PERIODIC POINTS AND MEASURES FOR AXIOM A DIFFEOMORPHISMS

BY
RUFUS BOWEN

1. Introduction. We shall study the distribution of periodic points for a class of diffeomorphisms defined by Smale [16, §I.6].

We recall some of the definitions. Let $f: M \rightarrow M$ be a diffeomorphism of a compact manifold. A point $x \in M$ is wandering under f if it has a neighbourhood U such that $U \cap \bigcup_{m \neq 0} f^{m}(U)=\varnothing$; the set of other (i.e. nonwandering points) forms the nonwandering set $\Omega(f)$ which is closed and f-invariant. One sees that all periodic points of f are in $\Omega(f)$ and that any finite f-invariant measure on M has its support in $\Omega(f)$. A closed f-invariant subset Λ of M is hyperbolic under f if the tangent bundle of M restricted to $\Lambda, T_{\Lambda}(M)$, has a continuous splitting $T_{\Lambda}(M)$ $=E^{s}+E^{u}$ which is invariant under $D f$ and such that $D f: E^{s} \rightarrow E^{s}$ is contracting and $D f: E^{u} \rightarrow E^{u}$ is expanding (see [16, p. 758] for the meaning of these terms). f satisfies Axiom A if
(Aa) $\Omega(f)$ is hyperbolic and
(Ab) the periodic points of f are dense in $\Omega(f)$.
Smale's Spectral Decomposition Theorem [16, p. 777] states that for such an f we can write $\Omega(f)=\Omega_{1} \cup \cdots \cup \Omega_{r}$ where the Ω_{i} are disjoint closed f-invariant sets and $f \mid \Omega_{i}$ is topologically transitive (the Ω_{i} are called basic sets). Our main result is that the periodic points of $f \mid \Omega_{i}$ have a definite limiting distribution as the period becomes large; this distribution is given by a measure μ_{f} on Ω_{i}. In the algebraic case μ_{f} turns out to be Haar measure.

We show that μ_{f} is ergodic, positive on open sets and zero on points (unless Ω_{i} is finite). In a subsequent paper [7] it is shown that ($f \mid \Omega_{i}, \mu_{f}$) is a K-automorphism in the C-dense case (in fact that it is isomorphic to a Markov chain) and that μ_{f} is the unique invariant normalized Borel measure on Ω_{i} which maximizes entropy.

The Russian school has done much work on the measure theoretic aspects of Anosov diffeomorphisms (i.e. all of M hyperbolic under f); as a sampling we refer the reader to the papers [2], [14] and [15]. We also mention the papers [3], [9] and [11] where various measures are constructed for expanding maps; our methods are easily modified to give results along this direction also.

We now sketch our construction of μ_{f}. First we decompose $\Omega_{i}=X_{1} \cup \cdots \cup X_{m}$ into disjoint closed pieces X_{j} such that $f\left(X_{j}\right)=X_{j+1}$ and $f^{m} \mid X_{j}: X_{j} \rightarrow X_{j}$ is C-dense for all $1 \leqq j \leqq m$. We do not define C-density here but it implies topological mixing

Received by the editors June 27, 1969.
and the existence of periodic points of all sufficiently large periods; for Markov chains this is the well-known decomposition into transitive pieces.

One then restricts attention to the C-dense case; i.e. assume $f: \Omega_{\mathrm{i}} \rightarrow \Omega_{\mathrm{i}}$ is C dense. What we want is a measure μ_{f} such that (letting $N_{n}(E)$ be the number of fixed points of f^{n} lying in E)

$$
N_{n}(E) / N_{n}\left(\Omega_{\mathfrak{i}}\right) \rightarrow \mu_{f}(E)
$$

as $n \rightarrow \infty$ for many subsets E of Ω_{i} (we save precision for later). A priori we do not know that such a limit exists; using a diagonalization process we can choose sequences of integers $\left\{n_{k}\right\}$ and measures $\mu_{f,\left(n_{k}\right)}$ such that

$$
N_{n_{k}}(E) / N_{n_{k}}\left(\Omega_{i}\right) \rightarrow \mu_{f,\left(n_{k} k\right.}(E)
$$

for many $E \subseteq \Omega_{i}$. We then show that all these measures $\mu_{f,\left\{n_{k}\right\}}$ are ergodic and equivalent; the Radon-Nikodym theorem tells us that they are all equal. When enough subsequences converge to a common limit, the sequence itself converges. Thus we get our desired $N_{n}(E) / N_{n}\left(\Omega_{i}\right) \rightarrow \mu_{f}(E)$.

Conversations with W. Parry, S. Smale, P. Walters and R. F. Williams were helpful in preparing this paper. The author wishes to thank the referees for many ideas which improved this paper.
2. Axiom A^{*} and C-density. Let $g: M \rightarrow M$ be a diffeomorphism satisfying Smale's Axiom A. Let $X=\Omega(g) \subseteq M$ and $f=g \mid X$. Define, for $x \in X=\Omega(g)$ and $\delta>0$,

$$
\begin{aligned}
& W_{\delta}^{s}(x)=\left\{y \in X: d\left(f^{n}(x), f^{n}(y)\right) \leqq \delta \text { for all } n \geqq 0\right\} . \\
& W_{\delta}^{u}(x)=\left\{y \in X: d\left(f^{n}(x), f^{n}(y)\right) \leqq \delta \text { for all } n \leqq 0\right\} . \\
& W^{s}(x)=\left\{y \in X: d\left(f^{n}(x), f^{n}(y)\right) \rightarrow 0 \text { as } n \rightarrow+\infty\right\} . \\
& W^{u}(x)=\left\{y \in X: d\left(f^{n}(x), f^{n}(y)\right) \rightarrow 0 \text { as } n \rightarrow-\infty\right\} .
\end{aligned}
$$

Then (Smale [16, pp. 780-782] and Hirsch and Pugh [10]) the following are true:
A1. The periodic points of f are dense in X.
A2. For each $\delta>0$ there is an $\varepsilon(\delta)>0$ such that $W_{\delta}^{s}(x) \cap W_{\delta}^{u}(z) \neq \varnothing$ whenever $d(x, z) \leqq \varepsilon(\delta)$.

A3. There are $\delta^{*}>0,0<\lambda<1$ and $c \geqq 1$ such that for all $n \geqq 0$,

$$
d\left(f^{n}(x), f^{n}(y)\right) \leqq c \lambda^{n} d(x, y) \quad \text { if } y \in W_{b^{s}}^{s}(x)
$$

and

$$
d\left(f^{-n}(x), f^{-n}(y)\right) \leqq c \lambda^{n} d(x, y) \quad \text { if } y \in W_{\delta \cdot}^{u}(x)
$$

The above statements are about f and do not refer to g or M. Any homeomorphism f of a compact metric space (X, d) we shall say satisfies Axiom A^{*} provided that A1, A2, and A3 hold.
(2.1) Standing hypothesis. We shall assume throughout the remainder of the paper that $f: X \rightarrow X$ is a homeomorphism satisfying Axiom A^{*}.
(2.2) Easy facts. (i) $f^{n} W^{u}(x)=W^{u}\left(f^{n}(x)\right)$.
(ii) For $n \geqq 0, f^{-n} W_{\delta}^{u}(x) \subseteq W_{o}^{u}\left(f^{-n}(x)\right)$.
(iii) If $y \in W_{\delta_{1}}(x)$, then $W_{\delta_{2}}(y) \subseteq W_{\delta_{1}+\delta_{2}}(x)$.
(iv) Let $f^{m}(x)=x$ and $\delta \leqq \delta^{*}$. Then $f^{m(k+1)} W_{\delta}^{u}(x) \supseteq f^{m k} W_{\delta}^{u}(x)$ and (by A3)

$$
W^{u}(x)=\bigcup_{k=0}^{\infty} f^{m k} W_{\delta}^{u}(x)
$$

The following fact is due to S . Smale and M. Shub:
(2.3) Lemma [6]. δ^{*} is an expansive constant for f (i.e. if $x \neq y$, then $d\left(f^{n}(x), f^{n}(y)\right)>\delta^{*}$ for some $\left.n \in Z\right)$.
(2.4) Lemma. For any $\varepsilon>0$ there is a $D(\varepsilon)$ so that $d(x, y)<\varepsilon$ whenever $d\left(f^{n}(x), f^{n}(y)\right) \leqq \delta^{*}$ for all $|n| \leqq D(\varepsilon)$.

Proof. This is a property of expansive homeomorphisms [18].
(2.5) Periodic point construction. For any $\varepsilon>0$ there are $\psi(\varepsilon)>0$ and $R(\varepsilon)$ such that, if $m \geqq R(\varepsilon)$ and $d\left(f^{m}(y), y\right) \leqq \psi(\varepsilon)$, there is a point $z \in X$ with $f^{m}(z)=z$ and $d\left(f^{k}(z), f^{k}(y)\right) \leqq \varepsilon$ for all $0 \leqq k \leqq m$.

