
Periodic parabolic problem with discontinuous
coefficients: Mathematical analysis and

numerical simulation

Nour Eddine Alaa
University Cadi Ayyad, Morocco

Abderrahim Charkaoui
University Cadi Ayyad, Morocco

and
Abdelwahab Elaassri

University Mohammed first, Morocco
Received : July 2021. Accepted : November 2021

Proyecciones Journal of Mathematics
Vol. 41, No 6, pp. 1251-1271, December 2022.
Universidad Católica del Norte
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Abstract

This work presents a new approach for the mathematical analysis
and numerical simulation of a class of periodic parabolic equations
with discontinuous coefficients. Our technique is based on the mini-
mization of a least squares cost function. By the means of variational
calculus, we prove that the considered optimization problem admits an
optimal solution. Using the Lagrangian method, we compute the gradi-
ent of the cost function associated with our problem. Finally, we give
several numerical simulations that show the efficiency and robustness
of our method.

Subjclass: 35B10, 35K55, 35K59.

Keywords: Weak periodic solutions, discontinuous coefficients, op-
timization, Lagrangian.

10.22199/issn.0717-6279-5017

Scielo

Scielo



1252Nour Eddine Alaa, Abderrahim Charkaoui, Abdelwahab Elaassri

1. Introduction

During the last forty years, a large number of researchers have been in-
terested in the study of partial differential equations, their numerical sim-
ulations and their applications. A particular interest has been shown for
equations with nonlinear terms. Several methods have been developed to
answer different questions about the considered solutions. In particular,
questions of existence, uniqueness, regularity, stability, asymptotic behav-
ior and numerical simulation. For more details, we refer the reader to see
the works [1, 2, 3, 4, 5, 16, 17, 20, 28].

In this work, we are concerned with a periodic parabolic equation with
discontinuous coefficients modeled as⎧⎪⎨⎪⎩

∂tu− div(A(t, x)∇u) = f(t, x) in QT

u(0, ·) = u(T, ·) in Ω
u(t, x) = 0 on ΣT ,

(1.1)

where Ω is an open regular bounded subset of RN , with smooth boundary
∂Ω, T > 0 is the period, QT =]0, T [×Ω, ΣT =]0, T [×∂Ω, f is a measurable
function, periodic in time with period T and belonging to certain Lebesgue
space and A(t, x) = (aij(t, x))1≤i,j≤N is a periodic bounded matrix.

A large literature exists on periodic equations and several researchers
have been interested in the subject, we quote in particular [8, 6, 11, 12, 13,
15, 14, 18, 19, 23, 24]. We start by referring the readers to see the book [24]
for a major and comprehensive introduction to periodic parabolic equations
with regular data. Amann has also been interested in the same subject with
regular data. In his work [7], the author proved the existence of classical
periodic solution via the method of sub and super solution. In [25], Lions
studied the well-posedness of weak solutions of a class of periodic parabolic
equations involving Leray-Lions type operators. He used the theory of
maximal monotone operators to prove the existence, uniqueness and regu-
larity properties of the solutions. Deuel and Hess in D-H were interested
in the quasilinear case with a critical growth nonlinearity with respect to
the gradient. They established the existence and regularity property of a
weak solution by using the techniques of sub- and super-solutions. The
work [18] was generalized by Alaa et al in their paper [11], the authors ex-
amined the existence of a weak solution to a nonlinear parabolic equation
with L1 data. They combined the truncation method with the sub-and
super-solution techniques to obatin SOLA solution (Solution Obtained as
the Limit of Approximation). However, there are also quite a few papers
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that are devoted to simulate numerically the periodic solutions for parabolic
boundary problems, we refer the readers to see [10, 26, 27]. To detail the
discussion, let us start with the work of Carasso [10], where the author used
the least squares method to numerically simulate periodic solutions. When
the time period is unknown, Lust et al presented an iterative construc-
tion scheme for the periodic solutions of an ordinary differential system.
Another approach is given in [27] where the authors formulated the prob-
lem (1.1) as an evolution equation in a suitable Banach space and showed
the existence of a periodic solution via semigroup theory and fixed point
theorems. They studied a nonlinear heat conduction problem and used
Newton’s method for the numerical simulation of the periodic solutions.
Note that all of the above works are concerned with numerical simulations
for periodic parabolic equations with continuous coefficient. In this work,
we develop a new approach able to numerically construct the periodic so-
lution of (1.1). Our method is based on the formulation of the periodic
problem (1.1) into a minimization problem associated with a least squares
cost function. We prove that the optimization problem is well posed in an
appropriate space of admissible functions. Then, we use Lagrange’s method
to explicitly compute the derivative of the considered cost function through
an intermediate state called adjoint equation. Thus, the derivative of the
cost function allows us to develop an iterative algorithm to numerically
simulate the considered optimization problem.

