
transactions of the
american mathematical society
Volume 302, Number 1, July 1987

PERIODIC POINTS AND AUTOMORPHISMS OF THE SHIFT

MIKE BOYLE AND WOLFGANG KRIEGER

ABSTRACT. The automorphism group of a topological Markov shift is stud-
ied by way of periodic points and unstable sets. A new invariant for automor-
phisms of dynamical systems, the gyration function, is used to characterize
those automorphisms of finite subsystems of the full shift on n symbols which
can be extended to a composition of involutions of the shift. It is found that
for any automorphism U of a subshift of finite type S, for all large integers M
the map USM is a topological Markov shift whose unstable sets equal those
of S. This fact yields, by way of canonical measures and dimension groups,
information about dynamical properties of USk such as the zeta function and
entropy.

Introduction. Let (X, S) be a dynamical system. (In the most general case, S
is just a bijection of the set X.) For n € N, we denote by Pn(S) the set of points of
period n under S, and by P°(S) the set of points of least period n under S. Pn(S)
will be the set of S-orbits of length n. We assume that the Pn(S) are finite sets.
(This is satisfied, for example, if S is an expansive homeomorphism of a compact
metric space X.) We then associate to (X, S) the family of finite dynamical systems
that is obtained by restricting S to the sets P°(S), n € I(S), where

I(S) = {n:P%(S)^0}.

Some of our results will be formulated in terms of the group

A(S)=   []   Aut(i*(S),S|/*(S))
n€l(S)

equipped with the product topology of the discrete topologies. This topology re-
flects the idea that an automorphism is approximated by its action on finite col-
lections of periodic points. Every automorphism U of 5 gives rise to an element
(Un)nei(S) of A(S), where Un is the restriction of U to P%(S). Invariants for the
conjugacy in Aut(P%(S),S\P%(S)) are the number of cycles of the permutations
7r((7„) that are induced by Un on Pn(S), and the lengths of these cycles. A com-
plete system of invariants for the conjugacy in Aut(P„(5), 5|Fn(S')) is obtained by
adding what we call the return number of the cycles. Here we mean by the return
number of a cycle of ir(Un) the integer r, 0 < r < n, such that, with / the length
of the cycle, for every point x in any orbit that belongs to the cycle Ulx = Srx.
Of particular interest to us will be an invariant of the conjugacy in Aut(S) that
we call the gyration function. The gyration function assigns to a U E Aut(S) an
element (ff(<7)(n))„e/(s) of Un€i(s) Z/nZ-
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126 MIKE BOYLE AND WOLFGANG KRIEGER

We will call g(U)(n) the nth gyration number of U. One way of defining g(U)(n)
is to say that it is the sum of the return numbers of the cycles of n(Un) taken modulo
n. It turns out that the gyration function is a homomorphism. We describe some
of the general properties of this homomorphism in §1, and in the later sections use
it as one tool in studying the automorphism group of a topological Markov shift.

Let S now represent a topological Markov shift. In the study of any group, it
is natural to consider the elements of finite order. However, we find the subgroup
generated by the elements of finite order in Aut(S) to be of particular interest.
This is because examples of automorphisms of, for instance, the two-shift, are
generally obtained by composing a power of the shift with automorphisms that are
constructed using the marker method, and all automorphisms that are constructed
by the marker method have finite order. (For the marker method see §6 of [6]. We
make use of this method in §3.) It is an open problem of long standing whether
the automorphism group of the two-shift is generated by the shift and its elements
of finite order. This problem constitutes part of the motivation for the present
paper. The gyration numbers are particularly useful for the analysis of the action
of automorphisms of finite order on periodic points. For example, if U has order k
in Aut(S), then

kg(U)(n)=0,        nel(S),
and therefore the same constraint holds for a composition of elements of order fc.
More generally, if Xs denotes the spectral radius of (a transition matrix for) S, if
the inverse of the zeta function of S is a polynomial of degree l£N, and if p is
a prime such that p > /Ag, then the gyration function of S must vanish at p for
every automorphism of S of finite order, and hence also for every composition of
automorphisms of S of finite order. Furthermore, if the inverse of the zeta function
of S is an irreducible polynomial and U is an automorphism of S of finite order,
then US1 is shift equivalent to Sl for all i 6 Z, i / 0. (For the notion of shift
equivalence see [9].)

We also find for an automorphism U of S, that for all sufficiently large M € N,
USM is a topological Markov shift whose stable and unstable sets agree with those
of S. From this we obtain information about USM. For example, the inverses of
the zeta functions of S and USM are polynomials of equal degree. Also, if S is
irreducible, then the entropy of USM is equal to

h(USM) = M log \s+\og\u

where A u is the factor by which U multiplies the natural measures on unstable sets.
If \u — 1, and the inverse of the zeta function of S is an irreducible polynomial,
then USM is shift equivalent to SM. Finally the action of U on periodic points is
constrained. If S is irreducible and aperiodic, then U must leave orbits of arbitrarily
long period fixed, and one can derive explicit restrictions on the return numbers U
may assume on cycles of a given length. A cardinality argument shows that there
are also restrictions on the gyration numbers of the automorphisms of S. However,
we are unable to give an explicit description of an element not in the range of the
gyration function of some topological Markov shift, or even in the range of the
function which assigns to an automorphism the sequence (signn(Un))n<Ei(s)-

In §3 we consider the subgroup I(S(n)) of the automorphism group of the A^-shift
S(jv) that is generated by the involutions.  There we ask when an automorphism
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PERIODIC POINTS AND AUTOMORPHISMS OF THE SHIFT 127

of the restriction of the shift to a finite collection of periodic points extends to an
element of I(S>n)). This question we answer completely. Suppose n £ N, and for
1 < m < n, 7j(m) is an automorphism of the restriction of SrN) to P^(S^N)). Then
there exists an element U of I(S^n)) with Um = U^m\ 1 < m < n, if and only
if the following conditions hold for all nonnegative integers fc and q with q odd,
1 < 2kq < n:

g(U^)(2kq) = \0 if   J]   signWC/^))) = {X'
[Z ^ o<m<fc l       l-

We call attention to one more longstanding open problem, raised by Bob Williams:
does every automorphism of the restriction of an irreducible and aperiodic Markov
shift S to a finite subsystem of S extend to an automorphism of 5? We relate this
problem to the final result of this paper, that any automorphism of a finite dynam-
ical system may be obtained by restricting an automorphism of some irreducible
and aperiodic topological Markov shift to the points of low period.

1. Invariants for the conjugacy of automorphisms of a dynamical
system. To explain the basic idea, we consider first a finite dynamical system
(P, S), where for some n 6 N all orbits of (P, S) have length n. Let P be the set
of these orbits. For every U e Aut(S) we denote by tr(U) the permutation of P
induced by U,

w(U)(Q) = UQ,       QeP.
Pick out of every Q e P an element xq. Define for a permutation 7r of P an
automorphism Wn of 5 by

W^S'xQ = Slx„Q,        0<i<n, QeP.

One has n(Wn) — n. Thus the mapping U —► n(U), U e Aut(S) is a homomor-
phism of Aut(S) onto the full symmetric group S(P) of P. The kernel of this
homomorphism is isomorphic to (Z/nZ)p. An isomorphism between (Z/nZ)p and
this kernel is set up by assigning to an element -7 of (Z/nZ)p the automorphism
W(i) of S that is given by

W^S'xq = Si+^Q)xQ,        0<i<n, QeP.

One has
W-1W(1)W7! = W(1otv), 1e(Z/nZ)p, ireS(P).