Proof. This is a translation of [6, Proposition 3.5] using [6, 3.4(h)].
(2.6) Definition. f (satisfying Axiom A^{*}) is C-dense if $W^{u}(p)$ is dense in X for every periodic point $p \in X$.

We permute ideas of Smale [16, pp. 780-782] to obtain
(2.7) C-Density Decomposition Theorem. $X=X_{1} \cup \cdots \cup X_{n}$ where the X_{i} are disjoint closed sets, $f\left(X_{i}\right)=X_{g(i)}$ where g is a permutation of $(1, \ldots, m)$, and $f^{r}: X_{i} \rightarrow X_{i}$ is C-dense when $g^{r}(i)=i$.

Proof. For p a periodic point let $X(p)=\mathrm{Cl}\left(W^{u}(p)\right)$.
(a) $X(p)$ is open.

Proof. Let $a=\varepsilon\left(\delta^{*}\right)$. We show that

$$
X(p) \supset B_{a}(X(p))=\{y \in X: d(y, X(p))<a\} .
$$

Since $X(p)$ is closed, it suffices to show that periodic $q \in B_{a}(X(p))$ are in $X(p)$ because of A1. Let $x \in W^{u}(p)$ with $d(x, q)<a$ and set $M=\operatorname{ord} p \cdot \operatorname{ord} q$. By A2 choose $z \in W_{\delta \cdot}^{u}(x) \cap W_{\delta}^{s} .(q)$. Then $z \in W^{u}(p)$ and

$$
d\left(f^{k M}(z), q\right)=d\left(f^{k M}(z), f^{k M}(q)\right) \rightarrow 0 \quad \text { as } k \rightarrow+\infty .
$$

Since $f^{k M} W^{u}(p) \subset W^{u}(p)$, we get $q \in \mathrm{Cl}\left(W^{u}(p)\right)=X(p)$. (Note: We use 2.1 without explicit mention.)
(b) $X(p)=X(q)$ or $X(p) \cap X(q)=\varnothing$.

Proof. Suppose $z \in X(p) \cap X(q)$. By (a) $X(p)$ is a neighborhood of z and so there is a $w \in W^{u}(q) \cap X(p)$. Let $M=\operatorname{ord}_{f} p \cdot \operatorname{ord}_{f} q$. Then as $k \rightarrow+\infty, f^{-k M}(w) \rightarrow q$. But $f^{-M} X(p)=X(p)$ since $f^{-M} W^{u}(p)=W^{u}(p)$. Thus $q \in \mathrm{Cl}(X(p))=X(p)$. By (a) we have $X(p) \supset W_{a}^{u}(q)$. Since

$$
W^{u}(q) \subset \bigcup_{k=0}^{\infty} f^{k M} W_{a}^{u}(q)
$$

and $f^{k M} X(p)=X(p)$, we get $W^{u}(q) \subset X(p)$. Hence $X(q) \subset X(p)$. Symmetrically $X(p) \subset X(q)$.

Now by compactness, let $X=X\left(p_{1}\right) \cup \cdots \cup X\left(p_{m}\right)$ with $X\left(p_{i}\right) \neq X\left(p_{j}\right)$ for $i \neq j$. Set $X_{i}=X\left(p_{i}\right)$ and define g by $f\left(p_{i}\right) \in X_{g(i)}$. That f is a homeomorphism and (c) below show that g is a permutation.
(c) $f\left(X_{i}\right)=X_{g(i)}$.

Proof. As f is a homeomorphism, $f X\left(p_{i}\right)=X\left(f\left(p_{i}\right)\right)$ follows from $f W^{u}\left(p_{i}\right)$ $=W^{u}\left(f\left(p_{i}\right)\right)$. Since $f\left(p_{i}\right) \in X\left(f\left(p_{i}\right)\right) \cap X\left(p_{g(i)}\right), X\left(f\left(p_{i}\right)\right)=X\left(p_{g(i)}\right)$ by (b).
(d) If $g^{r}(i)=i$, then $f^{r}: X_{i} \rightarrow X_{i}$ is C-dense.

Proof. Suppose $p \in X_{i}$ is periodic. It is an easy exercise to check that $W_{f}^{u}(p)$ $=W_{f}^{u} r(p)$. Note that $f^{r}: X \rightarrow X$ satisfies Axiom A* whenever $f: X \rightarrow X$ does.
(2.8) Lemma. Let $f: X \rightarrow X$ be C-dense and $\alpha>0$. Then there is an N such that $f^{m} W_{\alpha}^{u}(x) \cap W_{\alpha}^{s}(y) \neq \varnothing$ whenever $x, y \in X$ and $m \geqq N$.

Proof. Set $\delta=\min \left\{\delta^{*}, \frac{1}{2} \alpha, \frac{1}{4} \varepsilon\left(\frac{1}{2} \alpha\right)\right\}$ and choose p_{i}, \ldots, p_{r} periodic such that every $x \in X$ is within $\frac{1}{2} \varepsilon\left(\frac{1}{2} \alpha\right)$ of some p_{k}. Let t_{k} be the period of p_{k}. By 2.2 and $\mathrm{Cl}\left(W^{u}\left(p_{k}\right)\right)=X$, there is an m_{k} such that every $y \in X$ is within $\varepsilon(\delta)$ of $f^{m t_{k}} W_{\delta}^{u}\left(p_{k}\right)$ for $m \geqq m_{k}$. Let $N=\left(m_{1} t_{1}\right) \cdots\left(m_{r} t_{r}\right)$. Then $d\left(y, f^{N} W_{\delta}^{u}\left(p_{k}\right)\right) \leqq \varepsilon(\delta)$ for all k and all $y \in X$.

Suppose $x, y \in X$. Then $d\left(x, p_{j}\right)<\frac{1}{2} \varepsilon\left(\frac{1}{2} \alpha\right)$ for some j and $d(y, z) \leqq \varepsilon(\delta)$ for some $z \in f^{N} W_{\delta}^{u}\left(p_{j}\right)$. Let $w \in W_{\delta}^{u}(z) \cap W_{\delta}^{s}(y)$. Then $f^{-N}(w) \in W_{\delta}^{u}\left(f^{-N}(z)\right) \subset W_{2 \delta}^{u}\left(p_{j}\right)$ and $d\left(f^{-N}(w), p_{j}\right) \leqq \frac{1}{2} \varepsilon\left(\frac{1}{2} \alpha\right)$; thus $d\left(f^{-N}(w), x\right) \leqq \varepsilon\left(\frac{1}{2} \alpha\right)$ and there is a $v \in W_{\alpha / 2}^{s}\left(f^{-N}(w)\right)$ $\cap W_{\alpha / 2}^{u}(x)$. Then $f^{N}(v) \in f^{N} W_{\alpha}^{u}(x)$ and $f^{N}(v) \in W_{\alpha / 2}^{s}(w) \subset W_{\alpha}^{s}(y)$. Therefore $f^{N} W_{\alpha}^{u}(x) \cap W_{\alpha}^{s}(y) \neq \varnothing, \forall x, y \in X$. If $m \geqq N$, then

$$
f^{m} W_{\alpha}^{u}(x) \cap W_{\alpha}^{s}(y) \supset f^{N} W_{\alpha}^{u}\left(f^{m-N}(x)\right) \cap W_{\alpha}^{s}(y) \neq \varnothing
$$

(2.9) Definitions. Let $\operatorname{Per}_{n}(U)=\left\{x \in U: f^{n}(x)=x\right\}, \quad N_{n}(U)=\operatorname{card}\left(\operatorname{Per}_{n}(U)\right)$, and $N_{n}(f)=N_{n}(X)$.

A G-time is a finite collection $\tau=\left\{I_{1}, \ldots, I_{m}\right\}$ of disjoint (finite) intervals of integers. We let $\operatorname{Tim}(\tau)=\bigcup_{I E \tau} I, T(\tau)=\operatorname{card}(\operatorname{Tim}(\tau))$, and $L(\tau)$ be the length of the shortest interval containing $\operatorname{Tim}(\tau)$. A map $P: \operatorname{Tim}(\tau) \rightarrow X$ is (f, τ)-admissible if $f^{t_{2}-t_{1}}, P\left(t_{1}\right)=P\left(t_{2}\right)$ whenever $t_{1}, t_{2} \in I \in \tau$ (i.e. $P(I)$ is part of an f-orbit). A specification is a pair $s=(\tau, P)$ with τ a G-time and P an (f, τ)-admissible map; set $L(s)=L(\tau)$ and $\operatorname{Tim}(s)=\operatorname{Tim}(\tau)$; we also write sometimes $\tau=\tau(s)$ or $P=P_{s}$. For $n \geqq 0$ we say that τ is n-delayed if there is an interval of length at least n between every pair of invervals belonging to $\tau ; s$ is n-delayed if $\tau(s)$ is. Notice that while $\operatorname{Tim}(\tau)$ does not determine τ, it does if τ is n-delayed with $n>0$.