The rest of our paper is structured as follows: In Section 2, we in-
troduce the necessary assumptions and state the definition of the weak
periodic solution of the problem (1.1). In Section 3, we first formulate the
existence problem (1.1) into an equivalent optimization problem by means
of a least square cost function. Then, we prove the existence of an optimal
solution to the optimization problem in an appropriate admissible space.
Subsequently, we use the Lagrange method to compute the derivative of
the cost function with respect to the state variable. Section 4 is devoted
to the discretization of our finite element problem and the presentation of
the proposed numerical algorithm to solve the optimization problem. In
Section 5, we give some numerical examples to illustrate the efficiency of
the proposed approach.

2. Mathematical Preliminaries and definitions

We start initially this section by introducing necessary assumptions to solve
(1.1).
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2.1. Assumptions

Throughout this paper, we assume that A = (aij)1≤i,j≤N is a periodic
bounded elliptic matrix, namely

(H1) aij ∈ L∞(QT ), for all 1 ≤ i, j ≤ N and periodic with period T .

(H2) there exists α > 0 such that

A(t, x)ξ · ξ ≥ α|ξ|2,

for all ξ ∈ RN , for almost every (t, x) ∈ QT .

(H3) f is a measurable function periodic with period T and belonging to
L2(QT ).

2.2. Functional framework and definition

Let us introduce the functional framework involving our work, we set

VT := L2(0, T ;H1
0 (Ω)),

we equipped with the following norm

kukVT :=
ÃZ

QT

|∇u|2
! 1

2

.

Furthermore, we set

V∗T := L2(0, T ;H−1(Ω)),

the dual space of VT . The above spaces lead to define the following func-
tional space

WT := {u ∈ VT , ∂tu ∈ V∗T},

we equipped with the following norm

kukWT
:= kukVT + k∂tukV∗T .

In what follows, we will denote by h·, ·i the duality pairing between H−1(Ω)
and H1

0 (Ω). Let us define the notion of a weak periodic solution which we
will be used in the resolution of problem (1.1).
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Definition 1. A measurable function u : QT → R is said to be a weak
periodic solution to (1.1) if it satisfies

u ∈WT , u(0, x) = u(T, x) in L2(Ω),R T
0 h∂tu, ϕi+

R
QT

A(t, x)∇u.∇ϕ =
R
QT

fϕ,
(2.1)

for every test function ϕ ∈ VT .

Remark 2.1. In accordance with assumptions (H1), (H2) and (H3), we
can easy to verify that all the terms in (2.1) are well defined. Moreover, by
employing the following continuous embedding

WT → C([0, T ];L2(Ω)),

we deduce that the periodic condition makes a sense in Definition 1.

From a theoretical point of view, the existence and uniqueness of a
weak periodic solution to problem (1.1) can be obtained by using monotone
operators theory see Theorem 1.1 p.316 of [25]. Here, we propose a method
based on the minimization of a cost function because this will help us to
build an algorithm to simulate numerically our periodic solution.

3. Statement of the minimization problem

The purpose of this section is to formulate the theoretical question about
the existence of a weak periodic solution to (1.1) into a research of a mini-
mum of a well-posed optimization problem. To deal with this, we consider
a cost function of the least-squares type defined as follows

J (v) = 1

2

Z
Ω
(u(T, x)− v(x))2 dx,(3.1)

where u is the weak solution to the following initial problem⎧⎪⎨⎪⎩
∂tu− div (A(t, x)∇u) = f(t, x) in QT

u(0, x) = v(x) in Ω
u(t, x) = 0 on ΣT .