Denoting by tp the homomorphism of S(P) into the automorphism group of
(Z/nZ)p that sends & it e S(P) into the automorphism 7 —► 7 o w, 7 € (Z/nZ)p,
we have therefore that Aut(S) is isomorphic to the semidirect product (Z/nZ)p ®$
S(P). Every U e Aut(S) can be uniquely expressed as a product U = W„iu)Wu
where W\j is in the kernel of U —> ir(U), U € Aut(S). We define an element -fu of
(Z/nZ)p by Wu — W(^u)- Equivalently 7j/ can be defined as the 7 satisfying

UxQ = S^Q\„(Q),       QeP.
We set now

g(U) =  J2 luiQ).
QeP
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128 MIKE BOYLE AND WOLFGANG KRIEGER

We call g(U) the gyration number of U. g(U) does in fact not depend on the choice
of the xq e Q e P. For another choice x'QeQ e P, with

Ux'Q = S^^x'n{Q),        QeP,

define / £ (Z/nZ)p by
x'Q = Sl^xQ.

Then or Q £ P,
Ux'Q = USl^xQ = Sl^UxQ = SlWS->Wxn{Q)

= 5'W)SifW)5-(Mr)(0)ajr(g).

Therefore
i'iQ) = l(Q)-liKQ) + iuiQ),      Q^P,

and

E V(Q) = E ™(G)-
QeP QeP

If U,V eAut(S), then
7av = (7c/°7r(I/)) + 7K

so that
E>v- = X>(7r(tO(Q)) + Tv-(Q)
Q Q

and therefore
j(t^) = ff(^) + tf(V).

Thus the mapping U —> g(U),U £ Aut(S), is a homomorphism onto Z/nZ. (In
fact, as was pointed out to us by Carol Wood, for any QeP, this map is the transfer
(see Theorem 7.3.1 of [5]) of Aut(S) into Z/nZ induced by the homomorphism U —>
luiQ) from the stabilizer of Q into Z/nZ.) The map U —► signir(i7) yields another
abelian factor. Essentially, there are no others: if |P(5)| > 4, then any homomor-
phism from Aut(S) onto an abelian group factors through U —* (g(U),signir(U)).
Let U € Aut(S). Let QeP belong to a cycle of length L under n(U). We define
then the return number Rq(U) of Q by

ULx = SRc>(u)x,        0 < RQ(U) <n, xeQ.

Sometimes we refer to this number also as the return number of an x £ Q or of the
tt(U) cycle of Q.

A complete invariant for the conjugacy of the automorphism of the finite dynam-
ical system S is the number of cycles of n(U), the lengths of these cycles, and their
return numbers. Let us denote the number of cycles of tt(U) by K(U, S), and let us
collect the length and return numbers into a vector (Lk(U, S), RkiU, S))x<k<K(u,s)
where

\p\=   e   L"(u>s)
l<k<K(U,S)

and where we normalize such that

Lk(U,S)>Lk+1(U,S),        l<k<K(U,S),
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PERIODIC POINTS AND AUTOMORPHISMS OF THE SHIFT 129

and

Rk(U,S)>Rk+1(U,S)     if Lk(U,S) = Lk+x(U,S), l<k<K(U,S).

Choosing xq £ Q e P such that for a Q £ P whose cycle has length / and return
number r

X*\,{Q) = U*XQ'        1 < »' < Ji
one sees that

Ux„i-i{u)(Q) = SrxQ

and therefore
g(U)=       E       RkiU,S)    (modn).

l<k<K{U,S)

We turn now to a dynamical system (X, S) such that |Pn(5)| < oo,n £ N. To
every U € Aut(S) we have associated the automorphisms

Un = U\P%(S),        nel(S),

of the dynamical system (P°(S),S|P°(S)). We denote

g(U,S)(n) = g(Un),        nel(S),

and call the mapping U —► (g(U,S)(n))n&I^s) the gyration function. We say that
g(U,S)(n) is the nth gyration number of U. What we have said about finite dy-
namical systems results in the following theorems.

(1.1) THEOREM.      The gyration function is a homomorphism of Aut(S) into
Ylnei(S) ZA*Z.

(1.2) THEOREM.    For UeAut(S) andnel(S),

g(U,S)(n)=       E       R^U^-
l<k<K(U„)

(1.3) COROLLARY.     Let Vi,l < i < I, be automorphisms of finite order of S.
Let n e I(S) be relatively prime to the order ofVi,l<i<I.  Then

(1) g\   II   Vz,s\(n)=0.
\l<i<I J

PROOF. Let hi be the order of Vi, l<i<I. Since U -» g(U, S) (U € Aut(S))
is a homomorphism kig(Vi, S) = 0, 1 < i < I, and therefore

( n fc» 4 n Vi,s\(n)=o.
\l<i<I     J       \l<t<I J

This implies (1) since n is relatively prime to rii<i</ fo-      Q.E.D.
We note next that for any individual automorphism of finite order one has also

restrictions on the individual return times.
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130 MIKE BOYLE AND WOLFGANG KRIEGER

(1.4) PROPOSITION. Let U £ Aut(S) be of finite order fc. Let n £ I(S). Then
for all return numbers r ofUn, fcr = 0 (mod n).

PROOF. Let a; be a point in an orbit in Pn(S) that belongs to a cycle of length
/ and has return number r. Then Ulx = STx. Since Ukx = x one must then have
that Uklx = Skrx = x.   Q.E.D.

(1.5) LEMMA.    Let i,ne N, J = {j £N: j = gcd(i,jn)}.  Then

PZiS*) = IJ fyiS).
i€J

PROOF. Any S'-orbit of length n is contained in some S-orbit of length jn,
with 1 < j < i. But an S-orbit of length fc is the union of gcd(fc, i) 5*-orbits of
length fc/gcd(fc,z). If fc = jn, then the S-orbit splits into S'-orbits of length n if
and only if n = jn/ gcd(jn, i) which is equivalent to j — gcd(i,jn).    Q.E.D.

(1.6) PROPOSITION. Let i,n £ N. If j e IS and j = gcd(i,jn) then let aj
be an integer such that iaj = j (mod jn). For other j, set a3 = 0. Then for all
U e Aut(S)

g(U,Si)(n) = Y^ajg(U,S)(jn).
j\i

PROOF. By Lemma (1.5), a point lies in an S'-orbit of length n if and only if
it lies in some 5-orbit of length jn, where j = gcd(i,jn). Let x be such a point,
x £ Q e Pjn(S), x eQ' e P^S*). With respect to S, let Q be in a 7r((7jn)-cycle
of length L and return number R. With respect to S%, let Q' be in a n'(Un) cycle
of length L' and return number R'. The collection C of jnL points in the cycle of
5-orbits contributes R to g(U,S)(jn). We will compute the contribution of C to
g(U, Sz)(n). Under U, x first returns to Q' at ULpx = SpHx, where p = j/ gcd(j, R)
is the least positive integer such that j divides pR. Because

SPRX = S1R'X

and
„ jR iajR        .      ,  .  .

PR = AC   D\   = AC    Tf\ m°d Jn>gcd(j,R)      gcd(j,R)
we see that

Because each ir'(U) cycle in C has length V = pL, there are j/p such cycles. Each
contributes R' to g(U, S')(n). So the contribution of C to g(U, Sl)(n) is just

(j/P)R' = gcd(j,R)R' = Rar

The result follows by summing.    Q.E.D.
For example, from Proposition (1.6) it follows that if p is a prime, and n, k £ N,

then
g(U,S)(pn+k) = g(U,Spk)(pn)    (mod pn).
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(1.7) LEMMA.    g(U, S-1) = -g(U, S), U e Aut(S).

PROOF. For all n £ I(S) and U £ Aut(S),

L(U,S~1)(Q)^L(U,S)(Q), OeP(^)     OFDR(U,S~1)(Q)^n-R(U,S)(Q),        ^eWJ-    *4-*>-u.

