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Abstract. Similarity search in time series data is used in diverse domains. The
most prominent work has focused on similarity search considering either com-
plete time series or certain subsequences of time series. Often, time series like
temperature measurements consist of periodic patterns, i.e. patterns that repeat-
edly occur in defined periods over time. For example, the behavior of the temper-
ature within one day is commonly correlated to that of the next day. Analysis of
changes within the patterns and over consecutive patterns could be very valuable
for many application domains, in particular finance, medicine, meteorology and
ecology. In this paper, we present a framework that provides similarity search in
time series databases regarding specific periodic patterns. In particular, an effi-
cient threshold-based similarity search method is applied that is invariant against
small distortions in time. Experiments on real-world data show that our novel
similarity measure is more meaningful than established measures for many appli-
cations.

1 Introduction

In a large range of application domains, e.g. environmental analysis, evolution of stock
charts, research on medical behavior of organisms, or analysis and detection of motion
activities we are faced with time series data that feature cyclic activities composed of
regularly repeating sequences of activity events. In particular for the recognition and
analysis of activities of living organisms, cyclic activities play a key role. For example,
human motions like walking, running, swimming and even working are composed of
cyclic activities that correspond to significant motion events.

In this paper, we focus on similarity search on time series with a special focus on
cyclic activities, in particular on the evolution of periodic patterns that repeatedly oc-
cur in specified periods over time. Examples of such time series are depicted in Figure
1(a). The upper time series shows the motion activity of a human, in particular the ver-
tical acceleration force that repetitively occurs during a human motion like walking or
running. Consecutive motion patterns show similar but distinct characteristics. We can
observe changes in the shape of consecutive periodic patterns that are of significant im-
portance if, for example, we want to analyze the motion behavior of any person. Many
other applications that take advantage of the ability to examine the evolution of periodic
patterns can be found in the medical or in the biological domain. For example, chronobi-
ologists are highly interested in exploring the relationship between the activity of a cell
or a complete organism and the amount as well as the duration of daylight affecting the
cell or organism. Obviously, an important task is the identification of similar periodic
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Fig. 1. Origin, application and representation of periodic patterns.

patterns in daylight cycles and biological responses like the concentration of hormones
(cf. Figure 1(a)). Another important domain where we find lots of time series containing
periodic patterns is the environmental research. Examples are time series that describe
the change of temperature values measured several times a day for each day within a
month. In this case, the periodic pattern is the temperature course of a day. In order
to be able to track the evolution of such periodic patterns, we propose to string con-
secutive patterns together to a sequence of patterns as shown in the example depicted
in Figure 1(b). A time series is then split into a sequence of subsequences, which we
call dual-domain time series. It represents the temporal behavior along a “second” time
axis, e.g. each hour of a day. The original time domain is thus made coarser, e.g. it now
represents each day of the entire time period. This way, we are able to define structures
modelling the characteristic of the evolution of periodic patterns. In our example appli-
cation, the new time series model allows us to examine the evolution of global climatic
changes by considering the summer or winter months of the last 20 years. Contrary to
[2], where the focus lies on the determination of periodicity features or the detection of
motion directly from the periodic patterns, we take our attention to methods that help
us to analyze the evolution of periodic patterns.

Given the new time series model, we are now interested in the examination of things
that happen at a certain time. Thereby, we have our focus on the relationship between the
times of both time domains at which certain events occur. Here, we take special empha-
sis on events that refer to an exceeding of a given activity threshold. Similarity search
methods based on events that refer to exceeding of a given activity threshold have been
introduced in [3, 4]. Given a certain threshold value τ , this approach reduces single-
domain time series to a sequence of intervals corresponding to time periods where the
amplitude value of a time series exceeds τ . Our approach represents periodic patterns as
polygons, that analogously correspond to threshold-exceeding amplitude values. This
approach is useful for a lot of application domains, where the exact value of a time
series is less important than the fact whether a certain amplitude (activity) threshold is
exceeded or not. Furthermore this approach is more robust to noise and errors in mea-



surement. We are subsequently able to identify similar threshold-exceeding patterns
by comparing polygons. In order to efficiently perform similarity queries, we extract
relevant feature information from those polygons.