(3.2)

We recall that for any v ∈ L2(Ω), problem (3.2) has a unique weak solution
u which satisfying the following variational formulation

u ∈WT , u(0, x) = v(x) in L2(Ω),R T
0 h∂tu, ϕi+

R
QT

A(t, x)∇u.∇ϕ =
R
QT

fϕ,
(3.3)
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for all ϕ ∈ VT . Note that the existence and uniqueness of the weak solution
to (3.2) can be directly obtained by applying the result of Theorem 1.2
p. 162 in [25]. Therefore, we can deduce that the cost function J is
well-defined. In accordance with the above discussion, we introduce the
minimization problem as follows(

Find v∗ ∈ Uad
J (v∗) = min

v∈Uad
J (v),(3.4)

where Uad is the set of admissible functions which will be detailed later. It
is clear that when the cost function J converges to zero we obtain that u
is the weak periodic solution of (1.1). Hence, we can easy to verify that the
minimum of J on Uad it is only the weak periodic to (1.1), which proves
the equivalence between the existence problem (1.1) and the minimization
problem (3.4).

3.1. Existence of an optimal solution

We are concerned with the existence of an optimal solution to the minimiza-
tion problem (3.4). As we can see, the choice of the set Uad plays a crucial
role in the well-posedness of the problem (3.4). Moreover, in view to (3.1)
and (3.2), it is imposed to choose L2(Ω) as a space of admissible functions,
but to get a good compactness result, it is recommended to consider

Uad := {v ∈ H1(Ω), kvkH1(Ω) ≤ C},(3.5)

where C is a strictly positive constant. We use on Uad the topology defined
by the strong convergence in L2(Ω).

Theorem 1. Assume that (H1), (H2) and (H3) hold true. Then, the
optimization problem (3.4) has at least one solution in Uad.

Proof. From Rellich-Kondrachov injection [9], we have

Uad
compact→ L2(Ω).

Hence, the existence of an optimal solution to (3.4) requires to check the
continuity of the cost function J in L2(Ω). To do this, let (vn) a sequence
in L2(Ω) such that (vn) converges to v strongly in L2(Ω). We shall prove
that J (vn) converges to J (v). Let us recall that
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J (vn) =
1

2

Z
Ω
(un(T, x)− vn(x))

2 dx,(3.6)

where un is the unique weak solution to the following problem⎧⎪⎨⎪⎩
∂tun − div(A(t, x)∇un) = f in QT

un(0, .) = vn in Ω
un = 0 on ΣT .

(3.7)

Multiplying the first equation of (3.7) by un and integrating over QT ,
one obtains

1
2

R
Ω |un(T )|2 +

R
QT

A(t, x)∇un.∇un =
R
QT

fun +
1
2

R
Ω |vn|2.(3.8)

Thanks to the coercivity condition (H2) and by applying Hölder’s in-
equality, the relation (3.8) becomes

αkunk2VT ≤ kfkL2(QT )kunkL2(QT ) + kvnk2L2(Ω).(3.9)

Since (vn) convergences strongly in L2(QT ), one may deduce that is it
bounded in L2(QT ). Furthermore, by using Young’s inequality in the right-
hand side of (3.9), we conclude that (un) is bounded in VT . On the other
hand, using the equation satisfied by (un) and the growth conditions (H1),
we can obtain that (∂tun) is bounded V∗T . Then, a direct application of
Aubin compactness Theorem (see e.g [25]) permit us to deduce the existence
of u ∈ VT and a subsequence of (un) still denoted by (un) for simplicity
such that

un → u strongly in L2(QT ) and a.e. in QT .

Hence, by applying the last convergences, it comes that

un u weakly in VT ,
∂tun ∂tu weakly in V∗T .

By passing to the limit in the weak formulation of (3.7), one getsR T
0 h∂tu, ϕi+

R
QT

A(t, x)∇u.∇ϕ =
R
QT

fϕ.(3.10)

Which proves that u is a weak solution to the problem (3.3). On the
other hand, using the uniqueness of the weak solution to (3.3), one may
deduce that

lim
n→∞

J (vn) = J (v).