We say that a bijection V: X —► X (that also preserves any additional structure
that might be given on X) is a time reversal for (X,S) if VSV^1 = S-1. Note
that for a time reversal V of S, and an automorphism U of S, V~1UV is also an
automorphism of S.

(1.8) PROPOSITION.    For a time reversal V of S, g(V~1UV, S) = -g(U, S).

PROOF. One has

giV^UViS) = g^VSV'1) = ff^S"1),
and the proposition follows from Lemma (1.7).    Q.E.D.

For later use we note the following lemma.

(1.9) LEMMA. Let U e Aut(S) be an automorphism of finite order. Let for
some n e I(S) Q € Pn(S) have return number r. Let m be the g.c.d. of r and n.
Then there exists a V £ Aut(S) of finite order such that VSmx — x, x £ Q.

PROOF. Let / be the length of the cycle of Q. Then Ulx = Srx, xeQ. There
is anieZ such that Uilx = S~mx, xeQ. Let V = Uil.    Q.E.D.

2. Topological Markov shifts. In this section we are concerned with topo-
logical Markov shifts. However, some of the tools we use from dimension group
theory will be described in greater generality. Expositions of the basic theory of
topological Markov shifts are in [1, 4, 8]. Recall for a topological Markov shift
(X, S) with transition matrix A that

\Pn(S)\ = trace A",        n € N,

and that the zeta function

cs(t)=exp^2^\Pn(S)\tn
«eN

of 5 is given by

«rs(*) = ri(1-V)-1
i

where rj,(* ~ At) is the characteristic polynomial of A.
We begin by computing the gyration function in an example. For this recall that

Mobius function p on N, defined by

( (—1)'     if n is the product of / distinct primes,
p(n) — <

( 0 otherwise.

(2.1) PROPOSITION.    Let F be the automorphism of S'2) defined by

(Fx)i = Xi + 1    (mod 2),        i £ Z, x £ {0,1}Z.
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// n £ N is even, with n/2 squarefree, then

g(F,S{2))(n)=n/2,

while otherwise

(1) g(F,S{2))(n) = 0.

PROOF. For odd n the result is in Corollary (1.3). Let n = 2kq, q odd, fc £ N.
Let

C = {xeP°(Sm):Fx = S*-1'ix}.

Then
g(F,Sw)(n) = \\C\    (mod n),

and since g(F,Stty)(n) must vanish or have value n/2, (1) will hold precisely if \C\
is divisible by 2k+1. For r\q set

fir) = \{xe P§„riS(2)): Fx = S$;lrx}\ ,

fir) = \{xe P2*r(5(2)): Fx = Sg^x) .

Then
f(r) = ^f(s)=22k-^, r\q.

s\r

By Mobius inversion

/°(«) = X>(')/w.
so that

This integer is divisible by 2k+1 if and only if the integer Y^r\q liia/r)22 r~k is
even. All the terms in this sum are even, except possibly p(q)22 ~k which is odd
if and only if p(q) ^ 0 and fc is 1 or 2.    Q.E.D.

We want now to obtain some information on the gyration numbers of S^N),N >
2, considered as an automorphism of itself. Here Fermat's Little Theorem gets us
started.

(2.2) PROPOSITION. Let p be a prime that does not divide N, and let fc, m € N
be such that

(1) Np-1 = l + kpm

where p does not divide fc.  Then

(2) 9(SiN),SiN))(pn)=0, l<n<m,

and (except in the case where p = 2 and N — 3 mod 4)

(3) 9(S{N),S(N))(p ){  _^    (modpm))        m^n
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PROOF. g(S(N),S(N))(pn) is modulo pn equal to

p-n[Npn - N^1} = p-nNpn~1 [Nb-W1 - 1].

Therefore, since p does not divide N, (2) is equivalent to

(4) w(p-i)pn-1 = i    (modp2"),        l<n<m,

and (3) is equivalent to

m Mp-Dp-1/  =1    (^Pn+m~^
w 1^1    (mod pn+m),        n>m.

It is
fNP-i)Pn~1 =(l + kpm)*n~1

(6) =i+fcPm+n-i+  e   (pn/"1)(jfcpm)'-

This proves (4). Also, (5) follows from (6) whenever

(7) (pn    \(kpm)l=0    (modpn+m),        l>l.

Given / £ N, 1 < / < p"-1, let p7 be the largest power of p dividing /. If 1 < i <
p™-1, i € N, then i and (pn_1 — i) are divisible by the same powers of p. Because

CTX^)n(^)
it follows that pn~1~] is the largest power of p which divides (p ; ). Therefore

p„+m+((_1)m_:,_i divides (p""1)^™)', l< / < p""1, and this implies (7) when-
ever (/ - \)m — y — 1 is nonnegative. However,

(/ - l)m - j - 1 > (p* - l)m - j - 1 > p> - j - 2,

and this last quantity is nonnegative, except in the single case where p = 2 and
j = 1. Thus, (l-l)m— j — 1 is nonnegative except in the single case where p = / = 2
and m = j = 1, in which case

N = AT"-1 = 1 + fcpm = 1 + 2fc = 3    (mod 4)

since fc is odd. Thus (7) holds unless p = 2 and N = 3 (mod 4).    Q.E.D.

(2.3) COROLLARY.    g(S(ff),S^pj)) is of infinite order in Y\n€NZ/nZ.

PROOF. Assume for some fc £ N, kg(S(N),S(N)) = 0. We know from the propo-
sition that there is a prime p > fc and m £ N such that g(S(N),S(N))(pm) ^ 0, but
kg(S(N), S(jv))(pm) = 0- Therefore p must divide fc which is impossible.    Q.E.D.

Also g(S(L) x 1, S(L) x £(M)) is of infinite order in I~lngN Z/nZ, as can be seen
by the same method from the following proposition.
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(2.4) PROPOSITION.     Let p be a prime.  Then

g(SiL)xl,SiL)xS{M))(pn)=p-nM"n~1{Lpn-LP"'1}    (modp"),        n £ N.

PROOF. We choose suitable points in the orbits of length p" of S(L) x S(M)- For
this we first pick xq £ Q £ PP*(S(L)) and yn £ R e PP"(S^m))- If now an orbit in
PP"iS(L) xS(m)) contains a point (xQ,y), where Q e PP"(S(L)) and y £ Pp*iStM)),
then choose this point as its representative. These orbits each contribute one unit
to the gyration number, since

(S(L) x l)(xQ,y) = (S{L) x S(m))(xq,S^y).

If an orbit in PP"(Sil) x S(m)) contains a point (x,yR), where x £ Ppn(S^)) and
R e Pp>>(Sm), then choose this point as its representative. These points do not
contribute, since (SL x l)(x,yR) = (S(L)X,yR).    Q.E.D.

We introduce at this point some terminology for automorphisms U of a subshift
(X, S). Let us say that U has coding bound N e N if for all x £ X, (Ux)Q is
determined by (xi)-N<i<N-

The next theorem shows that there is one case where the invariants completely
determine the automorphism.

(2.5) THEOREM. Let (X,S) be an irreducible and aperiodic topological Markov
shift. Let U £ Aut(S) be such that for all sufficiently large n £ N, Ln>k(U, S) = 1,
1 < fc < Kn(U, S). Then U is a power of S.

PROOF. Let S be given by a 0-1 transition matrix A. Let M £ N be such that
AM has all entries positive, and let N £ N be a coding bound for both U and U~x.
Let x and x' be periodic points from distinct orbits of S with least periods n and
n' greater than <±N + 2M and also large enough for the hypothesis to apply. Let

Ux = STx, — \n < r < ^n,

Ux' = Sr'x',      - \ri < r' < \n'.

Let x and x' be given by blocks a and a', and let Ux and Ux' be given by blocks a
and a', that is, let

a, = o,+r (mod n),     1 < i < n,        a- = a'i+r,{mod n<),     1 < i < n'.

