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A generic lattice model for systems containing particles interacting with short-range attraction long-

range repulsion (SALR) potential that can be solved exactly in one dimension is introduced. We

assume attraction J1 between the first neighbors and repulsion J2 between the third neighbors. The

ground state of the model shows existence of two homogeneous phases (gas and liquid) for J2/J1

<1/3. In addition to the homogeneous phases, the third phase with periodically distributed clusters

appears for J2/J1 > 1/3. Phase diagrams obtained in the self-consistent mean-field approximation

for a range of values of J2/J1 show very rich behavior, including reentrant melting, and coexistence

of two periodic phases (one with strong and the other one with weak order) terminated at a critical

point. We present exact solutions for the equation of state as well as for the correlation function

for characteristic values of J2/J1. Based on the exact results, for J2/J1 > 1/3 we predict pseudo-phase

transitions to the ordered cluster phase indicated by a rapid change of density for a very narrow range

of pressure, and by a very large correlation length for thermodynamic states where the periodic phase

is stable in mean field. For 1/9 < J2/J1 < 1/3 the correlation function decays monotonically below

certain temperature, whereas above this temperature exponentially damped oscillatory behavior is

obtained. Thus, even though macroscopic phase separation is energetically favored and appears for

weak repulsion at T = 0, local spatial inhomogeneities appear for finite T. Monte Carlo simulations

in canonical ensemble show that specific heat has a maximum for low density ρ that we associate

with formation of living clusters, and if the repulsion is strong, another maximum for ρ = 1/2.

© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4799264]

I. INTRODUCTION

Most of biologically relevant macromolecules, or parti-

cles in soft-matter systems are charged and repel each other

with screened electrostatic forces.1–4 On the other hand, com-

plex solvents in biological or soft-matter systems may in-

duce effective attraction between the macromolecules. Im-

portant examples of the effective attraction include depletion

forces resulting from the presence of small objects such as

nonadsorbing polymers,4–6 solvophobic attraction,7, 8 or ther-

modynamic Casimir forces9–12 resulting from critical adsorp-

tion near a critical demixing point in a binary (or multicom-

ponent) solvent. The sum of all interactions has often the

form of short-range attraction long-range repulsion (SALR)

potential.13–27

Despite of the importance of the SALR potential for bi-

ological and soft-matter systems only preliminary and in-

complete results for phase diagrams have been obtained so

far.14–26 It is clear that the phase diagrams depend on the

strength of the repulsion, and for strong enough repulsion can

be completely different than in simple fluids. In the latter sys-

tems the phase behavior is determined by the competition be-

tween the entropy favoring the disordered phase and the en-

ergy favoring formation of a spherical droplet of the dense

phase. Volume fraction of the particles determines only the

size of this droplet. In the case of the SALR potential there

is additional competition between the energy and the chemi-

cal potential (or the volume fraction) of particles. The SALR

potential favors formation of spherical clusters whose size is

determined by the range of the attraction, and the distance be-

tween the clusters is determined by the range of the repulsion.

The structure minimizing the energy is possible only for suf-

ficiently small volume fraction, however. The increase of the

chemical potential leads to transitions from spherical to cylin-

drical clusters, next to a network, then to layers of particles,

and finally to inverse structures (occupied regions replaced

by voids).4, 20, 21, 23, 24, 26 Regions of stability of the disordered

fluid and different ordered phases, as well as location and or-

der of phase-transitions between them for various shapes of

the SALR potential are only partially known.

The difficulty in determination of phase diagrams in

experimental studies results from the presence of many

metastable phases and large characteristic time scales, by

which instantaneous rather than average states have been

observed.3, 4 The question of the average structure in ther-

modynamic equilibrium may be clarified in future confo-

cal microscopy dynamical studies. In simulations it is much

more difficult to study inhomogeneous structures with some

kind of periodic ordering and moreover the results are re-

stricted to the chosen form of interactions.15–17, 23, 26, 27 In the-

oretical studies the results relay on approximations, usually

of the mean-field (MF) type.14, 18–25 Validity of MF for the

SALR type potentials was only partially verified,20, 23 and it

is not clear which predictions of the MF approximation and

to what extent are valid on a qualitative or on a semiquantita-

tive level. Preliminary results within field-theoretic approach

show that fluctuations may lead to substantial modification

of the equation of state28 and to a fluctuation-induced first
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order phase transition,20, 29 as in magnetic systems with com-

peting interactions.30, 31 We should also mention that the ac-

curate liquid theories such as self-consistent Ornstein-Zernike

approximation (SCOZA)32 are unfortunately limited to uni-

form phases, and only a lack of solutions is an indicator of

possible phases with periodic ordering on the mesoscopic

length scale.14, 18, 19 Further studies including comparison be-

tween MF type results and simulations, as in Ref. 23 are nec-

essary. It would be also desirable to introduce a simple model

that could be solved exactly. Exact results could serve for test-

ing general theoretical predictions and for verification of the

range of validity of approximate theories. No simple model

that could play the same role as the two-dimensional Ising

model played for simple systems was proposed so far.

An exactly solvable two-dimensional model for the

SALR potential cannot be proposed at the moment. To fill

this gap at least partially, we introduce in this work a one-

dimensional (1D) lattice model with attraction J1 between the

first and repulsion J2 between the third neighbors. We assume

that the lattice constant is equal to the size σ of the parti-

cles. With this form of the potential the energy is minimized

when clusters of the size 3σ are formed. This size is inter-

mediate between very small (dimers) or quite large linear ex-

tensions of the aggregates, 2σ or 11σ , studied in Ref. 26 or

Refs. 15, 17, 21, and 23. Exact solutions can be obtained for

the equation of state (EOS) as well as for the density and the

correlation function for the whole range of J2/J1 in the grand

canonical ensemble. We shall calculate and analyze the EOS

and the correlation function for broad ranges of temperature

T and the chemical potential μ for strong, medium and weak

repulsion.

The specific heat is measured for fixed number of par-

ticles. Fixed number of particles imposes a global constraint

on the microscopic states, and analytical calculations in the

canonical ensemble become difficult even in the case of the

lattice gas equivalent to the Ising model.33 For this reason in

order to obtain information on thermal properties of systems

with competing interactions we perform Monte Carlo (MC)

simulations in the canonical ensemble. The specific heat cv

is often computed in simulations in order to determine phase

transitions.17 However, large energy fluctuations may be as-

sociated with formation of living (or dynamic) clusters, espe-

cially when the clusters easily form or dissociate. In order to

avoid misinterpretation of the simulation results for higher di-

mensions, it is important to distinguish the properties of the

cv that are associated with phase transitions from those as-

sociated with formation of living clusters. For this reason we

shall calculate cv for the 1D system, where no true phase tran-

sitions occur, but the distribution of particles can be strongly

inhomogeneous. We calculate the specific heat for several

temperatures as function of density for strong and for weak

repulsion.