Which is equivalent to say that J is continuous on L2(Ω). Furthermore,
a simple application of the calculus of variations theory [21] permits us to
deduce the existence of an optimal solution to (3.4). 2
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3.2. Calculus of the derivative of the cost function

Our numerical approach requires the utilization of the gradient of the cost
function J . So, we are concerned in this paragraph by the calculation of
the derivative of J . To deals with this, we will use the Lagrangian method
which gives a rapid derivative of J . The principle of this method is based
on the construction of a functional L called the Lagrangian. The role of the
latter is to separate the dependence of the direct state variables (u) with
the variable to optimize (v) this through the introduction of a secondary
equation called the adjoint state.

Theorem 2. Under the assumptions (H1), (H2) and (H3) the cost func-
tion J is differentiable on L2(Ω). Furthermore, for all η ∈ L2(Ω) we have

J 0(v).η =
Z
Ω

Ã
v − u(T )− p(0)

!
η,(3.11)

with u is the solution of the state equation (3.2) and p is the solution of
the following adjoint equation⎧⎪⎨⎪⎩

∂tp+ div(A
∗(t, x)∇p) = 0 in QT

p(T ) = v − u(T ) in Ω
p = 0 in ΣT ,

(3.12)

where A∗ is the transpose matrix of A.

Proof. In order to establish the result of Theorem 2, we introduce the
Lagrangian L for all (u, p, v, σ) ∈ WT × WT × L2(Ω) × L2(Ω) as follows

L(u, p, v, σ) := 1
2

R
Ω(u(T )− v)2 +

R T
0 h∂tu, pi+

R
QT

A(t, x)∇u.∇p
−
R
QT

fp+
R
Ω σ(u(0)− v).

Note that the expression of the function σ will be fixed later to get the
initial boundary condition for the adjoint equation. To obtain the adjoint
equation, we derive the Lagrangian L with respect to u, for all direction
ϕ ∈WT , we haveD

∂L
∂u , ϕ

E
=

R
Ω ϕ(T )(u(T )− v) +

R T
0 h∂tϕ, pi+

R
QT

A(t, x)∇ϕ.∇p+
R
Ω σϕ(0).

After integration by part, one obtains

D
∂L
∂u , ϕ

E
=
R
Ω ϕ(T )(u(T )− v)−

R T
0 h∂tp, ϕi+

R
Ω

Ã
p(T )ϕ(T )− p(0)ϕ(0)

!
−
R T
0 hdiv(A∗(t, x)∇p, ϕi+

R
Ω σϕ(0),

(3.13)
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where A∗ is the transpose matrix of A. By taking ϕ with compact support
in (3.13), we get the following equation

∂tp+ div (A
∗(t, x)∇p) = 0 in QT .(3.14)

It remains to obtain the initial condition for the adjoint state. To deal
with this we take σ = p(0) in (3.13), one may deduce that

p(T ) = v − u(T ) in Ω.(3.15)

In accordance with (3.14)-(3.15), we conclude that the adjoint equation
is given by the following problem⎧⎪⎨⎪⎩

∂tp+ div(A
∗(t, x)∇p) = 0 in QT

p(T ) = v − u(T ) in Ω
p = 0 in ΣT .

Let us derive the Lagrangian L with respect to v, for a direction η ∈
L2(Ω) one getsD

∂L
∂v , η

E
= −

R
Ω(u(T )− v)η −

R
Ω p(0)η =

R
Ω

Ã
v − u(T )− p(0)

!
η.

In addition, to obtain the derivative of the cost function J , we take u
as the solution of the state equation (3.3), we obtain

L(u, p, v, σ) = J (v).

We therefore have

J 0(v).η =
Z
Ω

Ã
v − u(T )− p(0)

!
η,

where p(0) is the solution of the adjoint equation (3.12) evaluated at the
instant t = 0 and u(T ) is the solution of the state equation (3.2) at the
final time T . 2

4. The finite element approximation

Throughout this section we assume thatΩ is a bounded convex N-polyhedron,
that is a bounded interval if N = 1, a convex polygon if N = 2 and a convex
polyhedron if N = 3. For h > 0, we consider Th a regular triangulation of
Ω which covers Ω exactly. The P1 finite element space is

Vh =
n
vh ∈ C0(Ω), vh is affine on every N-simplex ofTh

o
.
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The space Vh is a finite dimensional subspace of V = H1(Ω). The finite
element approximation of problem (3.4) reads:⎧⎨⎩ Find v∗h ∈ Uh

ad

Jh(v∗h) = min
vh∈Uhad

Jh(vh),(4.1)

where Uh
ad := {vh ∈ Vh, kvhkH1(Ω) ≤ C} is the set of admissible functions

and

Jh(vh) =
1

2

Z
Ω
(uh(T, x)− vh(x))