Choose now A-admissible blocks b and b' of length 2N + 3M such that a periodic
point y of S, with period m — 2nn' + 47V + 6M, is given by the block

c = a- ■ -aba' ■ ■ ■ a'b'
n' n

and also
(i) &i • • • bN = ai ■ ■ ■ aN - b'3M+N+x ■ ■ ■ b'3M+2N,

&i • • ■ b'N = a'x- ■ ■ a'N — 63M+W+1 ■ ■ ■ &3m+2jv,
(ii) bpj+M # QN+M,b'N+2M i1 an-N-M,
(hi) b'N+M ^ a'N+M,bN+2M ± a'n_N_M.

We choose q such that

Uy = S"y,      and     -m/2 <q< m/2
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and let Uy be given by a block c. Condition (i) ensures that c has the form

c = a- ■ -aba' ■ ■ -a'b .
n' n

Condition (ii) ensures that the periodic pattern of a ■ ■ ■ a extends less than 2N + M
symbols into b and b (because U"1 has coding bound N), and therefore (because
x and x' are in distinct orbits) \q\ < 2N + M < n/2 which forces q = r. In the
same way, by (iii), one has q = r'. The theorem follows now from the density of
the periodic points of large periods.    Q.E.D.

REMARK. When the numbers Lu,k(U,S) are uniformly bounded, Theorem
(2.5) implies that U is a root of a power of S. In some cases this result can be
sharpened.

Let (X, d) be a compact metric space, and let T: X —► X be a homeomorphism.
We denote

Ws+(x,T,I) = {yeX:diTix,Tiy)<8,i>I}, ^ v   T ̂  ?o > o, x e x, l e z.
We-(x,T,I) = {yeX: d(T~lx,T-ly) <8,i> I},

One says that a 8 > 0 is an expansive constant for (X, d, T) if for all x, y £ X,
x ^ y, there exists an i e Z such that d(Tlx,Tly) > 8. If T has an expansive
constant, then T is said to be expansive. This definition does not depend on the
choice of the metric (compatible with the topology). One says that an expansive
homeomorphism T has canonical coordinates if for every 8 > 0 there exists an e > 0
such that d(x, y) < e, x, y £ X, implies that

W+(x,T,O)r\W6-(y,T,O)^0.

Again this definition does not depend on the choice of the metric. Topological
Markov shifts are intrinsically characterized as the expansive homeomorphisms of
zero-dimensional compacta with canonical coordinates [2, Proposition 6.2]. Since
it is immaterial which metric is used, we make a convenient choice; from now on,
given a subshift (X, S), we use only the metric d on X that is given by

J(z>y)=   .    irun        |*|, x,yeX,x^y,

(0 if x — y.

\ is an expansive constant for (X, d, S).

(2.6) LEMMA. The root of a topological Markov shift is a topological Markov
shift.

PROOF. Let T be the topological Markov shift on X, and let Rk = T, fc £ N.
Then R is also expansive. Let T have canonical coordinates. We show that R also
has canonical coordinates. For this, let 8 > 0. Then let n > 0 be such that for all
x, y e X, d(x, y) < n implies that

d(Rlx,Rly)<8,        -k<l<k.

Then

(1) W+(x,R,0)DW+(x,T,0),        xeX.
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Indeed, if z € W+(x, T, 0), then
d(Tnx,Tnz)<n,        n£N,

and by the choice of n, then
d(Rnk+lx, Rnk+lz) <8,        fc £ Z+, 0 < / < fc, n € N.

Similarly

(2) Ws-(x,R,0)DW-(x,T,0),        xeX.
Since T has canonical coordinates, there is an e > 0 such that for all x, y £ X,
d(x, y) < £ implies that

W + (x,T,Q)nW-(y,T,O)^0.
From (1) and (2) also

Ws+(x,R,O)C)Wg-(y,R,O)^0.    Q.E.D.
We use Lemma (2.6) to give a further restriction on the gyration numbers of an
automorphism of finite order of a topological Markov shift.

(2.7) PROPOSITION. Let (X,S) be a topological Markov shift. Let I be the
degree of cr1, let p be a prime, and let m,n £ N, m < n, be such that

(1) Pn>/Af-\
Then for every automorphism U of finite order of S
(2) g(U,S)(pn)=0    (modpm).

PROOF. Assume that (2) does not hold. Then there exits an 5-orbit of length
p" with return number r under U such that the g.c.d. of r and p" is equal to pk,
0 < fc < m.   By Lemma (1.9) there is an automorphism V of S of finite order

k k
such that VSP   has at least p" fixpoints.   By Lemma (2.6) VSP , as a root of a

k
power of S, is a topological Markov shift, and AySPt = Xg .  It follows that the

k vk
number of fixpoints of VSP can be at most I\ps and we have a contradiction with
(1).    Q.E.D.

If in Proposition (2.7) S is taken to be aperiodic, and if also Cg1 is an irreducible
polynomial, then, writing

fsw_i= n u-^oi<i<i
one can replace (1) by

(3) p">E^r'-
More generally, one can replace (1) by (3) whenever S has the property that for all
fc £ N every fcth root of Sk has zeta function identical to the zeta function of S.
This is the case, for instance, if S has transition matrix

/0    0 2    0\
10 10
12 0    1

\0    0 1    3/
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as one sees from its characteristic polynomial (t3 — t2 — 7t — 6)(t — 2). In general,
however, the zeta function of 5 does not determine whether S has this property.

Our next result is formulated in terms of the group A(S). Note that an automor-
phism U of an irreducible topological Markov shift (X, S) can be identified with
the element (U\P%(S))n€I(s) 0I ^(S) since the periodic points of S are dense. We
denote by 7(5) the group that is generated by the automorphisms of finite order
of S.

(2.8)  THEOREM.     S{N) <fc T(S(N)).
PROOF. Let p be an odd prime that does not divide N. On the one hand we

know from Proposition (2.2) that there is an m £ N such that for all n > m
g(S{N),S{N))(pn)^0    (modpm).

On the other hand, we know from Proposition (2.7) that, if here pn > Npm , then
for every automorphism U of 5(jv) of finite order

g(U,S{N))(pn)=0    (modpm).

Assuming that S(N) is a limit of compositions of automorphisms of finite order of
S(jv) leads therefore to a contradiction.    Q.E.D.

Also 5(i) x 1 ^ T(5(i) x S(m)) as can be seen by the same method from Propo-
sition (2.4).

We describe now the construction of a dimension group. For this we consider a
subshift (X, S) and for any point x in X let

W~(x,S) = lyeX:   lim d(S-lx,S~ly) =o\ ,

W+(x,S) = W-(x,S~1),
define the unstable and stable sets of x. For any expansive constant 8 of (X, S),

W-(x,S)=   |J  Ws-(x,S,I),        xeX.
/ez+

Let for a set D c X,
W(D,S)= |J W~(x,S),

xeD
and write

W(D,S)= |J \JWs-(x,S,I).
xeDiez

On the sets W/~(x, S, I), x £ D, I € Z, there are the compact topologies that these
sets inherit as subsets of X, and we put on W(D,S) the resulting inductive limit
topology. On W(D,S) we have the group 7d(S) of uniformly finite dimensional
homeomorphisms. A homeomorphism v of W(D,S) belongs to Td(S) if there is
an / £ Z+ such that vy e W^(y,S,I), y e W(D,S). (W(D,S),TD(S)) does not
depend on the choice of the metric d, nor on the choice of the expansive constant
8. This is a consequence of the fact that for any two expansive constants 8, r\ of
(X, d, S), 8 < n, there is a K € N such that

W+(x,S,I)cW+(x,S,I + K),       x(_x
W-(x,S,I)eWs-(x,S,I + K), '
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Note that
Wx/2(x,S,I) = {yeX:yi = xx,i < -I},

' x e X, I e Z.
Wx+/2(x,S,I) = {yeX: yt = xl,i>I},

Observe at this point that a homeomorphism v of W(D, S) is in Td(S) precisely if
for some J € Z+

(vy)i = yu      i>l, yeW(D,S).
One considers next the Boolean ring Cd(S) of compact open subsets of W(D, S).