Finally, for $\varepsilon>0$, let

$$
U(s, \varepsilon)=\left\{x \in X: d\left(f^{t}(x), P_{s}(t)<\varepsilon \text { for all } t \in \operatorname{Tim}(s)\right\} .\right.
$$

(2.10) Theorem. Suppose $f: X \rightarrow X$ is C-dense and $\varepsilon>0$. There is an $M(\varepsilon)$ such that $U(s, \varepsilon) \neq \varnothing$ whenever s is an $M(\varepsilon)$-delayed f-specification. In fact $M(\varepsilon)$ can be chosen so that $\operatorname{Per}_{d} U(s, \varepsilon) \neq \varnothing$ for all $d \geqq M(\varepsilon)+L(s)$.

Proof. We tend s to a new specification s^{\prime} as follows. Let a_{1} be the smallest integer in $\operatorname{Tim}(s)$. Set $\tau\left(s^{\prime}\right)=\tau(s) \cup\left\{\left\{a_{1}+d\right\}\right\}$ and define $P_{s^{\prime}}$ by $P_{s^{\prime}}\left(a_{1}+d\right)=P_{s}\left(a_{1}\right)$ and $P_{s^{\prime}} \mid \operatorname{Tim}(s)=P_{s}$.

Set $\beta=\frac{1}{2} \min \left\{\psi\left(\frac{1}{2} \varepsilon\right), \varepsilon, \delta^{*}\right\}(\psi$ defined in 2.5) and $\alpha=\beta / 3 c$; let N be the integer given by 2.8 for this α. Choose $M=M(\varepsilon) \geqq \max \left\{N, R\left(\frac{1}{2} \varepsilon\right)\right\}(R$ defined in 2.5) large enough so that $\sum_{j=0}^{\infty} \lambda^{M j}<2$. Assume $d \geqq M(\varepsilon)+L(s)$; then s^{\prime} is M-delayed.

Let $I_{1}=\left[a_{1}, b_{1}\right], I_{2}=\left[a_{2}, b_{2}\right], \ldots, I_{m}=\left[a_{m}, b_{m}\right]=\left\{a_{1}+d\right\}$ be the members of $\tau\left(s^{\prime}\right)$ in their natural order. We set $z_{1}=x_{1}$ and define z_{k} (for $1 \leqq k \leqq m$) recursively as follows. Suppose z_{k} has been chosen for some $1 \leqq k<m$. As s^{1} is M-delayed, $a_{k+1}-b_{k}>M \geqq N$ and so by 2.8 there exists a point

$$
v \in f^{a_{k+1}-b_{k}} W_{\alpha}^{u}\left(f^{b_{k}}\left(z_{k}\right)\right) \cap W_{\alpha}^{s}\left(P_{s^{1}}\left(a_{k+1}\right)\right) .
$$

By induction on r we show that

$$
f^{b_{k}}\left(z_{k+\gamma}\right) \in W_{c \alpha+c \alpha \lambda^{M}}^{u}+\cdots+c \alpha \lambda^{M(r-1)}\left(f^{b_{k}}\left(z_{k}\right)\right) .
$$

For $r=1$, this was seen above (since $c \geqq 1$). Assume the statement is true for some $r \geqq 1$. Since s^{1} is M-delayed; $b_{k+r}-b_{k} \geqq r M$; because $f^{b_{k+r}}\left(z_{k+r+1}\right) \in W_{\alpha}^{u}\left(f^{b_{k+r}}\left(z_{k+r}\right)\right)$ we get

$$
\begin{equation*}
f^{b_{k}}\left(z_{k+r+1}\right) \in W_{c \alpha \lambda}^{u}{ }^{M r}\left(f^{b_{k}}\left(z_{k+r}\right)\right) . \tag{}
\end{equation*}
$$

(Here we use A3: If $x \in W_{\alpha}^{u}(y)$, then $d\left(f^{-n}(x), f^{-n}(y)\right) \leqq c \alpha \lambda^{n}$ for $n \geqq 0$ and so $f^{-m}(x) \in W_{\alpha \lambda}^{u}\left(f^{-m}(y)\right)$ for $m \geqq 0$.) Applying $\left({ }^{*}\right)$ and our inductive hypothesis, it follows that (see 2.2(ii))

$$
f^{\left.b_{k}\left(z_{k+r+1}\right) \in W_{c \alpha+\cdots+c \alpha \lambda^{\mu r}}^{u}\left(f^{b_{k}}\left(z_{k}\right)\right), ~\right)}
$$

and so our induction is done.
Since $\sum_{j=0}^{\infty} \lambda^{M j}<2$ and $\alpha=\beta / 3 c$ we have $f^{b_{k}}\left(z_{m}\right) \in W_{2 \beta 3}^{u}\left(f^{b_{k}}\left(z_{k}\right)\right)$ and $d\left(f^{t}\left(z_{m}\right), f^{t}\left(z_{k}\right)\right)<2 \beta / 3$ for any $t \in I_{k}$ and any $k \in[1, m]$. Since $f^{a_{k}}\left(z_{k}\right) \in W_{\alpha}^{s}\left(P_{s}\left(a_{k}\right)\right)$ (by the definition of the z_{k} 's) we have

$$
\beta / 3 \geqq \alpha \geqq d\left(f^{t}\left(z_{k}\right), f^{t-a_{k}}\left(P_{s^{1}}\left(a_{k}\right)\right)=d\left(f^{t}\left(z_{k}\right), P_{s^{1}(t)}(t)\right.\right.
$$

for any $t \in I_{k}$. Combining inequalities,

$$
d\left(f^{t}\left(z_{m}\right), P_{s^{1}}(t)\right)<\beta \quad \text { for all } t \in \operatorname{Tim}\left(s^{1}\right) .
$$

Thus $z_{m} \in U\left(s^{1}, \beta\right)$.
Now let $z^{*}=f^{a_{1}}\left(z_{m}\right)$. Then $z^{*}, f^{d}\left(z^{*}\right) \in B_{\beta}\left(P_{s}\left(a_{1}\right)\right)$, and so $d\left(z^{*}, f^{d}\left(z^{*}\right)\right) \leqq \psi\left(\frac{1}{2} \varepsilon\right)$. Now $d>M(\varepsilon) \geqq R\left(\frac{1}{2} \varepsilon\right)$ and by 2.5 there is a $z \in \operatorname{Per}_{d}(X)$ with

$$
d\left(f^{t}(z), f^{t}\left(z^{*}\right)\right) \leqq \frac{1}{2} \varepsilon \quad \text { for all } 0 \leqq t \leqq d .
$$

Letting $z^{1}=f^{-a_{1}}(z)$ we get

$$
d\left(f^{t}\left(z^{1}\right), f^{t}\left(z_{m}\right)\right) \leqq \frac{1}{2} \varepsilon \quad \text { for all } a_{1} \leqq t \leqq a_{1}+d
$$

Applying the triangle inequality to this and $z_{m} \in U\left(s^{1}, \beta\right)$,

$$
z^{1} \in U\left(s^{1}, \beta+\frac{1}{2} \varepsilon\right) \leqq U\left(s^{1}, \varepsilon\right) \leqq U(s, \varepsilon)
$$

also $z^{1} \in \operatorname{Per}_{d}(X)$.
(2.11) Remark. The above theorem is a statement about the freedom one has in specifying the approximate orbit of a periodic point. The remainder of this paper shall be derived from this freedom (together with expansiveness).
3. Counting. Throughout this section $f: X \rightarrow X$ is a C-dense map.
(3.1) Definition. For $\varepsilon>0, E \subset X$ is an (n, ε)-separated set if for any distinct $x, y \in E$ there is a t for which $0 \leqq t<n$ and $d\left(f^{t}(x), f^{t}(y)\right)>\varepsilon$. We let $N(n, \varepsilon)$ denote the maximum cardinality of an (n, ε)-separated set.
(3.2) Lemma. (i) If $\varepsilon \leqq \delta^{*}$, then $N(n, \varepsilon) \geqq N_{n}(f)$.
(ii) If $\varepsilon \leqq \alpha$, then $N(n, \alpha) \leqq N(n, \varepsilon)$; for any $\varepsilon>0$ there is an m_{ε} such that $N(n, \varepsilon)$ $\leqq N\left(n+m_{\varepsilon}, \delta^{*}\right)$ for all $n \geqq 0$.
(iii) $N\left(\sum n_{\mathfrak{i}}, \varepsilon\right) \leqq \prod N\left(n_{i}, \frac{1}{2} \varepsilon\right)$.

Proof. (i) By 2.3ε is an expansive constant; i.e. if $p \neq q$, then $d\left(f^{t}(p), f^{t}(q)\right)>\varepsilon$ for some t. If $p, q \in \operatorname{Per}_{n}(X)$, then t can be chosen so that $0 \leqq t<n$; i.e. $\operatorname{Per}_{n}(X)$ is (n, ε)-separated.
(ii) The first statement is obvious; if E is an (n, ε)-separated set, then $f^{-D(\varepsilon)} E$ is an ($n+2 D(\varepsilon), \delta^{*}$)-separated set (use 2.4).
(iii) We prove the following stronger statement for later use: Suppose $E \subset X$ and $n_{i}, m_{i}(1 \leqq i \leqq s)$ are integers $\left(n_{i}>0\right)$ such that, when $x, y \in E$ and $x \neq y$, there is a $t \in \bigcup_{i=1}^{s}\left[m_{i}, m_{i}+n_{i}\right)$ for which $d\left(f^{t}(x), f^{t}(y)\right)>\varepsilon$; then $\operatorname{card}(E) \leqq \prod_{i=1}^{s} N\left(n_{i}, \frac{1}{2} \varepsilon\right)$.