The main contributions of this paper are the following: We introduce a new similar-
ity measure for time series that takes two time domains into account. For the similar-
ity measures we propose feature-based representations of dual-domain time series and
show how they can be organized in an efficient way. The rest of this paper is organized
as follows: First we introduce a matrix representation of dual-domain time series. Af-
terwards we introduce the so-called intersection set, that consists of the polygons gen-
erated by a threshold plane intersecting the dual-domain time series at a given threshold
value τ . Furthermore, we present an approach to efficiently process index-supported
similarity search based on periodic patterns. For that purpose we employ different fea-
tures that are extracted from the intersection sets. Finally we evaluate the efficiency as
well as the effectiveness of our approach in a broad experimental section.

2 Related Work

There are a lot of existing approaches performing similarity search on time series.
Searching patterns can be supported by the Dynamic Time Warping approach (DTW)
that is introduced for data mining in [7] and that presents a possibility to match the most
corresponding values of different time series. Since the length of time series is very of-
ten quite large, the DTW approach suffers from its quadratic complexity with respect
to the length of the time series. Thus a number of dimensionality reduction techniques
exist. For example the Discrete Wavelet Transform (DWT) [1], the Discrete Fourier
Transform (DFT) [16], the Piecewise Aggregate Approximation (PAA) [15, 23], the
Singular Value Decomposition (SVD) [20], the Adaptive Piecewise Constant Approxi-
mation (APCA)[14], Chebyshev Polynomials [9], or the Piecewise Linear Approxima-
tion (PLA) [17] could be used. In [12], the authors propose the GEMINI framework,
that allows to incorporate any dimensionality reduction method into efficient indexing,
as long as the distance function on the reduced feature space fulfills the lower bounding
property. However, those solutions are hardly applicable for searching similar patterns
because in most cases, important temporal information is lost. In contrast to those so-
lutions, in [21] the authors propose a bit sequence representation of time series. For
each amplitude value, a corresponding bit is set if this value exceeds a certain threshold
value. Similarity is finally computed based on those bits in an efficient way, since this
approach lower bounds the Euclidean Distance or DTW. However, it is not possible to
specify a certain threshold value at query time. This problem is addressed with inverse
queries in [19].

Many approaches for similarity search on time series are based on features extracted
from time series, i.e. in [18, 10, 13]. A similarity model for time series that considers the
characteristics of the time series was proposed in [22], where a set of global features
including periodicity, self-similarity, skewness and kurtosis among others is used to
compute the similarity between time series. The features proposed in [5] are calculated
over the whole amplitude spectrum. Thus, time-domain properties can be captured over
the whole available amplitude range.



In this paper, we consider properties for the whole amplitude range of dual-domain
time series which is novel to the best of our knowledge.

3 Time Series Representation

3.1 Dual-Domain Time Series

Intuitively, a dual-domain time series is a sequence of sequences, i.e. we have an am-
plitude spectrum and – in contrast to traditional single-domain time series – two time
axes. More formally, a dual-domain time series is defined by

Xdual = 〈〈x1,1, . . . , x1,N−1, x1,N 〉, . . . , 〈xM,1, . . . , xM,N−1, xM,N 〉〉

where xi,j denotes the value of the time series at time slot i in the first (discrete) time
domain T = {t1, . . . , tN} and at time slot j in the second (discrete) time domain
S = {s1, . . . , sM}. In the following, we call the xi,j measurement configurations. We
assume ∀i ∈ 1, . . . , N − 1 : ti < ti+1 and ∀j ∈ 1, . . . ,M − 1 : sj < sj+1.

Both axes T and S may also be any other ordered domain such as a spatial axis
or a color spectrum, so that the concepts presented in this paper can also be applied to
such types of data. The concepts can further be extended to the case of a multi-domain
representation of time series. For the sake of presentation, we focus on dual-domain
time series with two time domains, i.e. T and S are domains of discrete time slots.