The group 7d(S) acts on Cd(S) and one obtains the (future) dimension function
(>D,S as the quotient map of Cp(S) onto the orbit space of this action. The range of
the dimension function carries an algebraic structure, where for 7,7' € 8d^(Cd(S))

1 +1 = 6d,s(C u C),      C e 7, C € 7', cnC = 0,
and generates the positive cone Kq(D,S) of (Kc,(D,S),Kq(D,S)), an ordered
abelian group. Let now D be such that

W(D,S)r\W-(x,S)^0,        xeX.
Then (Kq(D, S),Kq(D,S)) does not depend anymore on the choice of D. We
suppress it from the notation, and call (Ko(S),Kq(S)) the (future) dimension
group of S. One can set D equal to X. Note that W(X, S) and X are equal as
sets and differ only by the topology they carry. S induces an automorphism 4>s 0I
(Ko(S), Kq (S)). More generally, every U € Aut(S) induces an automorphism <f>u
of (Ko(S),Kq(S)) that commutes with 4>s-

For a topological Markov shift (X, S) the characteristic polynomial of 4>s ®
1: K0(S) <8>C —► Ko(S) ®C is £dc<71(t~1), where d is the degree of the polynomial
Cg1. In fact, (K0(S),Krl(S),(j)s) determines the shift equivalence class of S (see
§4 of [7]). Also recall that for an irreducible topological Markov shift (X, S) there
exists an (up to a factor) unique Jo(S')-invariant Borel measure td(S) on W(D, S)
such that

0 < td(S)(SC) - XsrD(C),        CeCD(S).
td(S) gives rise to an (up to a factor) unique state r on (Kq(S),Kq(S)) by

t(7)=td(C),       CeieKZiS),
such that

r(^s7) = AS(r(7)),        ieK0(S).
For every U £ Aut(S) there is a Af/ > 0 such that

r(4>ul) = Af/r(7), 7 € K0(S).
We say that a U £ Aut(S) is shiftless, if Ay = 1.

As is seen from Theorem (2.5), if for a U £ Aut(S) for sufficiently large n £ N

Ln,k(U,S) = l,        l<k<Kn(U,S),
then Ay uniquely determines U. Also note at this point, that in the situation where
Aut(S) is generated by the shiftless automorphisms together with S—for example,
if 5 is a full shift on a prime number of symbols—we have from Theorem (2.5) that
every U £ Aut(S), such that

sup        sup        Ln<k(U, S) < oo,
neN l<k<K„(U,S)

is a composition of a power of S with an automorphism of finite order.
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(2.9) THEOREM. Let (X,S) be a topological Markov shift of positive entropy.
Then no composition of automorphisms of finite order of S is equal to S.

PROOF. Suppose that S is the composition of Ui, 1 < * < fc, Ui an element of
finite order in Aut(S). Pick n £ N such that for any irreducible component (Y, T)
of (X,S) of positive entropy U?Y = Y, 1 < i < k. Then each U?\Y is shiftless.
Therefore each Sn\Y is shiftless. This contradicts logAg = nh(S) > 0.    Q.E.D.

(2.10) PROPOSITION. Let (X,S) be a topological Markov shift. Suppose c'1
is an irreducible polynomial and U £ Aut(A", S) is of finite order. Then US1 is a
topological Markov shift that is shift equivalent to Sl, i £ Z, * ̂  0.

PROOF. The hypothesis on the zeta function implies that the kernel of r: Kq(S)
-»Ris trivial. From Aj/ = 1 we conclude that tf>u is the identity. Also, if m is
the order of U, then (US*)™ = Sim, and by Lemma (2.7) it follows that US* is a
topological Markov shift. Also for an 5- and [/-invariant subset D of X

(W(D, S), JD(S)) = (W(D, S>), TD(S%)) = (W(D, US1), 7D(US1))
and therefore,

(KQ,(USl),K+(USl),<t>us>) = (A-0(S),if+(S),^s)

= iKoiS),K+iS),<f>s),        ieZ.    Q.E.D.
(2.11) LEMMA. Let N,M be integers with M > N > 0. Let (X,S) be a

subshift, and let U be an automorphism of S such that U and £7_1 have coding
bound N. Let 0 < n < 2_(M+JV). Then USM is expansive with expansive constant
n, and

(1) W+(x,USM,I) cW+2(x,S,I(M + N)),

(2) W+(x,USM,-I)cWx+/2(x,S,-I),        IeZ+,xeX.

Both (1) and (2) also hold with the unstable sets replacing the stable sets.

PROOF. We first remark that for x,y € X and * £ Z with

(3) Xi ^ yi

there exist j~,j+ £ Z, i-M-N<j-<i<j+<i + M + N such that

(USMx)3. ± (USMy)3-,        (U'1S~Mx)J+ ± (U-'S-y)^.

To see this, observe that for i — N < k < i + N neither (Ux)k = (Uy)k, nor
(U~lx)k = (U~xy)k is possible, since this would contradict (3). Therefore we have
a doubly infinite sequence of integers fc;, with fco = i, such that

(4) fc,_! -M-N <kt < fci-i,        /€Z,
and

(5) (UlSmx)kl ?(UlSMly)kl,        IeZ.

In particular, for some integer L, d(ULSMLx,ULSMLy) > 2~M~N so n is an
expansive constant for SUM. Now suppose x, y £ X, I > 0 and

y<tW+2(S,x,I(M + N)),
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that is, we have some fc0 > I(M + N) such that xko ^ yko. To prove (1), it is
enough to show

(6) y$Wn(USM,x,I).

But it follows from (4) and (5) that there is an L > I such that for some fc £ Z,
\k\<M + N,k = kL and (ULSMLx)k ^ (ULSMLy)k, which shows (6). A similar
argument establishes (2). The replacement of U and S by their inverses in (1) and
(2) gives the final claim.    Q.E.D.

(2.12) LEMMA. Let N,M be integers with M > N > 0. Let (X,S) be a
subshift, and let U be an automorphism of S such that U and <7_1 have coding
bound N. Let n = 2"(M+W).  Then for I in Z+,

(1) W+2(x,S,I-(M + N))cW+(x,USM,I),

(2) Wx+/2(x,S,(I-l)(M + N))DW+(x,USM,I),

and

(3) W+2(x,S,-(I + M + N))DW+(x,USM,-I),

(4) W+2(x,S,-(I + l)(M + N))cW+(x,USM,-I).

Also, (l)-(4) hold with the unstable sets replacing the stable sets.

PROOF. For any x £ X, i £ Z,(xj)i<j<oc determines (USMx)3,i — 1 <
j < oo. From this, (1) follows by an induction. Also, (xj)-i<j<00 determines
(U~lS~Mx)j,i + (M + N) < j < oo. From this, (4) follows by an induction.
Also, W+(x, USM,i) determines ((USM)ix)j, -(M + N) < j < oo. This with the
previous facts gives (2) and (3). The replacement of U and S by their inverses in
(l)-(4) gives the final claim.    Q.E.D.

(2.13) LEMMA. Let N,M be integers with M > N > 0. Let (X,S) be a
subshift, and let U be an automorphism of S such that U and U~x both have coding
bound N.  Then

(W(D, USM), 7D(USM)) = (W(D, S), 7D(S)),        DcX.