There are no phase transitions in 1D models with finite

range of interactions, but pseudo-phase transitions may exist

for low temperatures. It is of interest to compare thermody-

namics and structure of the disordered phase in simple fluid

and in the SALR-potential systems. The exact results can give

interesting information about pretransitional ordering (includ-

ing cluster formation and distribution in space) and how this

ordering is reflected in measurable quantities. Effects of the

precursors of the ordered structures on structure, compress-

ibility, and specific heat were already studied in approximate

theories and in simulations.14–19, 25 Based on the exact results

for the correlation function and for the EOS, we can verify if

the repulsion can lead to significantly increased compressibil-

ity and to oscillatory decay of correlations on a mesoscopic

length scale, as found in Refs. 18–23.

In MF phase transitions are present even in one dimen-

sion, therefore MF in 1D systems can shed light on some gen-

eral features of phase diagrams in two or three dimensions.

The main difference between our results and phase diagrams

in 2D or 3D systems should follow from formation of ordered

structures with periodic distribution of particles in 1, 2, and 3

dimensions. Finally, it is interesting to compare the exact and

MF results in order to better interpret the latter.

The one-dimensional model considered here, apart from

yielding general information on periodic ordering in the

SALR-potential systems, describes several physical systems

that are interesting by their own. In the first place it can rep-

resent charged particles in a presence of depletant at a three-

phase coexistence line, or adsorbed at nanotubes or micro-

tubules. Another example is a linear backbone polymer with

monomers containing sites binding particles or ions that at-

tract or repel each other when bound to first or third neigh-

bors on the backbone, respectively. Our model can answer the

question of spontaneous formation of ordered periodic pat-

terns on linear substrates.

Let us finally mention that competing interactions are

present not only in soft-matter and biological systems. Lattice

models with competing interactions were introduced before

for quite different systems. For example, various models with

competing tendencies can describe water anomalies.34–38 In

particular, competing short-range repulsion with longer range

attraction can lead to density anomaly.37, 38 Spatial inhomo-

geneities are expected when the range of repulsion is larger

than the range of attraction. Alternating dense and dilute re-

gions studied in this work are similar to periodic distribution

of up and down spins in magnetic systems. Periodic distri-

bution of up and down spins was obtained previously in the

axial (or anisotropic) next nearest neighbor Ising (ANNNI)

model with nearest-neighbor ferromagnetic and next-nearest-

neighbor antiferromagnetic interaction in one direction, with

ferromagnetic coupling in the remaining directions.31, 39–41

Very rich phase behavior, including periodic phases with

periods incommensurate with the lattice, was obtained for var-

ious ratios of the ferromagnetic and antiferromagnetic cou-

plings and the exact expression for the correlation function

was found. The studies, however, did not focus on the role

of the external magnetic field that in the fluid version of the

lattice models corresponds to the chemical potential μ. In the

context of fluids the chemical potential plays a crucial role and

allows to obtain the EOS and structure for dense and dilute

fluids.

In Sec. II the model is introduced and the ground state is

determined and discussed. Section III is devoted to the MF ap-

proximation. Exact results and MC simulations are described

in Secs. IV and V, respectively. Section VI contains a short

summary and discussion.
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II. THE MODEL AND ITS GROUND STATE

A. The model

We consider an open system in equilibrium with a reser-

voir with temperature T and chemical potential μp. The

interaction h between the particles and the nanotubes, micro-

tubules, or binding sites plays analogous role as the chem-

ical potential, and we introduce μ = μp + h. The par-

ticles can occupy lattice sites labeled by x taking integer

values, 1 ≤ x ≤ L and we assume periodic boundary con-

ditions (PBC), i.e., L + 1 ≡ 1, 0 ≡ L. Each microstate is de-

scribed by {ρ̂(x)} ≡ (ρ̂(1), . . . , ρ̂(L)), where the occupancy

operator ρ̂(x) = 1 or ρ̂(x) = 0 when the site x is occupied or

empty, respectively. The probability of the microstate {ρ̂(x)}

is given by

p[{ρ̂(x)}] =
e−βH [{ρ̂(x)}]

�
, (1)

where � is the normalization constant, and β = (kBT)−1 with

kB denoting the Boltzmann constant. We have introduced for

convenience the thermodynamic Hamiltonian containing the

energy and the chemical potential term:

H [{ρ̂}] =
1

2

L
∑

x=1

L
∑

x ′=1

ρ̂(x)V (x − x ′)ρ̂(x ′) − μ

L
∑

x=1

ρ̂(x),

(2)

where the interaction potential is

V (�x) = −J1(δKr (�x + 1) + δKr (�x − 1))

+J2(δKr (�x + 3) + δKr (�x − 3)). (3)

In the above δKr is the Kronecker delta. The Hamiltonian (2)

can be rewritten in terms of the “unoccupancy” operator

ν̂(x) = 1 − ρ̂(x) (ν̂(x) = 1, 0 for an empty and full site x,

respectively):

H [{ν̂}] =
1

2

L
∑

x=1

L
∑

x ′=1

ν̂(x)V (x − x ′)ν̂(x ′)

+(μ − V0)

L
∑

x=1

ν̂(x) + L

(

V0

2
− μ

)

, (4)

where V0 =
∑

x V (x) = 2(J2 − J1). Note that Eq. (2) in

terms of ρ̂ and Eq. (4) in terms of ν̂ have the same form for

μ = V0/2. Moreover, the probability of the microstate {ρ̂(x)}

for μ = V0/2 − �μ is the same as the probability of the “neg-

ative” of this microstate, {1 − ρ̂(x)}, for μ = V0/2 + �μ.

Because of the above particle-hole symmetry the phase dia-

grams must be symmetric with respect to the symmetry axis

μ = J2 − J1.

We choose J1 as the energy unit and introduce dimension-

less variables for any quantity X with dimension of energy as

X* = X/J1, in particular

T ∗ = kBT/J1, J
∗ = J2/J1, μ

∗ = μ/J1. (5)

B. The ground state

The grand potential:

	 = −pL = −kBT ln � = U − T S − μN, (6)

where p, U, S, N are pressure, internal energy, entropy, and

average number of particles, respectively, reduces to the min-

imum of H [{ρ̂(x)}] for T = 0 and fixed L. In the case of pe-

riodic phases the bulk properties must be determined for L =

ln, where l is the period of density oscillations and n is integer.

We consider ω∗ = −p∗ = H ∗[{ρ̂(x)}]/(ln) for two homoge-

neous phases, one with all sites empty (gas) and the other one

with all sites occupied (liquid) and for a periodic phase where

three occupied neighboring sites are followed by l − 3 empty

sites with l ≥ 6. For these phases we have

ω∗ =

⎧

⎪

⎨

⎪

⎩

0 empty lattice (gas)

−
2+3μ∗

l
periodic, l ≥ 6

J ∗ − 1 − μ∗ full occupancy (liquid)

.

Two phases can coexist for thermodynamic states such that

ω* in these phases takes the same value. The (J*, μ*) phase

diagram for T* = 0 is shown in Fig. 1.