Proof. Choose $R_{\mathrm{i}} \subset X$ so that $f^{m_{i}} R_{i}$ is a maximal $\left(m_{i_{1}}, \frac{1}{2} \varepsilon\right)$-separated set. Construct a map $g=\Pi g_{i}: E \rightarrow \Pi R_{i}$ by requiring that $d\left(f^{t}(x), f^{t}\left(g_{i}(x)\right)\right) \leqq \frac{1}{2} \varepsilon$ for all $t \in\left[m_{i}\right.$, $m_{i}+n_{i}$). Such a $g_{i}(x)$ exists by the maximality of $f^{m_{i}} R_{i}$-otherwise $f^{m_{i}}(R u\{x\})$ would be an ($n, \frac{1}{2} \varepsilon$-separated set.

If $g(x)=g(y)$ the triangle inequality would give us $d\left(f^{t}(x), f^{t}(y)\right) \leqq \varepsilon$ for all $t \in \bigcup\left[m_{i}, m_{i}+n_{i}\right)$; thus g is injective and we are done.

Two specifications s and s^{1} are p-separated if $d\left(P_{s}(t), P_{s^{1}}(t)\right)>p$ for some $t \in \operatorname{Tim}(s) \cap \operatorname{Tim}\left(s^{1}\right)$; a set of specifications is p-separated if every two members are. An S-set A is a set of specifications with the same G-time; let $\tau(A)$ denote this common G-time, $T(A)=T(\tau(A)), L(A)=L\left(\tau(A)\right.$), and $U(A, \varepsilon)=\bigcup_{s \in A} U(s, \varepsilon)$.
3.3 Lemma. (i) If s and s^{1} are p-separated, then $U\left(s, \frac{1}{2} p\right) \cap U\left(s^{1}, \frac{1}{2} p\right)=\varnothing$.
(ii) If A is a 2ε-separated S-set, $\tau(A)$ is $M(\varepsilon)$-delayed, and $d \geqq L(A)+M(\varepsilon)$, then $N_{a}(U(A, \varepsilon)) \geqq \operatorname{card}(A)$.

Proof. (i) Trivial. (ii) Follows from (i) and 2.10 .
Two specifications s and s^{1} are disjoint if $\operatorname{Tim}(s) \cap \operatorname{Tim}\left(s^{1}\right)=\varnothing$. In this case we define a new specification $s \wedge s^{1}$ by $\tau\left(s \wedge s^{1}\right)=\tau(s) \cup \tau\left(s^{1}\right)$ and

$$
\begin{aligned}
P_{s \wedge s^{1}}(t) & =P_{s}(t) \quad \text { for } t \in \operatorname{Tim}(s) \\
& =P_{s^{1}(t)} \quad \text { for } t \in \operatorname{Tim}\left(s^{1}\right)
\end{aligned}
$$

Notice that $U\left(s \wedge s^{1}, \varepsilon\right)=U(s, \varepsilon) \cap U\left(s^{1}, \varepsilon\right)$. We call a G-time τ an m-time if card τ $=m ; s$ is an m-specification if $\tau(s)$ is an m-time.
(3.4) Lemma. If τ is an n-delayed m-time and $N \geqq L(\tau)$, there is a τ^{1} such that
(a) $\operatorname{Tim}(\tau) \cap \operatorname{Tim}\left(\tau^{1}\right)=\varnothing$,
(b) $\tau \cup \tau^{1}$ is n-delayed,
(c) $L\left(\tau \cup \tau^{1}\right) \leqq N$, and
(d) $T\left(\tau^{1}\right) \geqq N-2 m n-T(\tau)$.

Proof. Let a_{1} be the smallest integer in Tim (τ). Set

$$
\operatorname{Tim}\left(\tau^{1}\right)=\left\{t \in\left[a_{1}, a_{1}+N\right):|t-r|>n \quad \text { for all } r \in \operatorname{Tim}(\tau)\right\} .
$$

This determines a G-time τ which satisfies our condition.
(3.5) Remark. τ^{1} could be empty.
(3.6) Lemma. If τ is a time specification and $\varepsilon>0$, there is an ε-separated S-set A with $\tau(A)=\tau$ and $\operatorname{card}(A) \geqq N(T(\tau), 2 \varepsilon)$.

Proof. Let $\tau=\left\{I_{1}, \ldots, I_{m}\right\}$ and $\tau_{k}=\left\{I_{k}\right\}$ for $1 \leqq k \leqq m$. Let A_{k} be an ε-separated S-set with $\tau\left(A_{k}\right)=\tau_{k}$ and $\operatorname{card}\left(A_{k}\right)=N\left(T\left(\tau_{k}\right), \varepsilon\right)$. Then

$$
A=A_{1} \wedge \cdots \wedge A_{m}=\left\{s_{1} \wedge \cdots \wedge s_{m}: s_{k} \in A_{k}, 1 \leqq k \leqq m\right\}
$$

is $\quad \varepsilon$-separated \quad with $\quad \tau(A)=\tau_{1} \wedge \cdots \wedge \tau_{m}=\tau \quad$ and $\quad \operatorname{card}(A)=\prod N\left(T\left(\tau_{k}\right), \varepsilon\right)$ $\geqq N\left(\sum T\left(\tau_{k}\right), 2 \varepsilon\right)=N(T(\tau), 2 \varepsilon)$ by $3.2(\mathrm{iii})$.
(3.7) Theorem. Suppose B is a 2ε-separated S-set with $\tau(B)$ an $M(\varepsilon)$-delayed mtime. Then

$$
N_{d}(U(B, \varepsilon)) \geqq \frac{K(m, \varepsilon) \operatorname{card}(B) N(d, 8 \varepsilon)}{N(T(\tau(B)), 4 \varepsilon)}
$$

for all $d \geqq L(\tau(B))+M(\varepsilon)$ where $K(m, \varepsilon)>0$ depends only on m and $\varepsilon>0$.
Proof. Let $N=d-M(\varepsilon) \geqq L(\tau(B))$. Let $\tau=\tau(B)$ and choose τ^{1} as in Lemma 3.4. By Lemma 3.5 let A be a 2ε-separated S-set with $\tau(A)=\tau^{1}$ and $\operatorname{card}(A) \geqq N\left(T\left(\tau^{1}\right), 4 \varepsilon\right)$. Now $A \wedge B$ is a 2ε-separated S-set with $M(\varepsilon)$-delayed time $\tau \wedge \tau^{1} ; d \geqq N+M(\varepsilon)$ $\geqq L\left(\tau \wedge \tau^{1}\right)+M(\varepsilon)$. Hence, by 3.3(ii), we have

$$
N_{d}(U(A \wedge B, \varepsilon)) \geqq \operatorname{card}(A \wedge B)=\operatorname{card}(A) \operatorname{card}(B) .
$$

Since $U(B, \varepsilon) \geqq U(A \wedge B, \varepsilon)$,

$$
N_{d}(U(B, \varepsilon)) \geqq \operatorname{card}(A) \operatorname{card}(B) .
$$

Now $T\left(\tau^{1}\right) \geqq \max \{0, N-2 m M(\varepsilon)-T(\tau)\}$ (see Remark 3.5). Thus

$$
\operatorname{card} A \geqq \max \{1, N(N-2 m M(\varepsilon)-T(\tau), 4 \varepsilon)\}=W
$$

(taking 1 in case $N-2 m M(\varepsilon)-T(\tau) \leqq 0$). Recalling that $N=d-M(\varepsilon)$ and 3.2(iii) we get

$$
N(d, 8 \varepsilon) \leqq W \cdot N((2 m+1) M(\varepsilon), 4 \varepsilon) N(T(\tau), 4 \varepsilon)
$$

(the inequality is good in the exceptional case we have been noting). Thus

$$
\begin{aligned}
N_{d}(U(B, \varepsilon)) & \geqq \operatorname{card}(B): W \\
& \geqq \frac{K(m, \varepsilon) \operatorname{card}(B) N(d, \delta \varepsilon)}{N(T(\tau), 4 \varepsilon)}
\end{aligned}
$$

where $K(m, \varepsilon)=N((2 m+1) M(\varepsilon), 4 \varepsilon)^{-1}$.
(3.8) Definition. For $U \subset X$ let

$$
\begin{equation*}
\varphi(U)=\liminf _{n \rightarrow \infty} \frac{N_{n}(U)}{N_{n}(f)} \quad \text { and } \quad \theta(U)=\limsup _{n \rightarrow \infty} \frac{N_{n}(U)}{N_{n}(f)} \tag{3.9}
\end{equation*}
$$

Corollary. (i) For any $\alpha>0$

$$
\liminf _{d \rightarrow \infty} \frac{N_{d}(f)}{N(d, \alpha)}>0
$$

(ii) $\varphi(V)>0$ when $V \neq \varnothing$ is open.
(iii) There is a $K^{*}>0$ such that $\varphi(U) \geqq K^{*} \theta(V)$ whenever U and V are open in X and $U \supset \bar{V}$.
(iv) There are m_{0} and $S>0$ such that $N_{m+n}(f) \geqq S N\left(m, \delta^{*}\right) N\left(n, \delta^{*}\right) \geqq S N_{m}(f) N_{n}(f)$ provided that $m \geqq m_{0}$.
(v) There are m_{0} and $S>0$ such that, if $m \geqq m_{0}$ and $U \subset X$ satisfies $\operatorname{diam} f^{k}(U) \leqq \delta^{*}$ for all $0 \leqq k<m$, then $\theta(U) \leqq 1 / S N_{m}(f)$.