PROOF. | is an expansive constant for S and n = 2~(M+Ar) is an expansive
constant for SMU. Then

W(D,S)= (J  [}Wx/2(S,x,I)
x€D iez

while
W(D,USM)= [J  \J\V-(SMU,x,I).

x€D iez

Therefore, by Lemmas (2.11) and (2.12), W(D,USM) and W(D,S) are identical
as sets. Now suppose x £ W(D,S). In the topology of W(D,S), the collection
{W02(S, x, I): I e Z} is a local basis of open sets for x, while in the topology of
W(D,SMU) the collection {W~(SMU,x,I): I £ Z} is a local basis. By Lemmas
(2.11) and (2.12), these local bases refine each other. Therefore, W(D,USM) and
W(D,S) are identical as topological spaces.
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By the same means, one has that the groups Td(USm) and Td(S) are identical,
recalling that a homeomorphism v is in 7d(USm) if and only if there is an J £ Z+
such that vy € W+(y,USM,I), y € W(D,S), and is in JD(D,S) if and only if
there is an J in Z+ such that vy £ Wx+/2(y, S,I), y £ W(D, S).    Q.E.D.

(2.14) LEMMA. Let (X,S) and (X,T) be commuting topological Markov shifts,
S irreducible with period p £ N. Then for some k dividing p, T is the union ofp/k
disjoint conjugate irreducible topological Markov shifts of period fc.

PROOF. X is the union of pairwise disjoint closed open sets X%, 1 < i < p, where
S(Xi) = Xi+i (mod p). Since T is an automorphism of S, there is an integer L such
that T(Xi) — Xi+L (mod p), 1 < i < p. Then Sp\Xi is an irreducible and aperiodic
topological Markov shift, and therefore Tp\Xi is also, 1 < i < p.

Let d = gcd(p, L), let p = dk. Then for each i, the sets T^Xt are disjoint,
0 < j < fc, and TkXi = Xj. Since (Tk\Xi)d is an irreducible and aperiodic
topological Markov shift, so is Tk\X%. Let Ti denote the restriction of T to Xi U
• • • U Tk~1Xi, 1 < i < p. Then T» is an irreducible topological Markov shift of
period k, 1 < i < p/k, and Ti and Tj are conjugate by way of S3~%Ti = TjS^1,
l<i,j<p/k.    Q.E.D.

(2.15) LEMMA. Let (X,S) be an irreducible topological Markov shift, and let
D C X be an S-invariant set. Let A' > 0, and let r' be an Td(S)-invariant Borel
measure on W(D, S) such that 0 < t'(SC) = AV(C), C £ CD(S). Then t' is equal
to td(S) (up to a factor), and A' = Ag.

PROOF. This follows from the fact that As is the unique eigenvalue for a tran-
sition matrix of 5 that has a strictly positive eigenvector.    Q.E.D.

(2.16) PROPOSITION. Let N,M be integers with M > N > 0. Let (X,S) be a
topological Markov shift, and let U be an automorphism of S such that U and U'1
have coding bound N. Then USM is a topological Markov shift.

PROOF. We know from Lemma (2.11) that USM is expansive. We prove now
that USM has canonical coordinates. For all / € Z+ and all x e X, (a:,)_/<i<00 de-
termines (USMx)i, -I <i < oo, and (xi)_oo<i</ determines (U~1S~Mx)i, -oo <
i < I. Therefore for all 8 > 0

W+(x,S,0)GW+(x,USM,0),        xeX,
and

Ws-(y,S,0)cWs-(y,USM,0),        y £ X.
Let e > 0 be such that d(x, y) < e implies

W+(x,S,O)nWs-(y,S,O)^0.
Then also

W+(x, USM,0) n Wfiy, USM,0) ^ 0.    Q.ED.
(2.17) THEOREM. Let M,N be integers with M > N > 0. Let (X,S) be a

topological Markov shift, and let U £ Aut(S) be such that N is a coding bound for
U and [/_1.  Then USM is a topological Markov shift with

(1) (K0(SMU),K+(SMU),c}>SMU) = (KoiS^K^S),^^).
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The degree of Cg1 equals the degree ofCg^fj- If S is irreducible, then

h(SMU) = log Xu+M log As

and USM is irreducible and aperiodic if and only if S is aperiodic. If Cg1 is an
irreducible polynomial and U is shiftless, then SMU is shift equivalent to SM.

PROOF. Lemma (2.13) implies (1). The claim on degrees follows (1) because
for any topological Markov shift T, the degree of c^"1 equals the rank of K0(T).

Now suppose S is irreducible. By Lemma (2.14) and Proposition (2.16), USM is
the union of finitely many disjoint conjugate irreducible topological Markov shifts.
Let (Y,T) be one of these, so h(USM) = h(T). By Lemma (2.13),

(W(Y, USM), Jy(USM)) = (W(Y, S),7y(S)).
Because ty(S)(C) = tx(S)(C), C £ CY(S), it follows that

rY(S)(TC) = rY(S)(USMC) = \u\%ty(S)(C),        C e CY(T).
So by Lemma (2.15), ty(T) equals ty(S) (up to factor) and h(T) = log Ar/A^f. For
aperiodicity, apply Lemma (2.14) to S and USM. Finally, if Cg1 is an irreducible
polynomial and U is shiftless, then from (1)

(K0(SM),K+(SM),^) = (K0(USM),K+(USM),(t>USM).    Q.E.D.
(2.18) THEOREM. Let (X, S) be an irreducible and aperiodic topological Markov

shift, and let U € Aut(S').  Then

(1) lim liMtfS^IA^Ag^l.
i—>oo

In particular, U fixes arbitrarily long periodic S-orbits.

PROOF. Let / be the rank of K0(S) and let p be the maximal modulus of the
eigenvalues of 0s ® 1: Ko(S) ® C —► K0(S) <g> C that are different from As- By
Theorem (2.17) we have an in. £ N such that, for i > i0, US1 is an irreducible and
aperiodic topological Markov shift, and

(2) <j>usi = 4>u°4>%s,
(3) Ar/s- = Af/Ag,
(4) \P1(USl)\= tracers.,        *' > io-
Since 0ry <8i 1 and 0s ® 1 are commuting linear transformations of Ko(S) ® C, it
follows from (2) and (3), using p < As, that the eigenvector of <f>s <8> 1 for the
eigenvalue As is also an eigenvector of cf>u ® L and for <j>u <g> 1 has eigenvalue A(/.
It further follows that, with a the maximal modulus of the eigenvalues of tj>u ® 1,

\tr&ce(t>USi - Ar/A'sl < a(I - l)p\        i £ N,
and this together with (4) gives(l).

Now given M £ N, choose i > ir, such that

tracers->     E    \PmiS)\-
l<m<M

Then for some X £ AT we have

(5) USlx = x
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but
(6) Smx ^x,        1 < m < M.

Here Ux = S~*x, so U fixes the S-orbit of x, which must be finite, since by (5)
all its points are fixpoints of the topological Markov shift US1, and which by (6)
contains more than M points.    Q.E.D.

There are restrictions on the values that the return numbers of an automorphism
can assume. In the next proposition, we explicitly formulate such a restriction.

(2.19) PROPOSITION. Let iX,S) be an irreducible and aperiodic topological
Markov shift, and let U £ Aut(X). Then there are M,c > 0 such that the length
n and return number r under U of any S-orbit left fixed by U cannot satisfy M <
r < (logn)/(logAs) - c.

PROOF. Let M be a coding bound for U and U-1. By Theorems (2.17) and
(2.18) there is a d > 0 such that \Pi(US'%)\ < d\s, i > M. Suppose r > M,Q £
PniS), UQ = Q, and the return number of Q under U is r. Then US~r has at
least n fixpoints. Therefore

s a\t         a        --  logn       logdn < dAq     and     r > ■-:-—.
log As     log As

Set c = (logd)/(logAs).    Q.E.D.
3.    Involutions.    Extensions of automorphisms of finite subsystems.