Note that for μ* = −2/3 the ω* of the periodic phase is

independent of l if l ≥ 6. This is because when in the empty

lattice 3 neighboring cells become occupied, the associated

change of H* is −2 − 3μ*. Because the interaction range

is 3, for μ* = −2/3 a triple of occupied cells can be sepa-

rated from another triple of occupied cells by l − 3 empty

cells for any l ≥ 6. Such a state can be interpreted as a clus-

ter fluid that can be stable, however, for a single value of the

chemical potential, μ* = −2/3. When 2 + 3μ* > 0, the low-

est value of ω* corresponds to l = 6, and the periodic phase

with period 6 is stable. The gas and periodic phases coexist

for μ* = −2/3. Because of this coexistence, arbitrary sepa-

ration between the clusters, whose number is also arbitrary

(but smaller than L/6), can be interpreted as arbitrarily small

droplets (larger than 6 in the case of the periodic phase) of

these phases. As a result, an arbitrary number of interfaces

can be formed. This is possible when the surface tension be-

tween the gas and the periodic phases vanishes.

Similarly, creation of a triple of empty sites in the fully

occupied lattice leads to the change of H* which is �H*

= −6J* + 4 + 3μ*. At the coexistence between the fully

FIG. 1. Ground state of the considered model. The repulsion to attraction

ratio J* and the chemical potential μ* are dimensionless (see (5)). The co-

existence lines are μ∗
gas-cond = −1 + J ∗, μ∗

gas-per = −2/3, and μ∗
cond-per

= −4/3 + 2J ∗. Schematic illustration of the three phases is shown in the

insets inside the region of stability of each phase.
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occupied lattice and the periodic phase 6J* − 4 − 3μ* =

0, hence the separation between the three empty neighboring

cells (bubbles) can be arbitrary (but ≥3). Again, such a state

can be interpreted as a fluid of bubbles, or as a coexistence

between the liquid and periodic phases in the case of vanish-

ing surface tension. Note the similarity between this property

of our model and the very low surface tension between water-

or oil-rich phases and microemulsion. At T* = 0 formation of

the microemulsion is associated with vanishing surface ten-

sion in the lattice model for the water-oil-surfactant mixture.42

III. MF APPROXIMATION

A. Short background

In the self-consistent MF approximation the Hamiltonian

(2) is approximated by

HMF [{ρ̂(x)}] =
∑

x

[

−(h(x) + μ)ρ̂(x) +
1

2
h(x)ρ̄(x)

]

,

(7)

where the mean-field acting on the site x is

h(x) = −
∑

x ′

V (x − x ′)ρ̄(x ′) (8)

and the MF average density satisfies the self-consistent equa-

tion:

ρ̄(x) =
eβ(h(x)+μ)

1 + eβ(h(x)+μ)
. (9)

The grand statistical sum:

� =
∏

x

[e−
β

2
h(x)ρ̄(x)(1 + eβ(h(x)+μ))] (10)

together with (9) after some algebra leads to the grand poten-

tial of the form:43

	 =

L
∑

x1=1

L
∑

x2=1

{

1

2
ρ̄(x1)ρ̄(x2)V (x1 − x2)

+δKr (x1 − x2)fh(ρ̄(x1))

}

− μ

L
∑

x=1

ρ̄(x). (11)

where in the lattice models

fh(ρ) = −kBT s(ρ) = kBT [ρ ln(ρ) + (1 − ρ) ln(1 − ρ)].

(12)

Local minima of (11) satisfy Eq. (9) (see Ref. 43).

Equation (9) can be solved by iterations for different ini-

tial conditions. Stability regions of different phases and first-

order transitions between them can be obtained by comparing

ω = 	/(ln) for different forms of ρ̄(x). In practice systems

with the size l and PBC represent one period of the phases

with the period l, and we have considered 6 ≤ l ≤ 50.

B. Stability analysis

Boundary of stability of the disordered phase can be

found by analyzing the second derivative of β	 with respect

to the density profile ρ̄(x). The disordered fluid is stable as

long as this derivative,

C(x, x ′) =
∂β	

∂ρ̄(x)∂ρ̄(x ′)
, (13)

is positive definite. The disordered phase is at the boundary

of stability when the smallest eigenvalue of (13) vanishes for

ρ(x) = const. For interactions depending only on x − x′ the

quadratic part of β	 (bilinear form) is diagonal in Fourier

representation, and the eigenvalues of C are given by

C̃(k) = β∗Ṽ (k) +
1

ρ̄(1 − ρ̄)
, (14)

where

Ṽ (k) =
∑

x

V ∗(x)eikx . (15)

In this model

Ṽ (k) = −2 cos k + 2J ∗ cos 3k. (16)

C̃(k) assumes the smallest value C̃(kb) for given T* and μ*

for k = kb corresponding to the minimum of Ṽ (k). We obtain

kb =

⎧

⎨

⎩

0 if J ∗ < 1/9,

arccos

√

1+3J ∗

12J ∗ otherwise,

and

Ṽ (kb) =

⎧

⎨

⎩

2(J ∗ − 1) if J ∗ < 1/9,

−2J ∗
(

1+3J ∗

3J ∗

)3/2

otherwise.

The boundary of stability of the disordered phase

obtained from C̃(kb) = 0,

kBT ∗ = −Ṽ (kb)ρ̄0(1 − ρ̄0), (17)

represents the spinodal line of the gas-liquid separation when

kb = 0 (J* < 1/9). The MF boundary of stability of the dis-

ordered phase with respect to density waves with finite wave-

lengths 2π /kb is termed λ-line in literature,19, 23, 44 to distin-

guish it from the spinodal line where the disordered phase

is unstable with respect to phase separation. In this model

the MF instability with respect to periodic ordering with the

wavelength 2π /kb with kb > 0 occurs when J* > 1/9 (see

Fig. 2).

It is interesting to find the λ-line and the spinodal in the

(μ*, T*) phase space. From the form of the chemical potential

FIG. 2. Ṽ (k) given by (16). J* = 0.05, 1/9, 0.5, 1, 1.5 from the bottom to the

top line on the left.
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FIG. 3. Lines of instability (solid) of the homogeneous phase in the (μ*, T*)

variables for a range of J*. Similar behavior was obtained in Ref. 45. The

coexistence lines at T* = 0 are shown as dashed lines.

for ρ = const, μ* = 2(J* − 1)ρ + T*ln [ρ/(1 − ρ)], we obtain

the boundary of stability of the homogeneous phase

μ∗ = (J ∗ −1)(1 ± q)+T ∗ ln

(

J ∗

2T ∗

(

1 + 3J ∗

3J ∗

)3/2

(1 ± q)2

)

,

(18)

where

q =

√

1 + 2
T ∗

J ∗

(

3J ∗

1 + 3J ∗

)3/2

. (19)

The shapes of the spinodal and λ-lines for various J* are

shown in Fig. 3.

In the case of attraction dominated system (J* < 1/9), the

two branches of the spinodal line separate the region where 	

assumes two minima for two different constant densities (low-

T* side of the lines) from the region with one minimum on the

high-T* side of the lines. This is usual behavior associated

with the gas-liquid separation.

For 1/9 < J* < 1 the branches of the line of instability in-

tersect and form a loop for high T*. The homogeneous phase

is unstable for any density inside the loop. Note that when

the loop is present, then for decreasing T* or increasing μ*

there may exist a sequence of phases: disordered–periodic–

disordered. Such a sequence agrees with observations of the

reentrant melting.46, 47 For the repulsion-dominated system

(J* > 1) only the loop is present (Fig. 3), and coexistence

between homogeneous phases is not expected.