3.2 Intersection Sets

As proposed in [3, 4], time series considering a single time domain can be represented
as a sequence of intervals according to a certain threshold value τ . For the recognition
of relevant periodic patterns that are hidden in the matrix representation of dual-domain
time series, we extend this approach to a novel abstract meaning. Hence, we consider
an abstraction of the time series. In case of multiple domains, we speak of an n-domain
time series, where the dual-domain case corresponds to n = 2. Adding the amplitude
axis to the n-domain time series yields an (n + 1)-dimensional surface.

Fig. 2. Dual-domain time series with a threshold plane and the intersection polygon set.

The dual-domain time series can be structured using an elevation grid which is cre-
ated by the grid squares of the measurement configurations xi,j where 1 ≤ i ≤ N and
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Fig. 3. Similarity measure for a given threshold τ .

1 ≤ j ≤ M (cf. Section 3.1). Each grid square of a time series Xdual (in the following
denoted as X for simplicity) can be denoted by (xi,j , xi+1,j , xi+1,j+1, xi,j+1) where
1 ≤ i ≤ N − 1 and 1 ≤ j ≤ M − 1. In our case, the threshold line for τ corresponds to
an n-dimensional threshold hyperplane which intersects the time series. The result of
this intersection is a set of n-dimensional polygons Pτ (X) = {p1, . . . , pK} which we
call the intersection set. The intersection set is created by intersecting the plane with the
amplitudes of each of the grid squares. An example of an intersection set is depicted in
Figure 2. The polygons of an intersection set with respect to a certain value of τ contain
those amplitude values of the time series that are above the threshold plane τ , and thus,
they deliver all the information about the periods of time during which the n-domain
values of the time series exceed τ . With this abstraction, we are able to compare two
time series with respect to coherences in time.

4 Similarity Query Processing

4.1 Similarity Measure and Feature Transformation

In order to analyze dual-domain time series based on periodic patterns with respect to
a certain threshold τ , we have to define a distance value for such time series. As de-
scribed above, the patterns of interest emerge as polygons forming intersection sets that
are created. So the distance value dτ (X, Y ) of two dual-domain time series X and Y
should reflect the dissimilarity of their corresponding intersection sets. In order to save
computational cost and to allow for the usage of index structures like the R∗-tree [6],
we derive local or global features for the polygons and compare these features instead
of the exact polygons (cf. Figure 3). In the following sections, we describe several local
and global features suitable for capturing the characteristics of the intersection sets.

4.2 Similarity Measure based on Local Features

Local features describe a polygon p belonging to an intersection set Pτ (X) for a given
dual-domain time series X and a given threshold value τ . Let a polygon p consist of |p|
vertices v1, . . . , v|p|. Let vertex vi be defined by the tuple (xi, yi) ∈ T × S. Then the
Polygon Centroid feature (PC) describes the position of the vertices by calculating their



central point. Formally, the PC feature of a polygon p is defined as

PC(p) =
1
|p|

|p|∑
i=1

vi =

 1
|p|

|p|∑
i=1

xi,
1
|p|

|p|∑
i=1

yi

 .

The Polygon MBR feature (PM) is a conservative approximation of a polygon. It de-
scribes a polygon by means of its minimal bounding rectangle (MBR). Formally, the
4-dimensional PM feature of a polygon p is defined as

PM(p) =
(

min
i=1..|p|

(xi), min
i=1..|p|

(yi), max
i=1..|p|

(xi), max
i=1..|p|

(yi)
)

.

The number of polygons varies for different intersection sets and so does the number of
local features. In order to calculate the distance value dτ (X, Y ) based on local features
we employ the Sum of Minimal Distance (SMD) measure [11]. The SMD matches each
polygon (i.e. the corresponding local feature) of Pτ (X) to its best matching partner of
Pτ (Y ) and vice versa:

dτ (X, Y ) = 1
2 (

1
|Pτ (X)|

∑
x∈Pτ (X)

( min
y∈Pτ (Y )

d(x, y))+
1

|Pτ (Y )|
∑

y∈Pτ (Y )

( min
x∈Pτ (X)

d(x, y)))

where x and y are the features describing the elements of the intersection set and where
d(x, y) is a distance function defined on these features. In our case, this distance func-
tion is the Euclidean distance.