Consider again a dynamical system (X, S) such that |F„(5)| < oo, n £ N. Let U
be an involution in Aut(S), and let q be an odd integer. We partition Pq(S) into
sets Pq(U,S) and £q(U,S), setting

Dq(U,S) = {Qe Pq(S): UxfQ,xe Q),
£q(U,S) = {Qe Pq(S):Ux = x,xe Q},

and for fc £ N we partition P2*q(S) into sets C2i=g((7, S), D2kq(U, S) and £2kq(U, S),
setting

C2kQ(U, S) = {Qe P2kq(S): Ux = S2"~^x, x £ Q},
t>2*qiU,S) = {Q e P2*q(S): Ux<£Q,xe Q},
£2kq(U,S) - {Q e P2kq(S): Ux = x,xe Q}.

(3.1) LEMMA. Let S be such that every square-root of S2 has zeta function
equal to the zeta function of S. Let U be an involution in Aut(S). Then for all odd
integers q,

(1) \C2q(U,S)\ = \\Dq(U,S)\.
PROOF. Since U is an involution

(2) P°(US) C P2q(S).
If now for a divisor / of q, x £ Pl°(S) U f£,(S), then x £ P2i(US), and if also
x € P%(US), then necessarily / is equal to q. Hence (2) implies that P^(US) C
P°(S) UP2°,(5). Since q is odd, a point in P$(S) will have period q under US only
if its orbit belongs to £q(U,S). A point in P^iS) will have period 2q under US
if its orbit is not in C2qiU,S). If the orbit of an a: in P2° (S) is in C2q(U,S) then
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USx = S9+1x, and we see that then the US'-period of x is the least positive integer
m such that 2q divides m(q + 1). Since q is odd, 2q divides q(q + 1), and since q
and q + 1 are relatively prime, no m smaller than q will do. The zeta functions of
S and US being the same, (1) must hold.    Q.E.D.

(3.2) LEMMA. Let S be such that every square-root of S2 has zeta function
identical to the zeta function of S2 , fc £ N. Let U be an involution in Aut(S').
Then for all positive integers q,

\Dq(U,S2k)\=2k[    E    \D2mq(U,S)\\,        fc€N.
\0<m<k J

PROOF. By Lemma (1.5)

P°q(S2) = P°q(S)UPl(S).
Observe that an S2-orbit that is contained in Pq(S) is in Dq(U,S2) if and only if
it is in Dq(U,S). Also an 5-orbit contained in P2(j(S) splits into two S2-orbits in
Dq(U, S2) precisely if it is in C2q(U, S) U D2q(U, S). Therefore by Lemma (3.1)

m \Dq(U,S2)\ = \Dq(U,S)\ + 2\D2q(U,S)\ + 2\C2q(U,S)\
= 2i\DqiU,S)\ + \D2q(U,S)\).

To prove the lemma by induction recall from Lemma (1.5) that

fg,(S2*_1) = i^,(S),        fc£N,

and observe that an S-orbit in P2kq(S) splits into 2fc_1S'2 -orbits in Z?29(S2 )
if and only if it is in D2kq(U, S). The induction step taken from (1) is then

\Dq(U,(S2k-1)2)\ = 2(\Dq(U,S2k-1)\ + \D2q(U,S2k-l)\)

= 2    2*"1   E   \D2~q(U,S)\+2k-1\D2kQ(U,S)\\
\ 0<m<k J

= 2kl   E    \P2mq(U,S)\\.    Q.E.D.
yO<m<fc J

(3.3) LEMMA. Let S be such that for all k £ N every square-root of S2 has
zeta function identical to the zeta function of S2 , fc £ N. Let U be an involution
in Aut(S).  Then for all odd positive integers q and all fc € N,

g(U,S)(2 q) = i .
{ 2*   'q      «/iio<m<fcslgn7r2'«g(^,5) = -l.

PROOF. Since U is an involution the return number of a point in P$kq(S) whose
orbit is not in C^giU,S) is zero. Therefore by Lemma (1.1)

g(U, S)(2kq) = 2k-1q\C2kq(U, S)\    (mod 2kq).
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Since the permutations 7T2mg(L7, S), 1 < m < fc, are products of disjoint transposi-
tions the lemma will be proved by showing that

(1) \C»qiU,S)\ = \   E   \^q(U,S)\.
0<m<k

For this recall again from Lemma (1.5) that P2k (S) = P2q(S2     )■ Also, observe

that an orbit Q in P2*«(5') splits into 2k~1 orbits in C2,(l7, S2 ) if and only if Q
is in C2jtg((7,S). Therefore

2k-1\C2kq(U,S)\ = \C2q(U,S2k~1)\,

and an application of Lemmas (3.1) and (3.2) proves (1).    Q.E.D.
All irreducible topological Markov shifts S with odd period and such that c<71

is an irreducible polynomial satisfy the hypothesis of Lemma (3.3).
We turn now to the automorphisms of the full shifts (X(N),S(N)), X(N) =

[0, N)z, N > 1. Here we use [0, N) to represent [0, iV)nN; similar notation is used
below. Our aim is to construct involutions of S(jv) that interchange periodic orbits.
We say that a periodic orbit of S(N) is given by a block a £ [0, Ar)'°"L', L € N, if
it contains the periodic point that is given by the block a.

(3.4) LEMMA. Let L £ N, and let a,b £ [0,N - 1}^°'L\ a / b. Let the
periodic orbit that is given by the block ab have length smaller than or equal to 2L/9.
Then there exists an I, 0 < I < L, such that with a = ajaj+r ■ ■ aL-iar, • ■ -fli-i,
b = bibi+i ■ ■ bL-ibo ■ ■ bi-i the periodic orbit that is given by the block ab has
length 2L.

PROOF. Since a is different from 6, the length of the periodic orbit that is given
by the block ab is even, say equal to 2fc. One has for some q > 4, L = (2q + l)fc.
Let

c^ = a0---ak-i,    c(2) = ofc.-.o2fc-i,    c = a0 ■ ■ ■ a2k-i-

Then
a — c-'-cc^,        b = c^c--c.

q q
Let / = 2qk — 1. We assume that the periodic orbit that is given by the block

c(l)c^cC(2)c(2)c^cC(D

1 9-1

has length M < 2L and we derive a contradiction. Observe that the block cc
admits c as a subblock only as its first or second half. Otherwise 2fc would not be
the length of the periodic orbit given by the block ab. In particular, c*1' ^ c^2\
and

Q 9-1

and therefore M < L. It follows that M can only be a multiple of 2fc smaller than
or equal to |L. But this contradicts c^ ^ c^.    Q.E.D.
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(3.5) LEMMA. Let L e N, and let a,b £ [0,7V)[°"L) be blocks such that the
periodic orbits given by a and b have length L and are distinct. Then there exists an
I, 0 < I < L, such that with a — aiai+x ■ ■ ■ aL_xar, • ■ ■ a/_i, b = bibi+1 ■ ■ ■ 6l-i^o • • •
bi-i the periodic orbit that is given by the block ab has length 2L.

PROOF. By Lemma (3.4) we are left with a small number of cases. We indicate
the proof for one of these. We consider the case that L is divisible by 105. Write
L = 105Ln- There is then an l',0 < I' < L such that ar,-i> ^ bL-i'+35L0 (mod L)-
Consider the case that

aL-V ■ ■ ■ dL-l'+85L0 (mod L) = ^L-i'+2U0 (mod L) ' ' ' b^L-V (mod L)-

There is then an / ,0 < /   < 21Ln such that

aL-l'-l"  r "L-('-;"+21L0 (mod £)•

We consider the case that

aL-l'-l" ' ' ' aL-Z'-I"+90L0 (mod L) ~ ',L-i'-;"-r15L0 ' "°2L-i'-i" (mod £,)•

There exists then finally an /   , 0 < /    < 15Lo such that

aL-l'-l"-l'"  ^ bL_[i_i"_i'" + x5Lo (m0(j L)'

Let then I = L - V - i" - l'".    Q.E.D.
(3.6) THEOREM. Let L € N, and let x,y be periodic points of (X^N), S(;v)) of

least period L whose orbits are distinct. Then there exists an involution U(x,y) in
Aut(S(jv)) that maps x into y and leaves fixed all periodic points with a period less
than or equal to L that are not in the orbits of x and y.

