß is a directed periodic orbit of /. Since A is the only blue
arrow of P, all arrows of ß beginning and ending on even branches, have
to begin in the EP-basic interval / adjacent to b(A) and end in the interval
(0,e(A)). Since ß is directed, the smallest point of ß on the same branch as
b(A) has to belong to J and the arrow B beginning at it ends in (0,e(A)).
Since b(A) is the largest point of P on its branch, all points of ß on this
branch belong to J. Since / is EP-adjusted, f(e(B)) g (0,f(e(A))). By the
definition of pendulum orbit (Definition 4.1), f(e(A)) is the smallest point of P
on the odd branch. Let x be the smallest point of ß on the odd branch. Then
x g (0,f(e(B))] c (0,f(e(A))) and f(x) ~ b(B). Since / is EP-adjusted,
it follows that f2(e(A)) ~ b(B) ~ b(A). Since m > 3, f(e(A)) < b(A).
Therefore, (0,/2(<?(,4))) n J = 0. Thus, f(x) < f2(e(A)) < b(B). This is a
contradiction because b(B) is the smallest point of Q on its branch,   a

Lemma 11.2. Let P be a periodic orbit of an EP-adjusted map /€Y. Assume
that P is primary and directed. Then f has no undirected orbits.
Proof. Assume that / has an undirected orbit ß. There are two possibilities.

1. There is an arrow A of ß such that b(A) < e(A). Consider the EP-
basic interval [x,y] such that x < b(A) < y. Since / is EP-adjusted, either
f(x) or f(y) is larger than e(A). By the General Rule (6.1) this cannot be
f(x). Hence f(y) > e(A). By the General Rule we have y > f(y) and,
consequently, y > f(y) > e(A) > b(A) > x, contrary to the assumption that
[x,y] was EP-basic.

2. There is no such arrow of Q. Then ß is not contained in one branch.
Since ß is undirected, there are two arrows of ß, A and B, A ^ B, such that
b(A) and b(B) are the smallest points of ß on their branches, e(A) > b(B)
and e(B) > b(A). Consider the EP-basic intervals [xA,yA], [xB,yB] such
that xA < b(A) < yA and xB < b(B) < yB . Since they are EP-basic intervals
and / is EP-adjusted, one of the points xA , yA is mapped to a point larger
than or equal to yB , and one of the points xB , yB is mapped to a point larger
than or equal to yA . This contradicts the Directed Rule (10.4).   G

Lemma 11.3. With the assumptions of Lemma 11.2, if Q is a periodic orbit of
f, then

(a) If P has no green arrows, then Q has no green arrows.
(b) If P has no red arrows, then Q has no red arrows.
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Proof. By Lemma 11.2, ß is directed. Therefore, talking about green and red
arrows of ß is justified.

(a) Assume that P has no green arrows. Since / is EP-adjusted, there is no
point x G Y\ {0} such that x ~ f(x). Consequently, ß has no green arrows.

(b) Assume that P has no red arrows. Since / is EP-adjusted, there is no
point x G Y\{0) such that x is on the next branch after f(x). Consequently,
the direction of black arrows of ß is the same as the direction of black arrows
of P, and ß has no red arrows,   a

Lemma 11.4. Let P be a box green (red) orbit of period m of an EP-adjusted
map f G Y. Then f has a single green (resp. red) orbit of period m/2.

Proof. By the definition of box colored orbit (Definition 4.2) P is a 2-extension
of a single colored orbit ß of the same color as P. Let Pi  (i = 0,1, ... , m/2
- 1) be the sets from the definition of «-extension (Definition 3.1). Then fm/2
has a fixed point in Span(P0). Clearly, its /-orbit is equivalent to ß.   a

Lemma 11.5. Let P be a double colored orbit of period m of an EP-adjusted
map f G Y. Then f has a periodic orbit of period m + 3.

Proof. From Lemmas 5.15 and 5.16 it follows that the loop of the EP-graph
of / associated to P goes through all basic intervals. Adding to this loop
the loop of length 3 [0, sm0] —► [0, sm,] —► [0, sm2] —► [0, sm0], we obtain a
loop of length m + 3. This loop is nonrepetitive, and hence the periodic orbit
associated to it has period m + 3 .   G

Lemma 11.6. Let P be a periodic orbit of period m of an EP-adjusted map
fGY. Then

(a) If P is single green (red), then f has a double green (resp. red) orbit of
period 2m + 3.