4.3 Similarity Measure based on Global Features

Contrary to local features, global features try to capture the characteristics of an inter-
section set by a single feature value or feature vector. In this section, we present three
examples for global features.

Let Pτ (X) be an intersection set as described above. Let furthermore K be the
number of polygons Pτ (X) consists of. Then the Intersection Set MBR feature (ISM) is
the global version of the local PM feature approximating the complete set of polygons
by a minimal bounding rectangle. So, ISM is defined analogously as

ISM(Pτ (X)) = ( min
i=1..|p|
k=1..K

(xk,i), min
i=1..|p|
k=1..K

(yk,i), max
i=1..|p|
k=1..K

(xk,i), max
i=1..|p|
k=1..K

(yk,i)).

The Intersection Set Centroid feature (ISC) is the global variant of the local PC feature
considering all polygon vertices of the intersection set. Let S be the overall number of
all vertices of all polygons of Pτ (X). Then ISC(Pτ (X)) analogously calculates the
central point of all vertices of the intersection set:

ISC(Pτ (X)) =
1
S

S∑
i=1

vi =

(
1
S

S∑
i=1

xi,
1
S

S∑
i=1

yi

)
.



A more sophisticated high-level feature is the Fill Quota feature (FQ). For each row
and each column of the data matrix, the percentage of polygon coverage is computed.
Hence, the horizontal and vertical values generate two single-domain time series that
describe the position as well as the size of the polygons. The computation of the polygon
coverage is processed based on the grid squares (cf. Section 3.1). Each grid square is
tested for its contribution to the area of a polygon. For a dual-domain time series X that
consists of N rows and M columns, we denote the coverage area of a grid square at the
position (i, j) by Ai,j , i = 1..N, j = 1..M . For the i-th row and the j-th column, the
values are computed as follows:

FQ(xi) =
1
M

M∑
j=1

Ai,j and FQ(yj) =
1
N

N∑
i=1

Ai,j .

Afterwards we apply a standard technique for dimensionality reduction to the projected
time series so that we store only n feature values c1, . . . , cn (for example Fourier coef-
ficients) for each of the two projected time series FQ(x) and FQ(y). Note that n � N
and n � M . This leads to the following definition of the FQ feature:

FQ(Pτ (X)) = (c1(FQ(x)), . . . , cn(FQ(x)), c1(FQ(y)), . . . , cn(FQ(y))).

The distance value for two intersection sets based on global features can be calculated
without the SMD measure, as for each intersection set we derive the same amount
of global features. So in this case, dτ (X, Y ) is calculated as the Euclidean distance
between the associated global features.

5 Efficient Query Processing

In the previous section, we introduced similarity measures which are adequate to com-
pare evolutions of periodic patterns in time series. In this section, we show how similar-
ity queries based on the proposed similarity measures can be performed in an efficient
way. In particular, we consider the ε-range query and the k-nearest-neighbor query
which are the most prominent similarity query methods and are used as basic prepro-
cessing steps for data mining tasks [8].

The proposed methods are based on the features extracted from the original time
series as described in Section 4.1. Since, the feature extraction procedure, in particular
the computation of the intersection sets, is very time consuming, it is not feasible to do
at query time. For this reason, we propose to do the feature extraction in a preprocess-
ing step and organize the precomputed features in an efficient way. For example, the
features can be extracted during the insertion of the object into the database. Thereby
we have to solve the problem that the features extracted from the objects are associated
with certain amplitude-threshold values. For this reason, we either have to define a fixed
threshold which is used for all similarity computations or we have to precompute the
features for all possible threshold values. The former solution is too restrictive as it does
not allow the option for an adequate threshold readjustment at query time. On the other
hand there exists an unlimited number of thresholds which would have to be taken into
account leading to immense storage overhead.