2dx,(4.2)

with uh is the solution to the following initial problem

⎧⎪⎪⎨⎪⎪⎩
uh(0, x) = vh(x) a.e. x ∈ Ω
∀t ∈]0, T [,∀φh ∈ Vh :
d

dt

Z
Th
uh(t, x)φh(x) +

Z
Th
A(t, x)∇uh(t, x).∇φh(x)dx =

Z
Th
f(t, x)φh(x)dx.

(4.3)
According to the previous paragraph, the expression of the differential

of Jh is given by:

DJh(vh)(x) = vh(x)− ph(0, x)− uh(T, x),(4.4)

where ph is a solution of the adjoint model:

⎧⎪⎪⎨⎪⎪⎩
ph(T, x) = vh(x)− uh(T, x) a.e. x ∈ Ω
∀t ∈]0, T [,∀φh ∈ Vh :
d

dt

Z
Th
ph(t, x)φh(x)−

Z
Th
A∗(t, x)∇ph(t, x).∇φh(x)dx = 0,

(4.5)

where uh is the solution of (4.3).

5. Numerical simulations

We performed numerical simulations with the software FreeFem ++ ([22])
in two spatial dimensions. Our algorithm reads as follows, for a bounded
domain Ω of R2 with smooth boundary and fix µ > 0 a step of descent (see
Algorithm ??).
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Algorithm 1
–––––––––––––––––––––––––––––––-

Input: a mesh Th which gives a triangulation of Ωh (a polygonal approxi-
mation of Ω) and an initial estimate u00 ∈ Vh (for example a constant C0).
Compute J 0h = Jh(u00) For k = 0, ..., kmax − 1; Solve the state equation⎧⎪⎪⎨⎪⎪⎩

ukh(0, x) = uk0(x) a.e. x ∈ Ω,
d

dt

Z
Th
ukh(t, x)φh(x) +

Z
Th
A(t, x)∇ukh(t, x).∇φh(x)dx =

Z
Th
f(t, x)φh(x)dx,

∀t ∈]0, T [,∀φh ∈ Vh.
(5.1)
Compute the value of ukh(T, x); Solve the adjoint equation⎧⎪⎪⎨⎪⎪⎩

pkh(T, x) = uk0(x)− ukh(T, x) a.e. x ∈ Ω,
d

dt

Z
Th
pkh(t, x)φh(x)−

Z
Th
A∗(t, x)∇pkh(t, x).∇φh(x)dx = 0,

∀t ∈]0, T [,∀φh ∈ Vh.

(5.2)

Update the new initial function uk+10 and a new value of Jh by computing

uk+10 (x) = (1− µ)un0 (x) + µ(pnh(0, x) + pkh(T, x)).

J k+1
h = Jh(uk+10 ).

Output: ukmax
h ,J kmax

h .
––––––––––––––––––––––––––––––––

We use an implicit method in time to solve the equation (4.3). In the
same way, we use an implicit method in time for the resolution of the linear
retrograde adjoint equation (4.5).

5.1. A numerical simulation

In order to illustrate our method, we computed the numerical solution
obtained on the following two examples:

5.1.1. Example: A radial test case with regular coefficients

We consider now problem (1.1) on the unit disc Ω in R2

Ω =
n
(x, y) ∈ R2 : x2 + y2 < 1

o
,



1262Nour Eddine Alaa, Abderrahim Charkaoui, Abdelwahab Elaassri

with

A(x, y) =
1p

1 + x2 + y2

Ã
1 0
0 1

!
.

Let r =
p
x2 + y2 and

u(x, y) = 1− r2, f(t, x, y) = 2
2 + r2

(1 + r2)
3
2

.

Then u is the exact solution of (1.1) with T = 1.