Our stability analysis is incomplete, because we did not

study the boundary of stability of the periodic phase.

C. MF phase diagrams

The continuous transitions between the disordered and

ordered phases coincide with the critical point or with the λ-

line determined above for J* < 1/9 or J* > 1/9. The tran-

sitions become first order for T ∗ < T ∗
tcp, where the tricritical

point (TCP) is calculated analytically in the Appendix. The

TCPs exist only for 1/9 < J* < 1. For J* = 1/9 the two TCP

(one for ρ < 1/2, the other one for ρ > 1/2) merge into the

critical point at ρ = 1/2. For J* = 1 we obtain T ∗
tcp = 0. The

locations of the first-order transition lines have been obtained

by calculating the grand potential (11) for the average densi-

ties that are self-consistent solutions of Eq. (9). The method

FIG. 4. Illustration of the method used for obtaining the phase coexistence.

In the bottom panel the left, central, and right lines correspond to the gas,

periodic, and disordered liquid phases, respectively.

of determining the transition lines is shown schematically in

Fig. 4.

We obtain four qualitatively different phase diagrams for

J < 1/9, 1/9 < J < 1/3, 1/3 < J < 1, and J > 1. In the first

case standard gas-liquid separation occurs. For 1/9 < J < 1/3

we find gas-liquid coexistence at low T*, next a triple point

where the two phases coexist with the periodic phase, and

the first-order transition between the periodic phase and the

fluid becomes continuous at the tricritical points. This type

of phase diagram is shown in Fig. 5 for J* = 1/4. Simi-

lar phase diagram was obtained for very weak repulsion in

Ref. 22, where only one-dimensional density oscillations

were assumed in the Landau-type and density-functional the-

ories. Moreover, when electrostatic repulsion is added to the

Landau functional, similar phase diagram is obtained.48

For 1/3 < J < 1 there is no coexistence between the

gas and liquid phases. Instead, the gas–periodic phase tran-

sition, followed by the periodic phase–liquid transition occur

for increasing chemical potential. The transitions are first or-

der below and continuous above (in temperature) the tricriti-

cal points. The phase diagram for J* = 1/3 is shown in Fig. 6.

Similar phase behavior was obtained in Ref. 22 for medium-

strength repulsion.

Finally, for J > 1 the tricritical points disappear and the

transition between the disordered and periodic phases is con-

tinuous. This seems to be inconsistent with the presence of

the first-order transition between the periodic and the fluid

phases at T* = 0. This apparent inconsistency follows from

the presence of two periodic phases for J* > 1. One of them

is the same as the phase stable at T* = 0. It has large ampli-

tude of density oscillations and the period l = 6. The other

phase appears inside the loop of the λ-line, has a period 2π /kb

and small amplitude of density oscillations. The two periodic

phases coexist along the line which is a continuation of the

coexistence line between the large-amplitude periodic phase

and the homogeneous fluid, above the temperature at which

this transition and the low-T* branch of the λ-line intersect
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FIG. 5. MF phase diagram for J* = 1/4 in variables (μ*, T*) (a) and (ρ, T*)

(b). The symmetry axis in (a) is μ* = −3/4 and ρ = 1/2 in (b). Only half of

the phase diagram is shown because of the symmetry. Dashed and solid lines

represent continuous and first-order transitions. The dotted line is the λ-line.

The coexisting phases in the two-phase regions in (b) are labeled by g for gas,

d for dense fluid, and p1, p2 for the periodic phases with the smaller and the

larger period, respectively. The density range of stability of the large-period

phase is within the thickness of the line. The periodic phases in (a) are stable

inside the lens (p2) and inside the loop (p1).

(see Figs. 3 and 7). The coexistence between the two periodic

phases terminates at a critical point, where the densities, am-

plitudes, and periods of the two phases become the same. The

(μ*, T*) and (ρ, T*) phase diagrams for J* = 3 are shown

in Fig. 7. The amplitudes of the two periodic phases along

their coexistence line and for T* = 0.347 are shown in Fig. 8

as functions of T* and μ*, respectively. The density profiles

in the two periodic phases for selected thermodynamic states

are shown in Fig. 9. As far as we know, coexistence of two

ordered phases with the same symmetry but different degree

of order has not been reported yet.

IV. EXACT SOLUTIONS

A. Transfer matrix and exact expressions

Since the range of interactions is 3, we coarse-grain the

lattice and introduce L/3 boxes consisting of three neighbor-

ing lattice sites, and labeled by integer 1 ≤ k ≤ L/3. The

microstates in the kth box are

Ŝ(k) = (ρ̂(3k − 2), ρ̂(3k − 1), ρ̂(3k)). (20)

There are 23 possible microstates in each box. We distinguish

4 states with the first site occupied and the remaining sites

either occupied or empty, and denote such states by Ŝ1(k)

= (1, ρ̂(3k − 1), ρ̂(3k)). Likewise, we denote states with

the second site occupied by Ŝ2(k) = (ρ̂(3k − 2), 1, ρ̂(3k)),

FIG. 6. MF phase diagram for J* = 1/3 in variables (μ*, T*) (a) and (ρ, T*)

(b). The symmetry axis is μ* = −2/3 and ρ = 1/2 in (a) and (b), respectively.

Only half of the phase diagram is shown because of the symmetry. Dashed

and solid lines represent continuous and first-order transitions between the

disordered fluid and the periodic phase. The dotted line is the λ-line. The

periodic phase in (a) is stable inside the loop (thick line). The two-phase

regions in (b) are shaded.

and with the third site occupied by Ŝ3(k) = (ρ̂(3k − 2),

ρ̂(3k − 1), 1).

The Hamiltonian of the system with PBC can be written

in the form:

H ∗[{ρ̂(x)}] =

L/3
∑

k=1

H ∗
t [Ŝ(k), Ŝ(k + 1)], (21)

where

H ∗
t [Ŝ(k), Ŝ(k + 1)] =

3k
∑

x=3k−2

[−ρ̂(x)ρ̂(x + 1)

+J ∗ρ̂(x)ρ̂(x + 3) − μ∗ρ̂(x)]. (22)

We introduce a 8 × 8 transfer matrix T with the matrix ele-

ments:

T (Ŝ(k), Ŝ(k + 1)) ≡ e−β∗H ∗
t [Ŝ(k),Ŝ(k+1)]

=

8
∑

i=1

Pi(Ŝ(k))λiP
−1
i (Ŝ(k + 1)), (23)

where the eigenvalues of T are denoted by λi such that |λi|

≥ |λi + 1|, the elements (Ŝ, i) of the matrix P transforming

T to its eigenbasis are denoted by Pi(Ŝ), and the elements

(i, Ŝ) of the matrix inverse to P by P −1
i (Ŝ). Note that T is

not symmetric, hence pairs of complex-conjugate eigenvalues

may occur. However, because T is a finite matrix with posi-

tive elements, from the Frobenius theorem it follows that the

largest (in absolute value) eigenvalue is non-degenerate.
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FIG. 7. MF phase diagram for J* = 3 in variables (μ*, T*) (a) and (ρ, T*)

(b). The symmetry axis is μ* = 2 and ρ = 1/2 in (a) and (b), respectively.