5.1 Feature Segments

In the following, we propose a method for the efficient management of preextracted
features that allows for the specification of the threshold at query time. In fact, we have
to take only a finite number of thresholds into account to derive features for all possible
thresholds. In particular, for a dual-domain time series of size n (n different amplitude
values), we need to extract only features for at most n different thresholds. The features
for the remaining threshold values can be easily computed by means of linear inter-
polation. Let us assume that we are given all amplitude values of a dual-domain time
series in ascending order of their amplitude values. The topology of the intersection
sets associated with thresholds equal to two adjacent amplitude values does not change.
Furthermore, also the change of the shape of all intersection sets associated with the
corresponding thresholds is steady and homogeneous. As a consequence, we only need
to extract the features at thresholds specified by all amplitude values occurring in a
given time series. The features between two adjacent values of these amplitude values
can be generated by linear interpolation, so we store each d-dimensional feature as a
(d + 1)-dimensional feature segment. An example is illustrated in Figure 4.
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Fig. 4. Extracting feature segments from a time series.

On the left hand side, there is a section of a dual-domain time series from which
we extract polygons (dotted lines) for the intersection planes at the two thresholds τ1

and τ2. The corresponding features points (vectors) v1 and v2 are sketched on the
right hand side. The features of all polygons that result from intersection planes at
thresholds between τ1 and τ2 are represented by the line between v1 and v2 called
feature segment. Consequently, we only need to extract and manage a set of feature
segments corresponding to a finite set of thresholds which are bound by the size of the
corresponding dual-domain time series. In order to calculate the features of all objects
at query time, we have to intersect the feature segments with the intersection plane
corresponding to the given query threshold τ . Obviously, at query time we only need to
take those feature segments into account that intersect the query threshold τ . The query



cost can be reduced if we use an adequate organization of the feature segments that
allows us to access only the feature segments which are relevant for a certain query.
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Fig. 5. Partitioning and storing of feature segments.

5.2 Feature Segment Organization

After extracting the feature segments from all time series objects, they are partitioned
and stored in disc blocks of equal size. As mentioned above, for efficiency reasons it is
necessary to organize the feature segments of all objects in such a way that given a query
threshold τ only those segments need to be accessed that intersect τ . For that purpose,
we sort the feature segments of all objects according to the lower bound of the segments
in ascending order and partition them into groups which are stored into equal-sized disc
blocks. This is done using a sweep plane as illustrated in the example depicted in Figure
5 (step 1). During the sweep plane scan over the feature space, the feature segments
which have been reached by the sweep plane are collected into a group. After a fixed
number k of segments has been collected (the number k is based on the capacity of a
disc block. In our example the disc block capacity k is set to 3), the minimal amplitude
vale mini and the maximal amplitude value maxi over all segments collected so far
are computed (step 2). Then the algorithm proceeds with the next segments. If a new
segment lies within mini and maxi, it is added to group i using a new disc block.
This new block is concatenated to the existing blocks of group i. In case group i is not
suitable for the storage of a segment, a new group is created. The bounds of this new
group are determined as soon as the first block of the new group is filled.

The resulting disc blocks are organized group-wise within the following indexing
structure. As mentioned above, each feature segment group i consists of concatenated
disc blocks containing the feature segments and the minimum and maximum value
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mini and maxi. The two values mini and maxi are used to index the feature segment
groups. The index consists of an array of triples (mini,maxi, ref) which correspond
to the feature segment group i. The triple entity ref is a pointer to the disc blocks
containing the feature segments of the corresponding group. The array entries are sorted
in ascending order of the corresponding mini value. The index structure is illustrated
in Figure 6.