Table 5.1: L2 error and mesh characteristics for Example 5.1.1
Nb vertices 3633 14003 31564

hmin 0.025 0.012 0.008

hmax 0.053 0.032 0.019

L2 error 0.09032 0.09035 0.09037

Jh 8.719.e− 05 8.719.e− 05 8.718.e− 05

In Table 1, we present the L2 error =
°°°u− ukmax

h

°°°
L2(Ωh)

and Jh = J kmax
h

obtained for different value of the mesh size h and for kmax = 100. The
initial guess is taken u0h = 1. The Table 1 gives also the number of vertices in
the mesh Th as well as the minimum and maximum length of the edges of the
used triangulation. The solutions corresponding to the initial ukmax

h (0, ·)
and the final time ukmax

h (T, ·) are shown respectively in Figure 1 and Figure
2.
Figure 3 shows objective function Jh value decreases along with the increase
of the iteration number.
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Figure 1: Output initial ukmax
h (0, ·).

Figure 2: Output initial ukmax
h (T, ·).

pc
fu-1

pc
fu2

pc
fu2
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Figure 3: The decrease of the objective function Jh according to the
number of iterations.

5.1.2. Example: Numerical simulation with a discontinuous ma-
trix

In order to illustrate our method in the case of a discontinuous elliptic
matrix, we computed the numerical solution obtained on the unit disc Ω in
R2 for the values

A(x, y) = a(x, y)

Ã
1 0
0 1

!
,

with

a(x, y) =

(
0.2 if x2 + y2 < 0.22

a1(x, y) if x2 + y2 ≥ 0.22,

where

a1(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1.05− y if x ≥ 0 and y ≥ 0
2.10− 2x if x ≥ 0 and y < 0
1.05 + x if x < 0 and y ≥ 0
2.10 + 2y if x < 0 and y < 0.

We note that a is discontinuous accross the circle of radius 0.2 and along
the x and axis when 0.2 < |x| < 1 or 0.2 < |y| < 1. By taking u(t, x, y) =

pc
fu3
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cos(πt)(1− x2 − y2) and the period T = 2, one has

f(t, x, y) =

(
π ∗ sin(π ∗ t) ∗ (1− x2 − y2) + 0.8 ∗ cos(π ∗ t) if x2 + y2 < 0.22

f1(t, x, y) if x2 + y2 ≥ 0.22,

where

f1(t, x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−π ∗ sin(π ∗ t) ∗ (1− x2 − y2) + 2 ∗ cos(π ∗ t) ∗ (2.1− 3 ∗ y) if x ≥ 0 and y ≥ 0
−π ∗ sin(π ∗ t) ∗ (1− x2 − y2) + 2 ∗ cos(π ∗ t) ∗ (4.2− 6 ∗ x) if x ≥ 0 and y < 0
−π ∗ sin(π ∗ t) ∗ (1− x2 − y2) + 2 ∗ cos(π ∗ t) ∗ (2.1 + 3 ∗ x) if x < 0 and y ≥ 0
−π ∗ sin(π ∗ t) ∗ (1− x2 − y2) + 2 ∗ cos(π ∗ t) ∗ (4.2 + 6 ∗ y) if x < 0 and y < 0.

Table 5.2: L2 error and mesh characteristics for Example 5.1.2
Nb vertices 1766 4518 7064

hmin 0.055 0.033 0.025

hmax 0.010 0.063 0.053

L2 error 0.090 0.0.095 0.0.0937

Jh 4.32.e− 10 4.31.e− 10 4.3.e− 10

In Table 2, we present the L2 error =
°°°u− ukmax

h

°°°
L2(Ωh)

and Jh = J kmax
h

obtained for different value of the mesh size h and for kmax = 150. The
initial guess is taken u0h = 1. The Table 2 shows also the number of vertices
in the mesh Th as well as the minimum and maximum length of the edges
of the triangulation. The corresponding output solution ukmax

h (0, ·) and the
final time ukmax

h (T, ·) are presented respectively in Figure 4 and 5. Figure
6 shows objective function Jh value decreases along with the increase of
the iteration number.
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Figure 4: Output initial ukmax
h (0, ·).

Figure 5: Output initial ukmax
h (T, ·).

pc
fu4

pc
fu5
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Figure 6: The decrease of the objective function Jh according to the
number of iterations.