PROOF. By Lemma (3.7) there exists an i £ Z such that the blocks a =
x,+ i • • ■ Xi+L, b — yi+x ■ ■ ■ yi+L have the following properties: the block aa admits
the block a as a subblock only as its first or second half and does not admit the
block b as a subblock, and also the block bb admits the block 6 as a subblock only
as its first or second half, and does not admit the block a as a subblock. Let

Ei(a) - {x € X(jv): x-i ■■■X-i+l-i = o,

X-i+kL---X-i+<k+i)L-i € {a,b},k = -2,-1,1,2},

Ei(b) = {x e X(jv): x-i ■ ■ ■ x-t+L-i = b,
x-i+kL • ■ ■ a:_j+(fc+i)L_i £ {a,6},fc = -2,-1,1,2},

0 < I < L.

The sets Ei(a),Ei(b), 0 < / < L are disjoint. One defines U(x,y) by specifying the
zero-coordinate mapping

' bi,      if zeEi(a), 0< / < L,
(U(x,y)z)0 = <   o«,      iizeEi(b), 0<KL,

zn,     ifz£X(N)-\J0<l<L(Ei(a)l)Ei(b)).    Q.E.D.

We denote the group generated by the involutions in Aut(5(jv)) by J(S(n)).
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(3.7) LEMMA. Let n e N and let V be an automorphism of iPniS(N))>S(N)\
Pn(S(N))) wtth vanishing gyration number. Then there exists a U € J(S<n)) that
leaves all periodic points of period less than n fixed, and such that Un = V.

PROOF. We fix xq e Q e Pn(S(N)), and adopt notation as at the beginning of
§1. First, note that for all permutations n of Pn(S^)) there exists a U £ J(S(n))
that leaves all periodic points of period less than n fixed, and such that Un —W(n).
If here 7r is a transposition, say of Q' and Q , then U(xq> , Xq» ) will do. In general,
write it as a product of transpositions.

The group {(lQ)QePn(slN)) e (Z/nZ)W">): EQepn(siN))lQ = °> is gener-
ated by the vectors i(Q',Q ), Q',Q   £ Pn(S(N)), Q' ¥" Q > where

(l(modn) if Q = Q',
-l(modn)     HQ = Q",

O(modn) if Q^Q',Q".
The proof is completed by observing that the restriction of U(xqi , Xq" )U(Sxq" , xq* )
to Pn(S(N)) is equal to W(^(Q',Q")).    Q.E.D.

(3.8) THEOREM. Let n € N, and let Uw, 1 < I < n, be automorphisms
of (Pi(S(N)),S(n)\Pi(S(n)))> 1 < I < n> such that for all odd q and all fc £ N,
1 < 2kq < n,

{2>q)        fO «/no<m<fcsign7r(^2m«)) = l)
I 2*-^     */n0<m<fcsign7r(L^)) = -l.

Then there exists a V £ J(S(n)) such that U^ =Vi, 1 < I <n.

PROOF. The argument is by induction. Assume a V° € J(S(Nj) has been
constructed such that t/C) = V,°, 1 < / < n. By Lemma (3.3) g^^V^1) = 0, so
by Lemma (3.7) there is a V £ J(S{N)) such that V£ = U^V^'1 and such that
V{ is the identity for 1 < / < n. Let V = V'V°.    Q.E.D.

(3.9) COROLLARY. Let L £ N, and let 7T; be a permutation of Pi(S(N)),
1 < I < L. Then there exists a U £ J(5(jy)) such that n(Ui) — ttj, 1 < I < L.

PROOF. Use automorphisms U^ of (Pi(S{N)), S{N)\Pi(S{N))) such that ir(U^)
= 7T{ and such that

(f/(2t9)) = I  ° lf n0<m<fc Sign T3-, = 1,
\ 2k~1q     if n0<m<fc sign ^2-9 = -1,

and apply Theorem (3.8).    Q.E.D.

(3.10) COROLLARY.     (f/(n))„eN € J(S{N)) if and only if for all odd q and all

(3*„       fO «/no<m<fc8ign7r(C7(2m«)) = l,
l2fc-^     J/n0<m<fesign7r(f/(2^)) = -l.

PROOF. The condition is necessary by Lemma (3.3) and sufficient by Theorem
(3.8).    Q.E.D.
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We have obtained a necessary and sufficient condition for an automorphism
of a finite subsystem of a full shift S(N) to possess an extension to an element of
J(S'ff)). We must leave it open for the time being if every automorphism of a finite
subsystem of an irreducible and aperiodic topological Markov shift can be extended
to an automorphism of the shift. We prove now that every finite dynamical system
can be embedded into an irreducible and aperiodic topological Markov shift in such
a way that every automorphism of the finite system extends to an automorphism
of the shift.

(3.12) THEOERM. Let (X°, S°) be a finite dynamical system. Then there exists
an irreducible and aperiodic topological Markov shift (X,S) that has (X°,S°) as a
subsystem such that every automorphism of(X°,S°) extends to an automorphism
of (X,S). The entropy of S can be made arbitrarily small. Given L £ N, |P»(S)|
can be made any number greater than or equal to \PZ(S°)\, 1 < i < L.

PROOF. Let ni,..., ul be nonnegataive integers, with ul nonzero. We produce
a suitable (X, S) with the desired properties such that (X, S) has exactly n; orbits
of length I, 1 < I < L. We will use two types of symbols for S. Symbols a(j, fc, I)
will define the prescribed periodic orbits. A symbol a(j, fc, I) will be the jth symbol
in the fcth orbit of length I. So altogether we use {a(j,k,l): 1 < I < L,l < k <
ni, 1 < j < I}- There is a transition allowed from a(j, fc, I) to a(j', fc', /') if and only
if / = \\ fc = fc' and j' =j + l (mod 0-

The other symbols will be {bi: 1 < i < p — 1}, where p is a prime strictly larger
than L. We allow a transition from bi to bj if and only ifl < j = i + 1 < p — 1.
Finally, we allow any a(j,k,l) to precede 6i and to follow &p_i. So, the graph we
have is a collection of disjoint cycles on the a(j, fc, /) joined by a long ring formed
from the bi. There is a path from any symbol to any other, and there exist cycles
whose lengths are relatively prime, since the cycle b\ ■ ■ -bp-ia(l, \,L) has length
p > L. So, the graph defines an aperiodic and irreducible topological Markov shift
(X, S). By choosing p large enough, we can make the entropy of (X, S) as small as
we like.

All orbits of length at most L come from the disjoint cycles defined on the
a(j,k,l). Any automorphism of the restriction of the shift to these orbits is given
by an appropriate permutation of the symbols a(j,k,l). Because all the a(j,k,l)
have the same followers and predecessors outside their /-cycles, such a permutation
gives a well-defined 1-block map (fixing the symbols b%) which is an automorphism
of S.    Q.E.D.

In particular, from the proposition one can obtain for any prime p an irreducible
and aperiodic topological Markov shift (X, S) and an element U of finite order in
Aut(X, S) such that g(U, S)(p) ^ 0. This U cannot be the composition of elements
of finite order strictly less than p. In contrast, for S(jv) we are unable to rule out
the possibility that all elements of finite order are products of involutions, or even
that all shiftless automorphisms are products of involutions.
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