Proof. (i) and (ii). Let $x \in V$ and choose $\varepsilon>0$ so small that $B_{\varepsilon}(x) \subset V$ and $8 \varepsilon \leqq \min \left\{\alpha, \delta^{*}\right\}$. Let s be given by $\tau(s)=\{\{0\}\}$ and $P_{s}(0)=x ; B=\{s\}$. Then $V \supset U(s, \varepsilon)$ and by the theorem

$$
N_{d}(f) \geqq N_{d}(V) \geqq K(1, \varepsilon) N(d, 8 \varepsilon) / N(1,4 \varepsilon)
$$

for $d \geqq 1+M(\varepsilon)$. As $N(d, 8 \varepsilon) \geqq N(d, \alpha)$, (i) follows immediately. As $N(d, 8 \varepsilon) \geqq$ $N\left(d, \delta^{*}\right) \geqq N_{d}(f)$, so does (ii).
(iii) Choose $\varepsilon>0$ so that $U \supset B_{\varepsilon}(V)$ and let $D(\varepsilon)$ be given as in 2.4. Consider $n>2 D(\varepsilon)$. For each $p \in \operatorname{Per}_{n}(V)$ form the 1 -specification $s(p)$ with $\tau(s(p))$ $=\{[-D(\varepsilon), n-D(\varepsilon))\}$ and $P_{s(p)}(f)=f^{t}(p) . B_{n}=\left\{s(p): p \in \operatorname{Per}_{n}(V)\right\}$ is δ^{*}-separated (see the proof of 3.2(iii)). By the definition of ε and $D(\varepsilon)$ we have $U\left(B_{n}, \delta^{*}\right) \subset U$.
Trivially, $U\left(B_{n}, \frac{1}{8} \delta^{*}\right) \subset U$; so by the theorem

$$
N_{d}(U) \geqq K\left(1, \frac{1}{8} \delta^{*}\right) N_{n}(V) N\left(d, \delta^{*}\right) / N\left(n, \frac{1}{2} \delta^{*}\right)
$$

for $d \geqq n+M\left(\frac{1}{8} \delta^{*}\right)$. By (i) above there is an n_{0} and a K_{1} such that $N\left(n, \frac{1}{2} \delta^{*}\right) \leqq K_{1} N_{n}(f)$ when $n \geqq n_{0}$; also $N\left(d, \delta^{*}\right) \geqq N_{d}(f)$. Thus for $n \geqq n_{0}$ and $d \geqq n+M\left(\frac{1}{8} \delta^{*}\right)$ we have

$$
N_{d}(U) / N_{d}(f) \geqq K^{*} N_{n}(V) / N_{n}(f)
$$

where $K^{*}=K\left(1, \frac{1}{8} \delta^{*}\right) / K_{1}>0$. Then $\varphi(U) \geqq K^{*} \theta(V)$.
(iv) Set $m_{0}=2 M\left(\frac{1}{4} \delta^{*}\right)$. Let A be a $\frac{1}{2} \delta^{*}$-separated S-set with $\tau(A)=\{[0, n)\}$ and $\operatorname{card} A=N\left(n, \frac{1}{2} \delta^{*}\right) ; B$ a $\frac{1}{2} \delta^{*}$-separated S-set with $\tau(B)=\left\{\left[n+M\left(\frac{1}{4} \delta^{*}\right), n+m\right.\right.$
$\left.\left.-M\left(\frac{1}{4} \delta^{*}\right)\right)\right\}$ and card $B=N\left(m-m_{0}, \frac{1}{4} \delta^{*}\right)$. Now $A \wedge B$ is $\frac{1}{2} \delta^{*}$-separated with $M\left(\frac{1}{4} \delta^{*}\right)$ delayed time.

By 3.3(ii) we have

$$
N_{n+m}(f) \geqq \operatorname{card}(A \wedge B)=N\left(n, \frac{1}{2} \delta^{*}\right) N\left(m-m_{0}, \frac{1}{2} \delta^{*}\right)
$$

By Proposition 3.2(iii) we have

$$
N\left(m, \delta^{*}\right) \leqq N\left(m-m_{0}, \frac{1}{2} \delta^{*}\right) N\left(m_{0}, \frac{1}{2} \delta^{*}\right) .
$$

Taking $S=N\left(m_{0}, \frac{1}{2} \delta^{*}\right)^{-1}, N_{n+m}(f) \geqq S N\left(n, \delta^{*}\right) N\left(m, \delta^{*}\right)$.
(v) Let m_{0} and S be as above. Since $\operatorname{Per}_{n+m}(U)$ is an $\left(n+m, \delta^{*}\right)$-separated set and diam $f^{k}(U) \leqq \delta^{*}$ for $0 \leqq k<m, f^{m} \operatorname{Per}_{n+m}(U)$ is an (n, δ^{*})-separated set; thus $N_{n+m}(U) \leqq N\left(n, \delta^{*}\right)$. By (iv) we have, since $m \geqq m_{0}, N_{n+m}(f) \geqq S N\left(n, \delta^{*}\right) N\left(m, \delta^{*}\right)$ and so

$$
N_{n+m}(U) / N_{n+m}(f) \leqq 1 / S N_{m}(f)
$$

Letting $n \rightarrow \infty, \theta(U) \leqq 1 / S N_{m}(f)$.
(3.10) Definition. For $A \subset X$ let $N(n, \varepsilon, A)$ be the largest cardinality of an (n, ε)-separated set contained in A.
(3.11) Proposition. For each ε with $0<\varepsilon<\frac{1}{2} \delta^{*}$ there are constants $c_{\varepsilon}>0$ and $0<\tau_{\varepsilon}<1$ for which the following holds. If $A \subset X, 0 \leqq k_{1}<k_{2}<\cdots<k_{m}$, are integers and $w_{k_{1}}, \ldots, w_{k_{m}} \in X$ satisfy $f^{k_{r}}(A) \cap B_{\varepsilon}\left(w_{k_{r}}\right)=\varnothing$ for $r=1, \ldots, m$, then $N(n, \varepsilon, A)$ $\leqq c_{\varepsilon} \tau^{m} N(n, \varepsilon)$ for all $n>k_{m}$.

Proof. Let $M=M\left(\frac{1}{2} \varepsilon\right)$ as in 2.10. Let $j_{1}<j_{2}<\cdots<j_{q}$ be a subsequence of $k_{1}<\cdots<k_{m}$ such that $j_{i+1}-j_{i}>2 M$ and $q \geqq m /(2 M+1)$. Let $n>k_{m}$ and $E_{n} \subset A$ be an (n, ε)-separated set. For each $I \subset J=\left\{j_{1}, \ldots, j_{q}\right\}$ and each $x \in E_{n}$ we define the specification $s(x, I)$ by requiring that it be an M-delayed specification with

$$
\begin{gathered}
\operatorname{Tim} s(x, I)=\left([0, n) \backslash \bigcup_{j_{i} \in I}\left[j_{i}-M, j_{i}+M\right]\right) \cup I, \\
P_{s(x, l)}(t)=f^{t}(x) \text { for } t \notin I \text { and } P_{s(x, I)}\left(j_{i}\right)=w_{j_{i}} \text { for } j_{i} \in I .
\end{gathered}
$$

Set $d=n+m$. By Theorem 2.10 choose

$$
p(x, I) \in U\left(s(x, I), \frac{1}{2} \varepsilon\right) \cap \operatorname{Per}_{d}(X) .
$$

Let $F_{I}=\left\{p(x, I): x \in E_{n}\right\}$. If $I_{1} \neq I_{2}$ and $x, y \in E_{n}$, then $s\left(x, I_{1}\right)$ and $s\left(y, I_{2}\right)$ are ε separated; for if $j_{i} \in I_{1} \backslash I_{2}$, then $j_{1} \in \operatorname{Tim} s\left(x, I_{1}\right) \cap \operatorname{Tim} s\left(y, I_{2}\right)$ and

$$
d\left(P_{s\left(x, I_{1}\right)}\left(j_{i}\right), P_{s\left(y, I_{2}\right)}\left(j_{i}\right)\right)=d\left(w_{j_{i}}, f^{j_{i}}(y)\right)>\varepsilon .
$$