(b) // P is double green (red), then f has a box green (resp. red) orbit of
period m + 3.

Proof, (a) By Lemma 10.14, / has a periodic orbit of period 2m + 3. By the
Primary Theorem (2.5), / has a primary periodic orbit ß of period 2m + 3.
By Lemma 11.2, ß is directed. By Lemma 11.3, ß has no red (resp. green)
arrows. Since m = 1 (resp. m = 2 ) we have 2«i + 3 = 2 (resp. 2«? + 3=1).
Hence, by (d) of the Directed Theorem (10.1), ß has exactly two green (resp.
red) arrows. Therefore, by (f) of the Directed Theorem, ß is double green
(resp. red).

(b) By Lemma 11.5, / has a periodic orbit of period m + 3. As above, by
the Primary Theorem and Lemmas 11.2 and 11.3, / has a primary orbit ß
of period m + 3 which is directed and has no red (resp. green) arrows. Since
m = 2 (resp. m = 1 ) we have m + 3 = 2 (resp. m + 3 = 1 ). By (d) and (e) of
the Directed Theorem, we have that ß has two green (resp. red) arrows and,
hence, Q is box green (resp. red).   G
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Lemma 11.7. Let P be a pendulum orbit of period m of an EP-adjusted map
f G X. Assume that m = 2 .«, zc > 0, « > 1, « odd. Then f has orbits of
all periods s such that s >s m.
Proof. By the definition of pendulum orbits (Definition 4.1), P is an P-exten-
sion of a pendulum orbit ß of period 2 , for some pendulum orbit R of
period «. We may assume that the maps g and A for which R and ß are
periodic orbits, respectively, are Pv-adjusted and Eß-adjusted, respectively. By
Lemma 7.2 and Remark 5.1, g has periodic orbits of all periods /, where / is
either odd and larger than « or even. By Lemma 3.10, / has periodic orbits
of periods 2 / for / as above. By Lemma 5.2 and Remark 5.1, A has periodic
orbits of periods 2', z = 0,1,... , zc - 1, and ß itself has period 2 . By
Lemma 3.11, / has periodic orbits of periods 2', i = 0,1, ... ,k . Now the
statement of the lemma follows from the definition of Sarkovskii ordering.   G

Proposition 11.8. Let P be a pendulum orbit of period m of an EP-adjusted
map f GX. If s >s m, then f has a pendulum orbit of period s.
Proof. From Lemmas 7.2, 5.2, 11.7 and Remark 5.1, it follows that / has a
periodic orbit of period 5 . By the Primary Theorem (2.5), / has a primary
periodic orbit of period 51. By Lemma 11.1, this orbit is undirected. From the
Undirected Theorem (7.1) it is pendulum,   a

Proposition 11.9. Let P be a twist orbit of period 3.1 of an EP-adjusted map
f G Y. If s >s I, then f has a twist orbit of period 3.5.
Proof. If / = 1, then there is nothing to prove. If / = 2 , from Lemma 5.5 it
follows that / has a periodic orbit Q of period 3.s. If / = 2 .« , « odd, and
« > 3, then P is an P-extension of a twist orbit of period 3.2 , and R is a
pendulum orbit of period « . We may assume that the map g for which R is
a periodic orbit is P-adjusted. By Proposition 11.8, g has a periodic orbit P'
of period 5 . Since s ^ n , R1 ^ R . By Lemma 3.10, / has a periodic orbit
ß ¿ P of period 3.2*.s.

From the Primary Theorem (2.5) in both cases, we may assume that ß is
primary. By Lemmas 11.2 and 11.3, ß is directed and has no colored arrow.
From (a) of the Directed Theorem (10.1), ß is twist,   a

From now on, a periodic orbit will be called green if and only if it is either
single green or double green or box green. Similarly, it will be called red if and
only if it is either single red or double red or box red.

The following theorem states that some primary orbits force some other ones.

Theorem 11.10 (Forcing Theorem). Let f G Y and let P be a primary periodic
orbit of f of period m > 1. Then the following hold.

(a) // P is pendulum, then f has a pendulum orbit of period « for each «
such that n >s m .

(b) If P is twist, then f has a twist orbit of period « for each « such that
« = 0 and n/3 > m/3.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



532 LLUÍS ALSEDÀ, JAUME LLIBRE, AND MICHAL MISIUREWICZ

(c) If P is green, then f has a green orbit of period « for each « such that
« ^ 0, n > m, and « > 1, and a twist orbit of period « for each «
such that « = 0.