5.3 Query Processing

At query time, the introduced index allows us to efficiently search for the relevant fea-
ture segment group using binary search over the triple entries mini. Here, we assume
that the array fits into main memory. Otherwise, a secondary storage structure is re-
quired to index the feature segment groups w.r.t. the mini value. Following the ref
pointer all relevant feature segments can be sequentially accessed by scanning the cor-
responding disc pages. If a new object is inserted into the database, its feature segments
are generated and sorted in ascending order w.r.t. their minimum amplitude value. The
algorithm then tries to insert the new feature segments into existing groups. A new
group is not generated until the insertion of new segment entries would require an en-
largement of the maxi value of one of the existing group i. In case of a deletion of
an object, we need a complete scan over the feature segment groups and remove the
corresponding entries. Afterwards we try to merge disc blocks of a group that are not
completely filled anymore. If a group consists of only one disc block which is less
than half full, then the group is deleted and the remaining entries of the disc block are
assigned to one of the neighboring groups.

6 Experimental Evaluation

6.1 Datasets

We evaluated the effectiveness of similarity search on dual-domain time series utiliz-
ing two real-world datasets. The TEMP dataset contains environmental time series data



created by stationary measurements of several years1. It consists of 60 temperature time
series from the year 2000 to 2004 that have been preclassified corresponding to the sea-
sons summer and winter. Each object consists of up to 31 days and each day is repre-
sented by 48 measurements that have been normalized because of matching reasons on
different ranges of the temperature measures that occur with different months. The NSP
dataset is a chronobiologic dataset describing the cell activity of Neurospora2 within
sequences of day cycles. This dataset is used to investigate endogenous rhythms. We
converted single-domain time series that describe cell activities by splitting the mea-
surements according to the artificial day cycle. The NSP dataset consists of 120 objects
and has been classified into five classes according to the day cycle length (16, 18, 20,
22, and 26 hours). The efficiency evaluation was performed on an artificial dataset that
contained 10-1000 objects. We created two subsets having different resolutions: Each
time series of the dataset ART20 consisted of 20× 20 measurements. Analogously, the
dataset ART50 contained objects having a resolution of 50× 50 measurements.

6.2 Effectiveness of the Time Series Representation

Considering the single-domain representation of time series, we performed similarity
queries on the given datasets utilizing the techniques that are applicable for computing
similarity on single-domain time series, such as the Euclidean distance (in the following
denoted as EUCL), the DTW [7] and the threshold-based approach [3, 4], in the follow-
ing referred to as THR. Later in this section, we outline the obtained results of our newly
introduced approach of measuring the distances for comparison. For an explanation of
the tables and the curves that appear in this section, we give a short overview of the
distance measures that have been considered for the experimental evaluation in Table 1.

Abbreviation Description
EUCL Euclidean distance
DTW Dynamic Time Warping
THR Threshold Distance (single-domain approach)
ISC Intersection Set Centroid feature
ISM Intersection Set MBR feature
FQ Fill Quota feature
PC Polygon Centroid feature
PM Polygon MBR feature

Table 1. Distance measures considered for the evaluation.

Table 2 lists the average precision values for the different similarity measures uti-
lizing the single-domain representation of the datasets. In comparison to the Euclidean
distance and the DTW approach, the threshold-based similarity measure hardly leads

1 http://www.lfu.bayern.de/
2 Neurospora is the name of a fungal genus containing several distinct species. For further in-

formation see The Neurospora Home Page: http://www.fgsc.net/Neurospora/neurospora.html.



to higher average precision values. This can be observed for both datasets TEMP and
NSP. As we outline in the following, with our newly introduced dual-domain repre-
sentation approach in combination with a suitable threshold and the presented features,
we are able to improve these results. We also compared the effectiveness of the local
and global features that have been introduced in Section 4 using our threshold-based
approach for different values of τ .

Measure EUCL DTW THR ISC ISM FQ PC PM
τ = 0.25 0.58 0.62 0.55 0.54 0.55 0.55 0.56 0.55
τ = 0.5 0.58 0.62 0.58 0.65 0.54 0.59 0.61 0.61
τ = 0.75 0.58 0.62 0.56 0.60 0.67 0.58 0.61 0.60

(a) Average precision achieved on the TEMP dataset.