Conclusions and Future Works

In this work, we are interested in periodic solutions generated by a dif-
ferential operator with discontinuous coefficients. Under certain reasonable
assumptions, we prove the existence and uniqueness of the positive periodic
solution via the minimization of a cost function associated to our problem
in an appropriate space. Using a Lagrangian formulation, we computed the
gradient of this cost function. This helped us to develop a gradient descent
algorithm to compute our periodic solution. After discretizing our equa-
tions using a finite element method, we wrote the approximate varitional
formulations as well as the numerical algorithm to determine an approxi-
mate periodic solution. Finally, we performed several numerical simulations
to confirm the results of our approach. In the near future, we will apply
this original approach to the search and simulation of periodic solutions for
problems with nonlinear boundary conditions.

pc
fu6



1268Nour Eddine Alaa, Abderrahim Charkaoui, Abdelwahab Elaassri

Acknowledgment

The authors would like to express their sincere gratitude to the anonymous
referees and the handling editor for their careful reading of the manuscript.

References

[1] A. T. Ademola, P. O. Arawomo, and A. S. Idowu, “Stability, Boundedness 
and periodic solutions to certain second order delay differential equations”, 
Proyecciones (Antofagasta), vol. 36, no. 2, pp 257-282, 2017, doi: 
10.4067/S0716-09172017000200257

[2] N. E. Alaa and M. Pierre, “Weak solutions for some quasi-linear elliptic 
equations with data measures”, SIAM Journal on Mathematical Analysis, vol. 24, 
no. 1, pp 23-35, 1993.

[3] N. E. Alaa, “Solutions faibles d’équations paraboliques quasi-linéaires avec 
données initiales mesures”, Annales mathématiques Blaise Pascal, vol. 3, no. 2, pp 
1-15, 1996.

[4] N. E. Alaa and I. Mounir, “Global existence for some quasilinear parabolic 
Reaction-Diffusion systems with mass control and critical growth with 
respect to the gradient”, Journal of Mathematical Analysis and Applications, vol. 
253, no. 2, pp 532-557, 2001, doi: 10.1006/jmaa.2000.7163

[5] N. E. Alaa and M. Zirhem, “Existence and uniqueness of an entropy solution 
for a nonlinear reaction-diffusion system applied to texture analysis”, 
Journal of Mathematical Analysis and Applications, vol. 484, no.1, 2020. doi: 
10.1016/j.jmaa.2019.123719 

[6] H. Alaa, N. E. Alaa, and A. Charkaoui, “Time periodic solutions for strongly 
nonlinear parabolic systems with p(x)-growth conditions”, Journal of Elliptic 
and Parabolic Equations, vol. 7, pp. 815-839, 2021. doi: 10.1007/s41808-021- 
00118-9

[7] H. Amann, “Periodic Solutions of Semilinear Parabolic Equations,” in 
Nonlinear Analysis, L. Cesari, R. Kannan, and H. F. Weinberger, Eds. New 
York: Academic Press, 1978, pp. 1–29. 

[8] F. Bouchelaghem, A. Ardjouni, and A. Djoudi, “Existence of positive peri 
odic solutions for delay dynamic equations”, Proyecciones (Antofagasta), vol. 
36, no. 3, pp. 449-460, 2017.



Periodic parabolic problem with discontinuous coefficients: ... 1269

[9] H. Brezis, Analyse Fonctionnelle Théorie et Applications. Masson, 1983.

[10] A. Carasso, “On least squares methods for parabolic equations and the 
computation of time periodic solutions”, SIAM Journal on Numerical Analysis, 
vol. 11, no. 5, pp. 1181-1192, 1974.

[11] A. Charkaoui, G. Kouadri, O. Selt, and N. E. Alaa, “Existence results of weak 
periodic solution for some quasilinear parabolic problem with L data”, 
Annals of the University of Craiova - Mathematics and Computer Science Series, vol. 
46, no. 1, pp 66-77, 2019.