(d) // P is red, then f has a red orbit of period n for each « such that
« ^ 0, n >r m, and « > 1, and a twist orbit of period « for each «
such that « = 0.

Proof, (a) follows from Proposition 11.8 and the Adjusting Lemma (1.18). (b)
follows from Proposition 11.9 and the Adjusting Lemma. If / is EP-adjusted,
from Lemmas 11.6 and 11.4 we have that / has a green (resp. red) orbit
of period immediately following m in the green (resp. red) ordering. The
Adjusting Lemma allows us to skip the assumption that / is EP-adjusted. In
such a way we obtain the first part of (c) and (d) by induction. The second part
of (c) and (d) follows from Lemma 10.7(b) and the Adjusting Lemma,   a

Theoremll.il (Periods Theorem). Let /eY. Then
(a) The set of periods of all pendulum orbits of f is of the form S(n) for

some ns G N5.
(b) The set of periods of all green and twist orbits of f is of the form

G(ng) \ {1} for some ngGNg.
(c) The set of periods of all red and twist orbits of f isof the form P(«r)\{l}

for some nr G Nr.
(d) Per(f) = S(ns)öG(ng)uR(nr).
(e) ",. na' and nr appearing in (a), (b), and (c) are determined uniquelyS g r

by f.
Proof, (a), (b), and (c) follow immediately from the Forcing Theorem (11.10)
and the definitions of orderings. (e) is an obvious consequence of (a), (b), and
(c).

Now we prove (d). By the Primary Theorem (2.5), Per(/) is equal to the
set of periods of all primary periodic orbits of /. By the Undirected Theorem
(7.1), the Directed Theorem (10.1), and (a), (b), and (c) we obtain (d).   a

Notice that «c, n0, and «r which appear in (a) of the Main Theorem (see
S g T

Introduction), are not determined uniquely by /. Hence, the Periods Theorem
is a stronger (and more precise) version of (a) of the Main Theorem.

The following theorem states that some primary orbits do not force some
other ones.

Theorem 11.12 (Nonforcing Theorem). Let P be a periodic orbit of period m >
1 of an EP-adjusted map f G Y. Also let Q ^ P be a primary periodic orbit
of f of period « > 1. Then the following hold.

(a) // P is pendulum, then Q is pendulum and « >s m.
(b) If P is twist, then Q is twist and n/3 >s m/3.
(c) If P is green, then Q is either green or twist and n >g m .
(d) If P is red, then Q is either red or twist and « >r m.
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Proof. In all cases, by Propositions 5.4, 5.7, 5.17, and 5.18, P is primary. By
the First Theorem (2.3), P is the only periodic orbit of / of period m . Hence,
« t¿ «j. Also in all cases, since / is EP-adjusted, we have Span(ß) Ç Span(P).

(a) By Lemma 11.1 and the Undirected Theorem (7.1), ß is pendulum.
If m >s n, then by the Forcing Theorem (11.10) and the Adjusting Lemma
(1.18), / has a periodic orbit R of period m with Span(P) c Span(ß).
Hence R ^ P, a contradiction.

(b) (resp. (c), (d)). By Lemmas 11.2 and 11.3 and the Directed Theorem
(10.1), ß is twist (resp, green or twist, red or twist). If «j/3 >s n/3 (resp.
m >   « , m >r n) then we get a contradiction as in the proof of (a),   a

Theorem 11.13 (Adjusted Periods Theorem), (a) Let P be a periodic orbit of
period m > 1 of an EP-adjusted map f G Y. Then

(a.l) If P is pendulum, then Per(f) = S(m).
(a.2) // P £5 green or twist, then Per(f) = G(m).
(a.3) If P is red or twist, then Per(/) = R(m).
(b) There exist maps f and g e Y such that each periodic orbit of f (resp.

g) of period larger than one is pendulum (resp. twist) and Per(f) = S(2°°)
(resp. Per(g) = G(3.2°°) = R(3.2°°) ).
Proof, (a) By the Primary Theorem (2.5), Per(/) is equal to the set of periods
of all primary orbits of /. Hence, (a) follows from the Forcing Theorem (11.10)
and the Nonforcing Theorem (11.12).