Measure EUCL DTW THR ISC ISM FQ PC PM
τ = 0.25 0.56 0.52 0.56 0.73 0.99 0.74 0.41 0.53
τ = 0.5 0.56 0.52 0.60 0.80 0.93 0.63 0.55 0.59
τ = 0.75 0.56 0.52 0.47 0.51 0.67 0.46 0.52 0.52

(b) Average precision achieved on the NSP dataset.

Table 2. Average precision for different measures on the single-domain and the dual-domain time
series representation for a given threshold τ .

The results vary significantly with the threshold τ and also with the datasets. De-
pending on τ and on the used feature we outperform the Euclidean distance calculated
on the time series. For the TEMP dataset and the local features (PC and PM) a thresh-
old value of τ = 0.5 yields the best results. The global features perform better for
a threshold value of τ = 0.75 (cf. Table 2(a)). The evaluation of the feature-based
approach using the NSP dataset leads to different results. Especially the utilization of
the ISM feature leads to a high degree of effectiveness. In general, similarity search
based on the dual-domain time series representation leads to better results with higher
average precision in comparison to the single-domain approach. Figure 7 depicts two
precision-recall plots that support this statement. In this figure we included the results
for the single-domain representation (DTW and Euclidean distance) as well as for the
dual-domain representation in combination with different features.

6.3 Efficiency of Threshold-Based Similarity Search on Dual-Domain Time
Series.

In order to evaluate the efficiency of our newly introduced approach we performed
ε-range queries with a varying database size on the datasets ART20 and ART50 and
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(b) Evaluation of the NSP dataset having
τ = 0.25.

Fig. 7. Precision-recall plots for different features and different representations.

measured the query time. The query objects were selected randomly and averaged
the results. We examined the benefit of precalculating the features by storing them as
segments as described in Section 5. The corresponding results are marked with “pre-
calc”. For comparison, we calculated the intersection sets and features at query time
and labelled the results with “onl. calc”. Furthermore, we performed similarity search
using the traditional measures having a single-domain time series representation (i.e.
Euclidean distance and DTW). Figure 8(a) depicts that calculating the required infor-
mation at runtime is significantly more expensive than retrieving the information from
our precalculated segments. However, the DTW can be outperformed anyway. Utilizing
pre-calculation yields a better runtime than if the Euclidean distance is applied. Here,
the threshold-based approach benefits from its reduction of dimensionality. Obviously,
the runtime for the dataset ART50 is significantly higher than for the dataset ART20,
which is due to the complexity of the data and thus of the intersection sets. Figure 8(b)
depicts a difference in the runtime comparing local and global features, representatively
performed using the PC and the ISC feature. This is due, on the one hand, to the SMD
that has to be applied with the local features but not with the global features, and on the
other hand to the number of local features that is significantly higher than that of the
global features, since each polygon has to be described separately.

7 Conclusions

In this paper, we proposed a new approach to perform similarity search on time series
having periodic patterns in an effective and efficient way. Regarding single-domain time
series having periodic patterns, the threshold-based approach can hardly improve the
results of similarity computations in comparison to traditional techniques like the Eu-
clidean distance or the DTW. Transforming the time series into the dual-domain space
and thus considering the periodicity, we can better observe how the patterns change
in time. Furthermore, the ability to focus on relevant amplitude thresholds by utilizing
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Fig. 8. Results of the efficiency evaluation having a threshold value of τ = 0.25.

the extraction of polygons from the time series and the usage of suitable, even simple
features enables us to get better results for periodic pattern analysis. The quality of the
results when utilizing an arbitrary feature however depends on the datasets. As a con-
sequence, the effectiveness of global and local features varies with the type of data.
The results with respect to the performance show a clear tendency. Regarding the tra-
ditional techniques and further a straightforward approach of computing the polygons
and extracting the features from the time series at query time, we can reduce the run-
time of similarity queries significantly by performing the computation and extraction in
a preprocessing step. Furthermore, similarity computations using global features can be
processed more efficiently than with local features.
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