By lemma (i) we have $p\left(x, I_{1}\right) \neq p\left(y, I_{2}\right)$; thus $I_{1} \neq I_{2}$ implies $F_{I_{1}} \cap F_{I_{2}}=\varnothing$.
Suppose $z=p(x, I)=p(y, I)$ and $x \neq y$. For $t \in \operatorname{Tim} s(x, I) \backslash I$, we have $P_{s(x, I)}(t)$ $=f^{t}(x)$ and $P_{s(y, I)}(t)=f^{t}(y)$; so $d\left(f^{t}(z), f^{t}(x)\right)<\frac{1}{2} \varepsilon$ and $d\left(f^{t}(z), f^{t}(y)\right)<\frac{1}{2} \varepsilon$, hence $d\left(f^{t}(x), f^{t}(y)\right)<\varepsilon$. Since $x, y \in E_{n}$, an (n, ε)-separated set, we must have $d\left(f^{t}(x), f^{t}(y)\right)>\varepsilon$ for some

$$
t \in[0, n) \mid(\operatorname{Tim} s(x, I) \backslash I)=\bigcup_{j_{i} \in I}\left[j_{i}-M, j_{i}+M\right] .
$$

By the proof of 3.2 (iii), $\left\{x \in E_{n}: p(x, I)=z\right\}$ has at most $g^{\text {card } I}$ elements where $g=N\left(2 M+1, \frac{1}{2} \varepsilon\right)$. Thus F_{I} has at least card $E_{n} \mid g^{\text {card } I}$ elements.

As the F_{I} 's are disjoint

$$
\begin{aligned}
N_{d}(f) & \geqq \sum_{I \in J} \operatorname{card} F_{I} \geqq \sum_{I \in J} \frac{1}{g^{\operatorname{card} I}} \operatorname{card} E_{n} \\
& \geqq \sum_{r=0}^{\operatorname{card} J}\binom{\operatorname{card} J}{r} \frac{1}{g^{r}} \operatorname{card} E_{n}=\left(1+\frac{1}{g}\right)^{\operatorname{card} J} \operatorname{card} E .
\end{aligned}
$$

Since $2 \varepsilon<\delta^{*}$, by 3.2 (i) and 3.2 (iii)

$$
N_{a}(f)=N_{n+m}(f) \leqq N(n+M, 2 \varepsilon) \leqq N(n, \varepsilon) N(M, \varepsilon)
$$

Also card $J=q \geqq m /(2 M+1)$. Thus

$$
N(n, \varepsilon, A)=\operatorname{card} E_{n} \leqq \frac{N(M, \varepsilon)}{\left[(1+1 / g)^{1 / 2 M+1}\right]^{m}} N(n, \varepsilon)
$$

4. Topological entropy. Suppose \mathscr{A} is a finite open cover of $X . E \subset \mathscr{A} \times \cdots \times \mathscr{A}$ (n-times) is an n-cover for (f, \mathscr{A}) if for every $z \in X$ there is an $\left(A_{0}, \ldots, A_{n-1}\right) \in E$ such that $f^{k}(x) \in A_{k}$ for all $0 \leqq k<n$. Let $M_{n}(f, \mathscr{A})$ denote the minimum cardinality of an n-cover for (f, \mathscr{A}). Then (see Adler, Konheim and McAndrew [1]) the limit

$$
h(f, \mathscr{A})=\lim _{n \rightarrow \infty} \frac{1}{n} \log M_{n}(f, \mathscr{A})
$$

exists and the topological entropy of f is defined by

$$
h(f)=\sup _{\mathscr{A}} h(f, \mathscr{A})
$$

(The above definitions and 4.1 and 4.2 below do not depend on our standing hypothesis that f satisfies Axiom A^{*}; they work for any continuous map of a compact Hausdorff space.)
(4.1) Definition. $f: X \rightarrow X$ has completely positive topological entropy (c.p.t.e.) if $h(f,\{C, D\})>0$ whenever $\{C, D\}$ is an open cover of X with $\bar{C} \neq \bar{X} \neq \bar{D}$.
(4.2) Proposition. Suppose $f: X \rightarrow X$ has c.p.t.e. Then $h(f)>0$ unless X is a single point, and it is topologically transitive. If $g: Y \rightarrow Y$ and $h: X \rightarrow Y$ are continuous maps with h surjective and $g \circ h=h \circ f$, then g has c.p.t.e.

Proof. Unless X is a single point an open cover $\{C, D\}$ as in 4.1 can be found and so $h(f)>0$.

If f is not transitive, then there is an open set $C \neq \varnothing$ with $f^{-1}(C) \subset C$ and $\bar{C} \neq X$. Let $B \neq \varnothing$ be open with $\bar{B} \subset C$ and set $D=X \backslash \bar{B}$. Then $\{C, D\}$ is as above. Let

$$
\left.E_{n}=\underset{i \text { times }}{\{(C, \ldots, C, D, \ldots, D)} \underset{j \text { times }}{ }: i+j=n, i, j \geqq 0\right\} .
$$

We claim E_{n} is an n-cover for $(f,\{C, D\})$. For, if $x \in X$, then either $f^{k}(x) \in D$ for all $0 \leqq k<n$ or there is a largest k, denoted $k(x)$, such that $0 \leqq k<n$ and $f^{k}(x) \notin D$.

In the latter case $f^{k(x)}(x) \in C$ and so $f^{m}(x) \in C$ for all $m \leqq k(x)$ as $f^{-1}(C) \subset C$; $f^{m}(x) \in D$ for $m>k(x)$. As card $E_{n}=n+1, M_{n}(f,\{C, D\}) \leqq n+1$ and $h(\{C, D\})=0$ a contradiction.

Suppose $\{C, D\}$ is an open cover of Y with $\bar{C} \neq \bar{Y} \neq \bar{D}$. Then $\left\{h^{-1}(C), h^{-1}(D)\right\}$ satisfies the condition of 4.1 also. h and h^{-1} induce a bijection between n-covers for $\left(f,\left\{h^{-1}(C), h^{-1}(D)\right\}\right)$ and $(g,\{C, D\})=h\left(f_{1}\left\{h^{-1}(C), h^{-1}(D)\right\}\right)>0$.
(4.3) Theorem. If f: $X \rightarrow X$ is C-dense, then f has c.p.t.e.

Proof. Let $\{C, D\}$ be a cover as in 4.1. Choose $\varepsilon>0$ and $p, q \in X$ such that $B_{\varepsilon}(p) \subset C \backslash D$ and $B_{\varepsilon}(q) \subset D \backslash C$. Let $M(\varepsilon)$ be the integer given by 2.10 ; set $N=M(\varepsilon)+1$. Then $\tau_{n}=\{\{k N\}: 0 \leqq k<n\}$ is $M(\varepsilon)$-delayed.

For $\left(a_{0}, \ldots, a_{n-1}\right) \in \prod_{k=0}^{n=1}\{p, q\}$ define a specification $s=s_{n}\left(a_{0}, \ldots, a_{n-1}\right)$ by $\tau(s)=\tau_{n}$ and $P_{s}(k N)=a_{k}$. By 2.10 choose points

$$
x_{n}\left(a_{0}, \ldots, a_{n-1}\right) \in U\left(s_{n}\left(a_{0}, \ldots, a_{n-1}\right), \varepsilon\right)
$$

Let E_{n} be an $n N$-cover for $(f,\{C, D\})$; for $x \in X$ let $F_{n}(x)=\left(F_{n}^{0}(x), \ldots, F_{n}^{n-1}(x)\right)$ $\in E_{n}$ be such that $f^{j}(x) \in F_{n}^{j}(x)$ for $0 \leqq j<n N$. Suppose $\left(a_{0}, \ldots, a_{n-1}\right) \neq\left(b_{0}, \ldots, b_{n-1}\right)$; say $a_{k}=p$ and $b_{k}=q$. Then

$$
f^{k N}\left(x_{n}\left(a_{0}, \ldots, a_{n-1}\right)\right) \in B_{\varepsilon}(p) \leqq C \backslash D
$$

and so $F_{n}^{k N}\left(x_{n}\left(a_{0}, \ldots, a_{n-1}\right)\right)=C$; similarly $F_{n}^{k N}\left(x_{n}\left(b_{0}, \ldots, b_{n-1}\right)\right)=D$ and so $F_{n}\left(x_{n}\left(b_{0}, \ldots, b_{n-1}\right)\right) \neq F_{n}\left(x_{n}\left(a_{0}, \ldots, a_{n-1}\right)\right)$. It follows that card $E_{n} \geqq 2^{n}$ and $M_{n N}(f,\{C, D\}) \geqq 2^{n}$; thus

$$
h(f,\{C, D\}) \geqq \lim \frac{1}{n N} \log 2^{n}=\frac{1}{N} \log 2>0 .
$$

(4.4) Remark. Now $f: X \rightarrow X$ satisfying Axiom A^{*} could not be topologically transitive unless the permutation g in its C-dense decomposition (2.7) is a cycle, i.e. if the decomposition $X=X_{1} \cup \cdots \cup X_{m}$ satisfies $X=\bigcup f^{k} X_{1}$; with 4.2 and 4.3 one sees that this is a sufficient condition for transitivity. It is now clear how 2.7 is just another version of Smale's Spectral Decomposition [16, p. 777]. We also see that $h(f)>0$ unless X is finite; this result was proved before in [6]. The following is an improvement of the main result of [6].
(4.5) Theorem. If $f: X \rightarrow X$ is C-dense, then

$$
h(f)=\lim _{n \rightarrow \infty} \frac{1}{n} \log N_{n}(f)
$$

Proof. Let \mathscr{A} be a finite open cover of X with $\operatorname{diam}(A)<\delta^{*}$ for all $A \in \mathscr{A}$ and let $\beta>0$ be a Lebesgue number for \mathscr{A} (i.e. every closed β-ball $B_{\beta}(x)$ lies inside some member of \mathscr{A}).