(b) It is known (see, e.g., [Sa]) that there exists a map A e I such that
Per(A) = 5"(2°°) and, for each z > 1, A has only one periodic orbit of period
2'. Moreover, A(0) = 0 and A has only one fixed point different from 0. Since
[0,1] c Y, we can define / by f[0 „ = A , f(x) = 0 for x <£ [0,1]. Clearly,
/ G Y, Per(Z) = 5(2°°), and for each i > 1, / has only one periodic orbit
of period 2' (we recall that in the case of maps of Y, we do not consider
{0} as a periodic orbit). Hence, all these periodic orbits are primary. By
construction, they are undirected. Then, by the Undirected Theorem (7.1),
they are pendulum.

Let e = exp(27iz/3). We define g by g(x) = eJi(x) for x G [0,1] and
g(x) = ejc for x i [0,1]. Clearly, g G\, Per(g) = G(3.2°°) = P(3.2°°),
and for each i > 0, g has only one periodic orbit of period 3.2'. Hence, all
these orbits are primary. By construction they are directed and have only black
arrows. Then, by the Directed Theorem (10.1), they are twist.   G

12. Coexistence of periodic orbits

In this section we are going to get the tool to prove (b) of the Main Theorem.

Theorem 12.1 (Coexistence Theorem). Let P( be a primary periodic orbit of a
map f G Y, /' = 1,2, ... , « . Then there exists a map f G Y such that:

(a) / has periodic orbits Qi  E-equivalent to Pi for i = 1,2, ... ,n .
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(b) For each periodic orbit R of f, there is i G {1,2, ... ,n} such that f
has a periodic orbit of the same period as R.

Proof. We use induction on «. For « = 1, the statement is obviously true.
Assume that it is true for « - 1 and prove it for « .

There exists a map g G Y such that it has a periodic orbit ß E-equivalent
to Pn and g is Eß-adjusted. Set Z = \J™0 g~'(0) \ {0}. There exists a map
\p: Y —> Y, mapping each branch onto itself in a nondecreasing way and such
that ip~X(x) consists of only one point if and only if x £ Zu(0} and y~x(0)
is homeomorphic to Y. In other words, y/~x blows up 0 and all its inverse
images under iterates of g. If x g Z , then tp~x(x) is an interval.

We define / in several steps. If \p(x) ^ Z u {0} , then g o ^(x) ^ Zu {0}
and we set f(x) = ip~X(g o ip(x)). If y G Z then, since g is Eß-adjusted,
there exists one-sided limits (from outside) of f(z) as z tends to the endpoints
of \p~ (y). Moreover, these limits are equal to the endpoints of the interval
W~l(g(y)) if 8(y) G Z or to extremal points of y~'(0) if g(y) = 0. Then we
extend / to the interval y/~ (y) continuously to its endpoints and linearly to
the whole interval. If x is an extremal point of y/~ (0) then, since g is Eß-
adjusted, there exists a one-sided limit (from outside) of f(z) as z tends to
x, and it is equal to an extremal point of ip~ (0). We extend / continuously
to x. _

In such a way / is defined and continuous on the set T \ ^_1(0). There
exists a homeomorphism tp of Y onto a subset Y of Int(<//- (0)). By the
induction hypothesis, there exists a map / e Y such that / has periodic orbits
Q¡, i = 1,2, ... ,n- I, E-equivalent to P(, and if R is a periodic orbit of /
then there is i G {1,2,...,«- 1} such that fi has a periodic orbit of the same
period as R. We set / = tp o /o tp~ on 7. On the remaining three intervals
joining y\^~'(0) with Y, we extend / linearly.

In such a way / is defined on the whole Y. Clearly / satisfies (a). We shall
show that / also satisfies (b).

Let R be a periodic orbit of /. If R n Y ^ 0 then, since Y is f invariant,
R c Y. Then by the definition of /| j., (b) is satisfied.

Assume that Rf)Y = 0 but Rnip~x(O)¿0. Since tp~x(0) is /-invariant,
R C ip~x(0)\Y. This set consists of three intervals 70, /,, 72 (7¿ c br; ).
By the definition of /, for each i there exists j such that /(/,-) C /• U Y.
Since g is Eß-adjusted, / = ind(g(sm(.)). Since f\¡  is linear for i = 0,1,2
and Y and the set of extremal points of \p~ (0) are /-invariant, either R is
contained in the set of the extremal points of ^'(0) or for each x G R, if
x G I¡, then the whole /( consists of points of periodic orbits E-equivalent to
R. In both cases, there is a periodic orbit R' contained in the set of extremal
points of y-1(0) and E-equivalent to R. If ß is directed, then P' is a twist
periodic orbit of period 3. Since ß is primary, by the Directed Theorem ( 10.1 )
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and the Forcing Theorem (11.10), g also has such orbit. If ß is undirected
then R1 has period 1 or 2. However, by the Undirected Theorem (7.1) and the
Forcing Theorem, g also has such orbit.