Only half of the phase diagram is shown because of the symmetry. Dashed

and solid lines represent continuous and first-order transitions. The dotted

line is the λ-line. The two-phase regions in (b) are shaded with different

shades for different phase equilibria. The high-amplitude periodic phase co-

exists with gas (for μ* < 2 or ρ < 1/2) or liquid (for μ* > 2 or ρ > 1/2)

for T ∗ < T ∗
tp , and with the low-amplitude periodic phase for T ∗ > T ∗

tp . The

coexistence line between the two periodic phases (short solid line above the

dashed line in (a)) begins at T ∗ = T ∗
tp and terminates at the critical point

with T ∗
c ≈ 0.34713. Note that the point where the transition between the dis-

ordered and the periodic phases changes order is not the TCP. The disordered

phase coexists with one periodic phase for T ∗ < T ∗
tp , and undergoes a contin-

uous transition to the other periodic phase for T ∗ > T ∗
tp , whereas at the TCP

the transition between the same phases changes order.

The grand statistical sum in terms of the transfer matrix

takes the form:

� = T rT
L/3 =

8
∑

i=1

λ
L/3

i (24)

and for the grand potential we obtain

	∗/L = −p∗ = −T ∗

[

1

3
ln λ1 +

1

L
ln

(

1+

8
∑

i=2

(

λi

λ1

)L/3
)]

≃ L→∞ −
T ∗

3
ln λ1. (25)

In the case of PBC the average density is independent of

the position, ρ̄ = 〈ρ̂(1)〉. From the definition of the average

FIG. 8. Amplitudes of the density profiles in the two periodic phases for J*

= 3. (a) As a function of temperature along the coexistence line (the lines

meet at T ∗
c ≈ 0.34713); (b) as a function of μ* for T ∗

c = 0.347.

FIG. 9. Density profiles (a) in the coexisting high- and low-amplitude phases

for T* = 0.3. The lines are shifted horizontally for clarity. (b) In the low-

amplitude phase close to the continuous transition to the fluid at T* = 0.3

and (c) for T* = 1.3 and μ* = 1. The quasi-periodic structure with a period

incommensurate with the lattice is obtained from a density profile with a

large-period when 2π /kb is noninteger. The lines connecting the results for

integer x are to guide the eyes.
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density and from Eqs. (23) and (24) we obtain

〈ρ̂(1)〉 =

∑

Ŝ1(1)

∑8
i=1 λ

L/3

i P −1
i (Ŝ1(1))Pi(Ŝ1(1))

∑8
i=1 λ

L/3

i

≃ L→∞

∑

Ŝ1(1)

P −1
1 (Ŝ1(1))P1(Ŝ1(1)). (26)

Let us consider the correlation function for the sites sep-

arated by a distance x = 3k + i, where k ≥ 0 and i = 0, 1,

2. Because the interaction range is 3, and the transfer matrix

operates between triples of sites, we shall obtain different ex-

pression for 〈ρ̂(1)ρ̂(1 + x)〉 for different i = 0, 1, 2. We intro-

duce the notation:

G(3k + i) = 〈ρ̂(1)ρ̂(1 + 3k + i)〉 − 〈ρ̂(1)〉2. (27)

From the definition of 〈ρ̂(x)ρ̂(x ′)〉 and from Eqs. (23) and

(26) we obtain the asymptotic expression for L → ∞:

G(3k + i) =

8
∑

n=2

(

λn

λ1

)k

A
(n)
1 B

(n)
1+i, (28)

where i = 0, 1, 2,

A
(n)
j =

∑

Ŝj

Pn(Ŝj )P −1
1 (Ŝj ), (29)

B
(n)
j =

∑

Ŝj

P −1
n (Ŝj )P1(Ŝj ), (30)

and Ŝj is defined below Eq. (20). The asymptotic decay of

correlations for k ≫ 1 is determined by the eigenvalue λ2 with

the second largest absolute value.

If λ2 is real, then for k ≫ 1 and i = 0, 1, 2 we can write

G(3k + i) = (sgn(λ2))ke−3k/ξA
(2)
1 B

(2)
1+i, (31)

where the correlation length is

ξ = 3/ ln

(

λ1

|λ2|

)

. (32)

Note the qualitatively different behavior for λ2 > 0 and λ2

< 0. For λ2 < 0 the correlation function changes sign when

the separation between the particles increases by 3, in analogy

with the density of the periodic phase in the ground state. The

case λ2 > 0 corresponds to decay of correlations in the gas or

liquid phases where no clusters consisting of three particles

separated by 3 vacancies are formed.

If λ2 is complex, then λ3 = λ∗
2, A

(3)
1 = A

(2)∗
1 , and B

(3)
j

= B
(2)∗
j . We introduce the notation:

λ2 = |λ2|e
iλ, A

(2)
1 =

∣

∣A
(2)
1

∣

∣eiα1 , B
(2)
j =

∣

∣B
(2)
j

∣

∣eiβj ,

(33)

and for k ≫ 1 and i = 0, 1, 2 obtain the asymptotic expression:

G(3k + i) = Aie
−3k/ξ cos(kλ + θi), (34)

where Ai = 2|A
(2)
1 ||B

(2)
1+i | and θ i = α1 + β1 + i, i = 0, 1, 2.

Similar expression was proposed in Ref. 41 for a 1D and in

Ref. 18 for a 3D system. The structure factor obtained in ex-

periments and theory3, 8, 13–23 is also consistent with this form.

In general, −π ≤ λ ≤ π , and 2π /λ is noninteger. Except for λ

= ±π (but in this case the imaginary part of λ2 vanishes), the

period of the exponentially damped oscillations is incommen-

surate with the lattice. This is similar to the results of the MF

stability analysis and to the incommensurate density profiles

obtained in MF for higher temperatures.

When λ = ±π∓ǫ with ǫ ≪ 1, then we can write Eq. (34)

in the equivalent form:

G(3k + i) = (−1)ke−3k/ξG(k, i) (35)

with

G(k, i) = Ai cos(6πk/w + φi), (36)

where the phase and the period of the amplitude modulations

are φi = −θ isgn(λ) and

w =
6π

|λ − sgn(λ)π |
. (37)

The first factor in (35) changes sign when the distance in-

creases by 3. The last factor describes the modulated ampli-

tude with the wavelength of modulations w ≫ 6 if λ → ±π .

We have obtained λi and the matrix P numerically for

different J*, μ*, and T* and the results are presented in

Sec. IV B.

B. Results

There are no phase transitions in a thermodynamic sense

in one-dimensional systems. However, instead of a disconti-

nuity, a rapid change of the density as a function of μ* or

p* can occur. Moreover, instead of long-range order and the

associated periodic density, a short-range order with exponen-

tially damped oscillatory decay of correlations with very large

correlation length may exist. In order to verify if such pseudo

phase transitions occur in this model, we calculate density and

pressure for several values of J* for the range of μ* and T*

corresponding to the phase transitions obtained in MF. In the

next step we examine the correlation functions.