Let Q be a maximal (n, β)-separated set. For $z \in Q$ choose $B(z)=\left(A_{0}(z)\right.$, $\left.\ldots, A_{n-1}(z)\right)$ with $A_{k}(z) \in \mathscr{A}$ and

$$
A_{k}(z) \supset \mathrm{Cl}\left(B_{\beta}\left(f^{k}(z)\right)\right) \text { for all } 0 \leqq k<n .
$$

We claim $E_{n}=\{B(z): z \in Q\}$ is an n-cover for (f, \mathscr{A}). For each $x \in X$ there is a $z_{x} \in Q$ for which $d\left(f^{k}(x), f^{k}\left(z_{k}\right)\right) \leqq \beta$ for all $0 \leqq k<n$; otherwise $Q \cup\{x\}$ would be an (n, β)-separated set bigger than Q. Since $f^{k}(x) \in A_{k}\left(z_{x}\right), E_{n}$ is an n-cover. We have shown $M_{n}(f, \mathscr{A}) \leqq N(n, \beta)$.

Let E be an n-cover for (f, \mathscr{A}) and R an $\left(n, \delta^{*}\right)$-set. For $x \in R$ choose $g(x)$ $=\left(A_{0}(x), \ldots, A_{n-1}(x)\right) \in E$ such that $f^{k}(x) \in A_{k}(x)$ for all $0 \leqq k<n$. If $g(x)=g(y)$, then $A_{k}(x)=A_{k}(y)$ and $d\left(f^{k}(x), f^{k}(y)\right) \leqq \operatorname{diam} A_{k}(x)<\delta^{*}$ for $0 \leqq k<n ; x=y$ as R is an (n, δ^{*})-separated set. As $g: R \rightarrow E$ is injective, card $E \geqq \operatorname{card} R$ and $M_{n}(f, \mathscr{A})$ $\geqq N\left(n, \delta^{*}\right) \geqq N_{n}(f)$.

By 3.9(i) there is an $S>0$ and n_{0} such that $N_{n}(f) \geqq S N(n, \beta)$ for $n \geqq n_{0}$. Hence $S M_{n}(f, \mathscr{A}) \leqq N_{n}(f) \leqq M_{n}(f, \mathscr{A})$ for all $n \geqq n_{0}$. Since $(1 / n) \log M_{n}(f, \mathscr{A})$ approaches the limit $h(f, \mathscr{A})$, so does $(1 / n) \log N_{n}(f)$. As this is true for every \mathscr{A} with diam \mathscr{A} $<\delta^{*}$ and in calculating $h(f)$ we need only consider $h(f, \mathscr{A})$ with \mathscr{A} having small diameter,

$$
h(f)=h(f, \mathscr{A})=\lim _{n \rightarrow \infty} \frac{1}{n} \log N_{n}(f)
$$

(4.6) Remark. Let

$$
\gamma_{f}(\varepsilon)=\lim \sup \frac{1}{n} \log N(n, \varepsilon) .
$$

The proof above shows that, for any map f a compact metric space, $h(f)$ $=\lim _{\varepsilon \rightarrow 0} \gamma_{f}(\varepsilon)$. Suppose f is a homeomorphism and δ is an expansive constant; if $\varepsilon \leqq \delta$, then 3.2(ii) goes through, i.e.

$$
N(n, \delta) \leqq N(n, \varepsilon) \leqq N\left(n+m_{\varepsilon}, \delta\right)
$$

for some m_{ε}, and so $\gamma_{f}(\varepsilon)=\gamma_{f}(\delta)$. In this case we have $\gamma_{f}(\delta)=h(f)$.
(4.7) Theorem. Suppose $f: X \rightarrow X$ is C-dense and $A \subset X$ is closed with $\varnothing \neq A \neq X$ and $f(A)=A$. Then $h(f \mid A)<h(f)$.

Proof. By the remark above, $h(f \mid A)=\gamma_{f \mid A}(\varepsilon)$ for $\varepsilon \leqq \delta^{*}$. Choose $w \in X \backslash A$ and $\varepsilon>0$ so small that $A \cap B_{\varepsilon}(w)=\varnothing$. Recall $3.11, N(n, \varepsilon, A) \leqq c_{\varepsilon} \tau_{\varepsilon}^{m}$, for $n>m$ where $\tau_{\varepsilon}<1$. Then

$$
\begin{aligned}
\gamma_{f \mid A}(\varepsilon) & =\lim _{n \rightarrow \infty} \sup \frac{1}{n} \log N(n, \varepsilon, A) \\
& \leqq \lim _{n \rightarrow \infty} \frac{1}{n} \log c_{\varepsilon} \tau_{\varepsilon}^{n-1} N(n, \varepsilon) \\
& \leqq \log \tau_{\varepsilon}+\gamma_{f}(\varepsilon)=\log \tau_{\varepsilon}+h(f)<h(f)
\end{aligned}
$$

5. Construction of a measure. Let ψ be a countable base for the topology of X which is closed under finite union. Assume $\omega: \psi \rightarrow R$ satisfies, for $B \in \psi$,

$$
\begin{aligned}
\omega(B) & \geqq 0, \quad \omega(X)=1, \\
\omega\left(B_{1}\right) & \geqq \omega\left(B_{2}\right) \quad \text { when } B_{1} \supset B_{2}, \\
\omega\left(B_{1} \cup \cdots \cup B_{n}\right) & \leqq \sum \omega\left(B_{i}\right),
\end{aligned}
$$

and

$$
\omega\left(B_{1} \cup B_{2}\right)=\omega\left(B_{1}\right)+\omega\left(B_{2}\right) \quad \text { when } \bar{B}_{1} \cap \bar{B}_{2}=\varnothing .
$$

For U open in X define $m(U)=\sup \{\omega(B): \bar{B} \subset U$ and $B \in \psi\}$.
(5.1) Lemma. If $U \subset \bigcup_{i=1}^{\infty} U_{i}$, then $m(U) \leqq \sum m\left(U_{i}\right)$. If $U \cap V=\varnothing$, then $m(U \cup V)=m(U)+m(V)$.

Proof. Let $B \in \psi$ with $\bar{B} \subset U$. By compactness let U_{1}, \ldots, U_{n} cover B. For $x \in \bar{B}$ choose $B_{x} \in \psi$ so that $\bar{B}_{x} \subset U_{i}$ for some i satisfying $1 \leqq i \leqq n$. Let $B_{x_{1}}, \ldots, B_{x_{r}}$ cover \bar{B} and set $A_{i}=\bigcup\left\{B_{x_{j}}: \bar{B}_{x_{j}} \subset U_{i}\right\}$. Then

$$
\omega(B) \leqq \omega\left(\bigcup_{i=1}^{n} A_{i}\right) \leqq \sum_{i=1}^{n} \omega\left(A_{i}\right) \leqq \sum_{i=1}^{n} m\left(U_{i}\right) .
$$

Now vary B.
By the first part of the lemma, $m(U \cup V) \leqq m(U)+m(V)$. Suppose $B_{1}, B_{2} \in \psi$ with $\bar{B}_{1} \subset U$ and $\bar{B}_{2} \subset V$. Then $\mathrm{Cl}\left(B_{1} \cup B_{2}\right) \subset U \cup V$ and $\bar{B}_{1} \cap \bar{B}_{2}=\varnothing$; so

$$
m(U \cup V) \geqq \omega\left(B_{1} \cup B_{2}\right)=\omega\left(B_{1}\right)+\omega\left(B_{2}\right) .
$$

Varying the B_{i} we obtain $m(U \cup V) \geqq m(U)+m(V)$.
For any $E \subset X$ we define

$$
m(E)=\inf \{m(U): U \supset E, U \text { open }\} .
$$

One sees easily that this definition agrees with the earlier one on open sets and that $m(K)=\inf \{\omega(B): B \supset K, B \in \psi\}$ when K is closed. We let

$$
\mathscr{M}=\{E \subset X: m(E)=\sup \{m(K): K \subset E, K \text { closed }\}\}
$$

With standard arguments we get
(5.2) Proposition. $\mathscr{M}=\mathscr{M}_{\Psi, \omega}$ is a σ-field containing the Borel sets of X and $m=m_{\psi, \omega}$ is a complete normalized regular measure on \mathscr{M}.