[12] A. Charkaoui, G. Kouadri and N. E. Alaa, “Some results on the existence of 
weak periodic solutions for quasilinear parabolic systems with L data”, 
Boletim da Sociedade Paranaense de Matemática, vol. 40. doi: 10.5269/bspm.45134

[13] A. Charkaoui and N. E. Alaa, “Weak periodic solution for semilinear 
parabolic problem with singular nonlinearities and L data”, Mediterranean 
Journal of Mathematics, vol. 17, Art. Id. 108, 2020. doi: 10.1007/s00009-020- 
01535-1

[14] A. Charkaoui, L. Taourirte and N. E. Alaa, “Periodic parabolic equation 
involving singular nonlinearity with variable exponent”, Ricerche di 
Matematica, 2021. doi: 10.1007/s11587-021-00609-w

[15] A. Charkaoui and N. E. Alaa, “Nonnegative weak solution for a periodic 
parabolic equation with bounded Radon measure”, Rendiconti del Circolo 
Matematico di Palermo Series 2, vol. 71, pp. 459-467, 2021. doi:10.1007/s12215- 
021-00614-w

[16] A. Charkaoui, H. Fahim, N. E. Alaa, Nonlinear parabolic equation
having nonstandard growth condition with respect to the gradient and
variable exponent, Opuscula Math. Vol. 41, No 1, pp 25-53, 2021.

[17] A. Charkaoui and N. E. Alaa, “Existence and uniqueness of renormalized 
periodic solution to a nonlinear parabolic problem with variable expo nent 
and L data”, Journal of Mathematical Analysis and Applications, vol. 506, no. 2, 
Art. Id. 125674, 2022.

[18] J. Deuel and P. Hess, “Nonlinear parabolic boundary value problems with 

upper and lower solutions”, Israel Journal of Mathematics, vol. 29, no.1, 1978.

[19] A. Elaassri, K. Lamrini Uahabi, A. Charkaoui, N. E. Alaa and S. Mesbahi, 

“Existence of weak periodic solution for quasilinear parabolic problem 

with nonlinear boundary conditions”, Annals of the University of Craiova - 

Mathematics and Computer Science Series, vol. 46, no. 1, pp 1-13, 2019.

1

1

1

1



1270Nour Eddine Alaa, Abderrahim Charkaoui, Abdelwahab Elaassri

[20] H. Fahim, A. Charkaoui and N. E. Alaa, “Parabolic systems driven by gen- 
eral differential operators with variable exponents and strong 
nonlinearities with respect to the gradient”, Journal of Elliptic and Parabolic 
Equations, vol. 7, pp. 199-219, 2021, doi: 10.1007/s41808-021-00101-4

[21] I. Fonseca and G. Leoni, Modern methods in the calculus of variations: Lp spaces. 
Springer, 2007.

[22] F. Hecht, “New development in freefem++”, Journal of Numerical Mathematics, 
vol. 20, no. 3-4, pp. 251-265, 2012.

[23] H. R. Henríquez, “Existence of periodic solutions of neutral functional 
differential equations with unbounded delay”, Proyecciones (Antofagasta), vol. 
19, no. 3, pp. 305-329, 2000.

[24] P. Hess, Periodic-Parabolic Boundary Value Problem and Positivity. Harlow: 
Longman Scientifc and Technical, 1991.

[25] J. L. Lions, Quelques méthodes de résolution de problèmes aux limites non linéaires. 
Dunod: Paris, 1969.

[26] K. Lust, D. Roose, A. Spence and A. R. Champneys, “An adaptive Newton- 
Picard algorithm with subspace iteration for computing periodic 
solutions”, SIAM Journal on Scientific Computing, vol. 19, no. 4, pp. 1188-1209, 
1998.

[27] M. Steuerwalt, “The existence, computation, and number of solutions of 
periodic parabolic problems”, SIAM Journal on Numerical Analysis, vol. 16, no. 
3, pp 402- 420, 1979.

[28] C. Tunç, “On existence of periodic solution to certain nonlinear third order 
differential equations”, Proyecciones (Antofagasta), vol. 28, no. 2, pp. 125-132, 
2009.



Periodic parabolic problem with discontinuous coefficients: ... 1271

Nour Eddine Alaa
Laboratory LAMAI,
Faculty of Science and Technology,
University Cadi Ayyad,
Marrakech,
Morocco
e-mail: n.alaa@uca.ac.ma

Abderrahim Charkaoui
Laboratory LAMAI,
Faculty of Science and Technology,
University Cadi Ayyad,
Marrakech,
Morocco
e-mail: abderrahim.charkaoui@edu.uca.ma

and

Abdelwahab Elaassri
Laboratory MASI,
Multidisiplinary Faculty of Nador,
University Mohammed first,
Selouane, Nador-62702,
Morocco
e-mail: elaassri.abdelwahab@ump.ac.ma