1. Thermodynamic properties (equation of state)

In Figs. 10 and 11 p(μ*) and ρ(μ*) obtained from

Eqs. (25) and (26) are shown for J* = 3 and J* = 1/4 for 0.05

< T* < 1. By eliminating μ* from Eqs. (25) and (26) we ob-

tain the EOS, and present several isotherms ρ(p*) in Figs. 12

and 13. The chosen strengths of the repulsion to attraction ra-

tio correspond to qualitatively different ground state and MF

phase diagrams (see Figs. 1, 7, and 5). Let us first discuss J*

= 3. For low T* one can observe that although p*(μ*) is a

smooth function, its slope changes rapidly for the two values

of μ* that correspond to the phase transitions at T* = 0 and

in MF. In accordance with this behavior the density changes

from nearly 0 to 1/2 in a very narrow range of p* and μ*,

remains nearly constant for large intervals of p* and μ*, and

again changes rapidly from ρ = 1/2 to ρ ≈ 1. Very large com-

pressibility for ρ �= 1/2 changes to very small compressibility

for ρ ≈ 1/2. It is necessary to substantially increase the pres-

sure in order to induce a slight increase of the density from

ρ = 1/2, and a slight further increase of pressure is sufficient
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FIG. 10. p(μ*) obtained from Eq. (25) (a) J* = 3; top line: T* = 0.1, bottom

line: T* = 1 and (b) J* = 1/4; top line: T* = 0.05, bottom line: T* = 0.5.

for a rapid compression to ρ ≈ 1. When T* increases from T*

≈ 0.1, the density changes from the gas density to 1/2 more

and more gradually. For T* > 0.5 there are no abrupt changes

of the slopes of the ρ(p*) and ρ(μ*) lines, but the curvature

of these lines is significantly smaller than in the one-phase re-

gion of a simple fluid. This is because the repulsion between

the particles at the distance 3 leads to a significant increase

of pressure for random distribution of particles. On the other

hand, small pressure for ρ < 1/2 when T* is low signals that

in majority of states clusters made of at most 3 particles are

separated by at least 3 empty sites. Similar behavior is ob-

served for 1 < J* < 3 (Fig. 13), but the range of μ*, p*, and

T* for which ρ ≈ 1/2 and remains nearly constant decreases

with decreasing J*. For J* < 1 the plateau at the ρ(μ*) and

ρ(p*) curves for ρ = 1/2 disappears.

FIG. 11. ρ(μ*) obtained from Eq. (26) for J* = 3 and T* = 0.1, 0.4, 0.7, 1

(top to bottom line on the right) (a) and J* = 1/4 and T* = 0.005, 0.05, 0.1,

0.15 (top to bottom line on the right) (b).

FIG. 12. EOS ρ(p*) isotherms obtained from Eqs. (25) and (26) for T* =

0.1, 0.2, 0.3, 0.4, 0.5, and 1 (top to bottom line on the left) for J* = 3 (a) and

J* = 1/4 (b).

For J* = 1/4 we can see in Fig. 10(b) a rapid change of

the slope of the p*(μ*) line and in Fig. 11 the corresponding

change of density from ρ ≈ 0 to ρ ≈ 1 when T* < 0.06. For

T* > 0.15 the shapes of p*(μ*), ρ(μ*), and ρ(p*) (Fig. 12)

resemble the corresponding curves in the single-phase sim-

ple fluid. We thus see a pseudo-transition between the gas and

liquid phases for very low T*. We conclude that the thermo-

dynamic properties show no signature of the weakly ordered

periodic phase previously found in MF (Fig. 5). By compar-

ing Figs. 12(a) and 12(b) one can see the much lower pressure

in this case than for the repulsion-dominated case of J* = 3.

2. Structure (correlation function)

Our aim in this section is to discuss the exact results for

the correlation function for J* = 3 and J* = 1/4, correspond-

ing to qualitatively different ground state (Fig. 1) and MF

phase diagrams (Figs. 7 and 5). We particularly address the

question for what parameters the periodic order occurs, and

FIG. 13. EOS ρ(p*) isotherms obtained from Eqs. (25) and (26) for T* =

0.1. From the left to the right line J* = 0.1, 0.25, 1/3, 0.5, 0.75, . . . , 2.75, 3.
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FIG. 14. The correlation function G(x) for x = 3k + i with i = 0, 1, 2

(Eq. (34)) for J* = 3, μ* = 0, and T* = 0.1 (inside the MF stability re-

gion of the periodic phase). Solid line and the circles (black), dashed line and

the asterisks (red), and dotted line and the squares (blue) correspond to i =

0, 1, 2, respectively. The bottom panel shows a small portion of the upper

panel.

how the range and amplitude of the correlation function de-

pends on μ*, T*, and J*.

For J* = 3 we obtain complex λ2 for the considered re-

gion of (μ*, T*). In this case the correlation function is given

in Eq. (34), and presented in Figs. 14 and 15. In Fig. 14 μ*

corresponds to ρ ≈ 1/2, where the periodic phase is predicted

in MF, and in Fig. 15 μ* corresponds to ρ ≈ 0 (homogeneous

gas in MF).

The correlation length ξ (Eq. (32)) and the amplitude of

the correlation function A0 (see below Eq. (34)) are shown in

Figs. 16 and 17, respectively. For μ ≤ −2/3 the wavenumber

λ is shown in Fig. 18(a), and for μ ≥ −2/3 the period w of

modulations of the amplitude (see (35) and (36)) is shown in

Fig. 18(b).

From Fig. 16(a) it follows that for μ* < −2/3 the corre-

lation length ξ first increases slightly for decreasing T*, but

FIG. 15. The correlation function G(x) for x = 3k + i with i = 0, 1, 2

(Eq. (34)) for J* = 3, μ* = −0.7, and T* = 0.1 (outside the MF stability

region of the periodic phase). Black (circle), red (asterisk), and blue (square)

symbols correspond to i = 0, 1, 2, respectively.

FIG. 16. The correlation length ξ (Eq. (32)) for J* = 3 as a function of

T* (a) outside the MF stability region of the periodic phase. From the top

to the bottom line μ* = −2/3, −0.7, −0.8, −0.9, −1, and (b) inside the

MF stability region of the periodic phase. From the bottom to the top line

μ* = −0.65, −0.6, −0.55, −0.5, −0.45, and 2.

FIG. 17. The amplitude A0 of the correlation function (see Eq. (34) and

below) as a function of μ*. Dashed, solid, and dotted lines correspond to T*

= 0.1, 0.2, 0.3, respectively. J* = 3 (a) and J* = 1/4 (b).

FIG. 18. (a) The wavenumber λ of the correlation function (Eq. (34)).

J* = 3 and μ* = −2/3, −0.7, −0.8, −0.9, −1 from the top to the bottom

line (b) the period w (Eqs. (35)–(37)) of the amplitude modulations. J* = 3

and μ* = −0.65, −0.6, −0.55, −0.5, −0.45 from the bottom to the top line.
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starting from T* depending on μ* decreases rapidly to 0 for

T* decreasing to 0. Analogous behavior is predicted for μ* >

14/3 by the model symmetry. For −2/3 < μ* < 14/3 (stabil-

ity of the periodic phase for T* = 0) the correlation length in-

creases for decreasing T*. For given T* the correlation length

increases with increasing μ* when μ* < 2 and assumes a

maximum for μ* = 2. The maximum of ξ is very large for T*

< 0.15. For ξ ∼ 105 the range of the “short-range order” is

in fact macroscopic. For particles with a diameter 10 nm the

periodic arrangement persists to distances ∼1 mm. The ampli-

tude of the correlation function for T* ≤ 0.1 increases sharply

from a very small value for μ* < −1 to ∼0.2 for μ* > −0.7

(see Fig. 17(a)). The period w of the modulations of the corre-

lation function (Eqs. (35)–(37)) increases for decreasing T*,

indicating more and more ordered structure (see Fig. 18(b)).