Now assume that Rny/~X(O) = 0. Then Rnip~x(Zu{0}) = 0, and tp(R)
is a periodic orbit of g, E-equivalent to R.

Hence, in all cases when Rr\ Y = 0 we get a periodic orbit of g of the same
period as R. By the Adjusting Lemma (1.17), fn also has such an orbit. This
proves (b).   G
Remark 12.2. One can prove a stronger version of the above theorem. Let P¡
be a periodic orbit of a map fG Y, i = 1,2, ... ,n . Then there exists / G Y
such that

(a) / has periodic orbits Q¡, i = 1,2, ... ,n , E-equivalent to P;.
(b) For each periodic orbit R of f there is z 6 {1,2, ... , «} such that R

is E-equivalent to some periodic orbit of f .
This version has no assumption that P. is primary and has a stronger condition
(b). It can also be generalized for trees {z g C: zs g [0,1]}. The proof,
instead of using the Forcing Theorem (11.10), uses the following lemma: If P
is a periodic orbit of g, g(0) = 0, ix, ... ,in are pairwise different numbers
such that ind(g(sm,.)) = i... for j = 1,2, ... ,n- I, and Ind(g(sm, )) = i. ,
then there exists an orbit {x, ,x2, ... ,xn) of g such that g(x,) = xj+x for
j = 1,2, ... ,n - I, g(xn) = x,, and ind(xy) = i} for / = 1,2,...,«.
However, we do not need this stronger version of the Coexistence Theorem,
and we leave its proof (and the proof of the lemma!) to the interested readers.

13. Proof of main theorem, final remarks, and conjectures

Proof of Main Theorem, (a) follows from the Periods Theorem (11.11). (b)
follows from the Adjusted Periods Theorem (11.18), the Coexistence Theorem
( 12.1 ), and Remarks 4.17, 4.22, 4.26, 4.39, and 4.43.    G
Remark 13.1. Instead of using the above remarks, we can use only the existence
of pendulum orbits of period 3, double green orbits of period 5, double red
orbits of period 7, and the Forcing Theorem (11.10).

As an easy corollary to the Main Theorem, we obtain the following result of
Mumbru [Mu],

Theorem 13.2. (a) // / G Y and {2,3,4,5,7} c Per(/), iA<?« Per(/) = N.
(b) // W c N ¿s a set such that for every / 6 Y, W c Per(/) implies

Per(f) = -N,then W c {2,3,4,5,7}.
Remark 13.3. Since the results on pendulum orbits are valid for I as well as
for Y, in the same way as in the proof of the Main Theorem, we can obtain an
alternative proof of the Sarkovskii Theorem.

Conjecture 13.4. Let zc > 3, let Z = {z g C: zk g [0,1]}, and let Z be the
set of all continuous maps of Z into itself for which 0 is a fixed point. Then
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there exist total (linear) orderings <j,..., <, of subsets W{, ... , W¡ of N,
respectively, such that:

(a) If / G Z, then Per(/) = w( u • • • u wf where the sets wj c Wi have
the following property: if «z >( « and « e wf , then m G wf.

(b) If the sets W[ gWí (i = 1,2, ... ,I) have the property that if m >. «
and « G W¡, then «j G W[ , then there exists / 6 Z such that Per(/) =
^Ufr'jU-U W[ .

In Conjecture 13.4 we may replace Z by other sets of maps. For example,
( 1 ) The set of all continuous maps of a given tree into itself for which all

branching points are fixed points.
(2) The set of all continuous maps of Y into itself.
(3) The set of all continuous maps of Z into itself.
(4) The set of all continuous maps of a given tree into itself.

In such a way we obtain new conjectures (or perhaps rather open problems).

Remark 13.5. If in Conjecture 13.4 we replace Z by the set of all continu-
ous maps of a circle into itself of degree one, then it becomes false (consider
rotations).
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