All these results confirm a qualitative change of the structure

along the lines μ* = −2/3, 14/3 for low T*. For −2/3 < μ*

< 14/3 quasi long-range order with the very large correlation

length and the amplitude that for low T* rapidly decreases

at the boundaries of this region exists. From Figs. 16 and 17

we can see that the increasing correlation length and ampli-

tude for increasing T* when −1 < μ* < −2/3 indicates a

change from a less to a more ordered structure when T* in-

creases. The rapid increase of the amplitude as a function of

μ* for μ* ≈ −2/3 near T* corresponding to the maximum of

ξ resembles the transition between the periodic phases with

weak and strong order found in MF (compare Figs. 17(a) and

8(b)). When T* further increases, the properties of the cor-

relation function change more gradually and the correlation

length becomes short, in consistency with the continuous tran-

sition between the ordered and disordered phases found in MF

for high T*. Despite the absence of the phase transition in the

strict sense, we can see a change from a quasi-ordered pe-

riodic structure to the structure with much lower degree of

order.

For J* = 1/4 we obtain λ2 that is a real number on the

low-T* side of a line T ∗
cross(μ

∗), and a complex number for T*

above this line. As a result, a monotonic decay of correlations

is found for T ∗ < T ∗
cross(μ

∗), and an oscillatory decay sets in

for T ∗ > T ∗
cross(μ

∗). The derivatives of the correlation length

ξ and the wavenumber λ with respect to T* have a discontinu-

ity when the imaginary part of λ2 appears (see Fig. 19). The

amplitude of the correlation function (Fig. 17(b)) increases

from a very small value for μ* < −1 to ∼0.3 for μ* = −0.75

for T* = 0.1. For larger T* the increase of the amplitude is

more gradual. The correlation function shown in Fig. 20 con-

firms that for low T* the correlations decay monotonically,

whereas for higher T* the oscillatory decay of correlations is

present. The correlation length, however, is rather short, as

shown in Fig. 19. The monotonic decay of correlations for

low T*, and oscillatory decay of correlations at higher T* to-

gether with a rather rapid increase of the amplitude of the cor-

relation function from a very small to a rather large value for

some range of μ* around μ* = −3/4 bear some similarity to

the MF phase diagram. However, due to the much shorter cor-

relation length than for J* = 3, we can conclude that the weak

periodic order (small amplitude of density oscillations) found

in MF for relatively large T* does not resemble an ordered

phase in 1D.

FIG. 19. The wavenumber λ (a) and the correlation length ξ (Eq. (32)) (b)

of the correlation function (Eq. (34)) as a function of T* for J* = 1/4. From

the bottom to the top line in (a) and from the top to the bottom line in (b) μ*

= −0.75, −0.75 ± 0.01, −0.75 ± 0.02, . . . , −0.75 ± 0.07.

V. MC SIMULATIONS IN CANONICAL ENSEMBLE

In Sec. IV we have shown that the disordered phase in

systems with competing interactions is characterized by the

EOS and the correlation function that for strong repulsion are

completely different than in simple fluids. In this section we

would like to determine how the pretransitional ordering into

clusters whose positions can be correlated over very large dis-

tances is reflected in the measurable thermal properties such

as the constant-volume specific heat. Since analytical calcu-

lations in canonical ensemble are very difficult, we perform

MC simulations.

FIG. 20. The correlation function G(x) for x = 3k + i with i = 0, 1, 2

(Eq. (34)) for J* = 1/4 and μ* = −3/4 for T* = 0.05 (a) and T* = 0.2

(b). Black (circle), red (asterisk), and blue (square) symbols correspond to i

= 0, 1, 2, respectively.
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FIG. 21. The specific heat per particle (in kB units) as a function of den-

sity (dimensionless) for J* = 3. From the top to the bottom line on the left

T* = 0.25, 0.5, 0.75, 1 with L = 1200.

The basic step in the sampling is made as follows: Given

the current configuration of the system one chooses at random

with equal probability one of the occupied positions, x (with

ρ̂(x) = 1), and one of the empty positions x′ (with ρ̂(x ′) = 0),

the trial configuration is then constructed by swapping the

states between the positions x and x′. Considering the ener-

gies of the current and the trial configurations one applies the

Metropolis criterion49 to decide whether the trial configura-

tion is accepted as the new configuration of the system or

not. The heat capacity per particle, cv = (∂(H/N )/∂T )N,L,

is computed using the fluctuation formula:

cv =
1

NkBT 2
[〈H 2〉 − 〈H 〉2], (38)

where the angular brackets indicate averages on the canonical

ensemble.

For J* = 3 the specific heat is shown in Fig. 21. The

results for J* = 0.25 are shown in Fig. 22. For both values

of J* we can observe the presence of a peak at low density.

On cooling the system the height of this peak increases, and

the density where it appears is shifted to lower values. This

maximum in the heat capacity at low temperature can be ex-

plained as an effect of the equilibrium between isolated par-

ticles and clusters of several particles. Given the Hamiltonian

FIG. 22. The specific heat (in kB units) as a function of density (dimension-

less) for J* = 1/4. From the top to the bottom line on the left T* = 0.1, 0.25,

0.5, 0.75, 1 with L = 840.

of the model, these clusters are likely to be triples in the case

of J* = 3. At low temperature and low density the loss of en-

tropy due to the formation of clusters is compensated by the

energetic effect due to the attractive interaction between the

nearest neighbors.

There are, however, significant differences between the

heat capacities curves for J* = 0.25 and J* = 3.0, especially

for ρ ≃ 1/2. These differences are consistent with the results

for the EOS and the correlation function that indicate periodic

ordering of clusters only for strong enough repulsion. For J*

= 3.0, at low temperature, we can observe a basin around ρ

= 1/2, and a narrow peak centered also at ρ = 1/2. Focus-

ing in the region ρ ≤ 1/2, the ground state configurations are

formed by triples of occupied positions. Each triple of occu-

pied cells is separated at least by three empty positions from

another triple. Since the triple-triple interaction is repulsive

at short distances, the system does not show any trend to ex-

hibit a pseudo phase separation to form large regions of oc-

cupied and empty positions, and therefore the small energy

fluctuations lead to small values of the heat capacity. Notice,

however that for J* < 1/3 and low temperature the dominant

attractive interactions lead to a condensation of particles in

large clusters of occupied cells. In this case neither the basin

at low T* nor the peak near ρ = 1/2 is present.

The peak of cv(ρ) at ρ ≃ 1/2 for J* = 3 can be interpreted

as a signature of a pseudo-phase transition between an or-

dered (or quasi-ordered) phase (periodic phase with l = 6 for

ρ = 1/2) and a high temperature disordered phase. Notice that

as one approaches ρ = 1/2 the degeneracy of the ground state

reduces sharply, then we can describe this peak as produced

by the competition between the ground state (with very low

entropy values when ρ → 1/2) and disordered states (with

higher values of energy and entropy). This ordered pseudo-

phase lies between the fluid of small droplets (ρ < 1/2, T

→ 0) and the fluid of bubbles (ρ > 1/2, T → 0). In spite

of the lack of real phase transitions for one-dimensional mod-

els with short range interactions, the periodic pseudo phase

with density ρ = 1/2 resembles to some extent the low-density

crystalline phases that appear in core-softened models.50

We conclude that measurements of cv in systems with

competing interactions can give information on the forma-

tion and properties of clusters for very small densities, and

on formation of phases (or pseudo-phases) with periodically

ordered clusters for higher densities. While in the latter case

thermal properties are consistent with the EOS and the cor-

relation function, for very small densities they provide addi-

tional information on the equilibrium between isolated parti-

cles and clusters.

VI. SUMMARY AND DISCUSSION

We have developed a generic model for self-assembly in

systems with competing interactions. The 1D version of the

model was solved in MF approximation and exactly in the

grand canonical ensemble for the whole range of the repul-

sion to attraction ratio J*. In addition, MC simulations have

been performed in the canonical ensemble. We have found

interesting and counterintuitive results even in 1D case.
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The ground state (T* = 0) shows a sequence of phases

fluid (gas)–periodic–fluid (liquid) for increasing μ* when J*

> 1/3. This behavior agrees with the reentrant melting ob-

served experimentally in several systems.46, 47 For weaker re-

pulsions only the two fluid phases are present for T* = 0. A

peculiar property of the MF solutions is the existence of the

periodic phase for a range of μ* that is broader for interme-

diate temperatures than at T* = 0. In the case of 1/9 < J*

< 1/3 the periodic phase appears for some range of T*, even

though it is absent for T* = 0. Usually, the increase of T*

leads to less ordered structures, and the MF result is counter-

intuitive. In particular, the MF phase diagrams show that for

decreasing temperatures at constant μ* a sequence of phases

fluid-periodic-fluid appears, i.e., we find reentrant melting.

There are no phase transitions in 1D systems. In order to

find if the MF phase behavior is associated with a qualitative

change of mechanical, structural, and thermal properties, we

have analyzed the exact results for the EOS and correlation

function and performed MC simulations for cv . We emphasize

that the information obtained via exact calculations and MC

simulations on mechanical, structural, and thermal properties

is consistent and complementary.

We have found that for J* > 1 the correlation function

exhibits oscillatory decay with the correlation length that is

a few orders of magnitude larger than the size of the par-

ticles for some region of the (μ*, T*) phase diagram (see

Fig. 16). This indicates formation of clusters separated by

distances larger than the range of the repulsion. As a result

of the above ordering, the shapes of the EOS isotherms are

completely different than in simple fluids (see Fig. 12). The

compressibility is very large for the range of densities where

the pseudo-phase transitions between the fluid and the peri-

odic phase are expected. On the other hand, the compressibil-

ity is extremely small for ρ ≈ 1/2, where quasi-periodically

distributed clusters that repel each other at distances shorter

than 3σ are formed. Similar properties of the EOS can be ex-

pected for higher dimensions. The pseudo phase transition to

the periodically distributed clusters is associated with a peak

in the specific heat at ρ = 1/2. The above properties resemble

the properties of the large-amplitude periodic phase obtained

in MF. At the same time they signal that precursors of the or-

dered phase (in this model present for T* = 0) have a strong

effect on the mechanical (p and compressibility) and thermal

(cv) properties.

On the other hand, the high-T* weakly ordered phase

found in MF is only reflected in the qualitative change of

properties of the correlation function. For μ* that in the

ground state corresponds to the gas or liquid, we observe that

the correlation length assumes a maximum for some finite

T*, indicating increasing order for increasing T*. Moreover,

for such T* the amplitude of the correlation function changes

from a very small value to a much larger value for a narrow

range of μ*, and stays large for the range of μ* similar to the

stability region of the periodic phase found in MF.

The most surprising behavior shows the correlation func-

tion for 1/9 < J* < 1/3. It crosses over from a monotonic

decay at low T* to an oscillatory decay for higher T* that is,

however, much smaller than the temperature corresponding

to the appearance of the periodic phase in MF. The unusual

appearance of the periodic short-range order at intermediate

temperatures that for weak repulsion is neither energetically

nor entropically favored is the most surprising and interest-

ing exact result of this work. It means that for competing in-

teractions the inhomogeneities may appear as a compromise

between the macroscopic phase separation that is energeti-

cally favorable but entropically unfavorable, and the disor-

dered structure that is favorable entropically and unfavorable

energetically.
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APPENDIX: TRICRITICAL POINT

We assume that when the continuous transition to the ho-

mogeneous phase with density ρ̄0(μ∗, T ∗) is approached, the

density in the periodic phase has the form ρ̄(x) = ρ̄0 + �ρ(x)

with

�ρ(x) = δρ + φ cos(kbx). (A1)

The continuous transition coincides with the λ-line, and at the

λ-line δρ = φ = 0. The difference between the grand potential

in the periodic and the homogeneous phases, �	 = �ωL, is

a function of δρ and φ and �ω can be Taylor expanded for

δρ → 0 and φ → 0. When 2π /kb is not integer, in calculating

�ω (see (11)) we choose n → ∞ such that L ≈ 2nπ /kb and

make the approximation:

1

L

L
∑

x=1

cos(kbx)m ≈
1

2π

∫ 2π

0

cos zmdz. (A2)

The second derivative of �ω with respect to φ van-

ishes at the continuous transition, while the second derivative

with respect to δρ is positive. From the extremum condition

∂�ω/∂δρ = 0 we obtain

δρ = −
A3(ρ0)

4(β∗Ṽ (0) + A2(ρ0))
φ2 + O(φ4) (A3)

and

β�ω = a2φ
2 + a4φ

4 + O(φ6), (A4)

where

a2 =
β∗Ṽ (kb) + A2(ρ0)

4
, (A5)

a4 =
1

32

(

A4(ρ0)

2
−

A3(ρ0)2

β∗Ṽ (0) + A2(ρ0)

)

, (A6)
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and An(ρ) = dnβfh(ρ)/dρn with fh given in Eq. (12). The tran-

sition is continuous for a4 > 0, and becomes first order at the

tricritical point (TCP) given by a2 = a4 = 0. We obtain for the

density and temperature at the TCP the following expressions:

ρ̄
tcp

0 =
1

2

[

1 ±

√

Ṽ (kb) − Ṽ (0)

Ṽ (kb) + 3Ṽ (0)

]

, (A7)

T ∗
tcp =

−Ṽ (kb)Ṽ (0)

Ṽ (kb) + 3Ṽ (0)
. (A8)

Real positive solutions for ρ̄
tcp

0 exist for 1/9 < J* < 1, i.e.,

when the lines of instability intersect and form a loop.
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