Proof. One can, for example, use 5.1 and imitate the proof of the Riesz Representation Theorem given in Rudin [19, p. 40].
(5.3) Lemma. If $\omega_{1}: \psi_{1} \rightarrow R$ and $\omega_{2}: \psi_{2} \rightarrow R$ are as above and there is a $K>0$ such that $\omega_{2}\left(B_{2}\right) \geqq K \omega_{1}\left(B_{1}\right)$ when $B_{2} \supset \bar{B}_{1}$ and $\omega_{1}\left(B_{1}\right) \geqq K \omega_{2}\left(B_{2}\right)$ when $B_{1} \supset \bar{B}_{2}$, then $\mathscr{M}_{\psi_{1}, \omega_{1}}=\mathscr{M}_{\psi_{2}, \omega_{2}}$ and $K m_{\psi_{1}, \omega_{1}} \leqq m_{\psi_{2}, \omega_{2}} \leqq(1 / K) m_{\psi_{1}, \omega_{1}}$.

Proof. For U open and $\bar{B}_{1} \subset U$ with $B_{1} \in \psi_{1}$ we can find $B_{2} \in \psi_{2}$ such that $\bar{B}_{1} \subset B_{2} \subset \bar{B}_{2} \subset U$. Hence $m_{\psi_{2}, \omega_{2}}(U) \geqq \omega_{2}\left(B_{2}\right) \geqq K \omega_{1}\left(B_{1}\right)$. Varying B_{1}, $m_{\psi_{2}, \omega_{2}}(U)$ $\geqq K m_{\psi_{1}, \omega_{1}}(U)$. Similarly $m_{\psi_{1}, \omega_{1}}(U) \geqq K m_{\psi_{2}, \omega_{2}}(U)$. These inequalities extend to any $E \subset X$.

Suppose $E \in \mathscr{M}_{\psi_{1}, \omega_{1}}$. Letting $K_{n} \subset E$ be compact with $m_{\psi_{1}, \omega_{1}}\left(K_{n}\right) \geqq m_{\psi_{1}, \omega_{1}}(E)-1 / n$ we see that $E=E_{1} \cup \bigcup_{n=1}^{\infty} K_{n}$ where $E_{1} \subset F$ for some Borel set F with $m_{\psi_{1}, \omega_{1}}(F)=0$. Then $m_{\psi_{1}, \omega_{1}}(F)=0$ also and $E_{1} \in \mathscr{M}_{\psi_{2}, \omega_{2}}$ since $m_{\psi_{2}, \omega_{2}}$ is complete. As ψ_{2}, ω_{2}
contains Borel sets, we finally see that $E \in \mathscr{M}_{\psi_{2}, \omega_{2}}$. The proof of $\mathscr{M}_{\psi_{1}, \omega_{1}} \subset \mathscr{M}_{\psi_{2}, \omega_{2}}$ is the same.

We will now see how to define some ω 's when we are given a homeomorphism $f: X \rightarrow X$ which is C-dense. Let ψ be any base as above. By diagonalization we can find increasing sequences of integers $\left\{n_{k}\right\}$ such that

$$
\omega(B)=\alpha_{\left(n_{k}\right\}}(B)=\lim _{k} \frac{N_{n_{k}}(B)}{N_{n_{k}}(f)}
$$

exists for every $B \in \psi$. The measure we obtain we denote by $\mu_{f,\left(n_{k}\right)}$. Lemma 5.3 (with $K=1$) shows us that the measure does not depend on the base used.

Let μ_{n} be the measure obtained by giving each point of $\operatorname{Per}_{n}(X)$ measure $1 / N_{n}(f)$. Then $\mu_{n_{k}} \rightarrow \mu_{f,\left(n_{k}\right)}$ weakly (see Corollary 6.7).
(5.4) Theorem. Suppose $f: X \rightarrow X$ is C-dense. The measures $\mu_{f,\left(n_{k}\right)}$ are all equivalent in the sense of 5.3. They are positive on nonempty open sets and $\mu_{f,\left(n_{k}\right)}(\{x\})=0$ unless $X=\{x\}$. fis an automorphism of $\left(\mathscr{M}, \mu_{f,\left(n_{k}\right)}\right)$.

Proof. Let $\mu_{f,\left(n_{k}\right)}$ and $\mu_{f,\left(m_{k}\right)}$ be defined using bases Ψ_{1} and Ψ_{2} respectively. By 3.9 (iii) there is a $K^{*}>0$ such that, if $B_{1} \supset \bar{B}_{2}$, then

$$
\alpha_{\left\{n_{k}\right\}}\left(B_{1}\right) \geqq \varphi\left(B_{1}\right) \geqq K^{*} \theta\left(B_{2}\right) \geqq \alpha_{\left\{n_{k}\right\}}\left(B_{2}\right)
$$

5.3 gives equivalence.

If $U \neq \varnothing$ is open, then $U \supset \bar{B} \neq \varnothing$ for some $B \in \Psi$. Then, using 3.9(ii), $\mu_{f,\left\{n_{k}\right\}}(U)$ $\geqq \alpha_{\left\{n_{k}\right\}}(B) \geqq \varphi(B)>0$. Suppose $x \in X$ but $X \neq\{x\}$. Let

$$
U_{m}=\left\{y \in X: d\left(f^{k}(y), f^{k}(x)\right)<\frac{1}{2} \delta^{*} \text { for } 0 \leqq k \subset m\right\}
$$

Let $B_{m} \in \Psi$ with $x \in B_{m} \subset U_{m}$. Then $\mu_{f,\left(n_{k}\right)}(\{x\}) \leqq \alpha_{\left\{n_{k}\right\}}\left(B_{m}\right) \leqq \theta\left(U_{m}\right)$. By 3.9(b) there are m_{0} and $S>0$ with $\theta\left(U_{m}\right) \leqq 1 / s N_{m}(f)$ for all $m \geqq m_{0}$. By 4.3 and 4.2

$$
h(f)=\lim \frac{1}{m} \log N_{m}(f)>0
$$

Thus $N_{m}(f) \rightarrow \infty, \theta\left(U_{m}\right) \rightarrow 0$ and $\mu_{f,\left(n_{k}\right)}(\{x\})=0$.
Now $\Psi, \alpha_{\left\{n_{k}\right\}}$ and $f \Psi, \alpha_{\left\{n_{k}\right\}}$ clearly satisfy the hypotheses of 5.3 with $K=1$ (by the obvious and crucial fact that f permutes $\operatorname{Per}_{n}(X)$). Hence

$$
f \mu_{f,\left(n_{k}\right\}}=f m_{\left.\Psi, \alpha_{\left(n_{k}\right\}}\right\}}=m_{f \Psi, \alpha_{\left\{n_{k}\right\}}}=m_{\Psi, \alpha_{\left\{n_{k}\right\}}}=\mu_{f,\left\{n_{k}\right\}}
$$

(5.5) Remark. Above we assumed $f: X \rightarrow X$ is C-dense. Suppose $f: X \rightarrow X$ satisfying Axiom A^{*} is only assumed to be topologically transitive. Then $X=X_{1} \cup \cdots \cup X_{m}$ with $f\left(X_{i}\right)=X_{i+1}\left(X_{m+1}=X_{1}\right)$ and $f^{m}: X_{1} \rightarrow X_{1} C$-dense. From an invariant measure μ for $f^{m}: X_{1} \rightarrow X_{1}$ we get one μ^{\prime} for $f: X \rightarrow X$ by defining $\mu^{\prime}\left(f^{n} E\right)=\mu(E) / m$ for $E \subset X_{1}$ measurable. This gives a bijection between invariant Borel measures for $f^{m}: X_{1} \rightarrow X_{1}$ and $f: X \rightarrow X$. One sees that μ^{\prime} is ergodic if and only if μ is, $h\left(f^{m} \mid X_{1}\right)=m h(f)$ and $h_{u}\left(f^{m} \mid X_{1}\right)=m h_{\mu^{\prime}}(f)$. The measures defined above,
in terms of periodic points of $f^{m} \mid X$, correspond to measures on X defined in terms of periodic points of $f: X \rightarrow X$. We shall study the C-dense case and this will give us results also for the general transitive case.

6. Ergodicity and equality of measures.

(6.1) Definition. f is said to be partially mixing with respect to the f-invariant measure μ if there is an $R>0$ such that for any $E, F \in \mathscr{M}$,

$$
\liminf _{n \rightarrow \infty} \mu\left(E \cap f^{-n} F\right) \geqq R \mu(E) \mu(F)
$$

If $c_{1}<c_{2}<\cdots<c_{r}$ are integers, set $I\left(c_{1}, \ldots, c_{r}\right)=\min _{i}\left(c_{i+1}-c_{i}\right) . f$ is partially mixing in order r if there is an $R_{r}>0$ such that, if $E_{1}, \ldots, E_{r} \in \mathscr{M}$ and $I\left(c_{1}^{n}, \ldots, c_{r}^{n}\right)$ $\rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\liminf _{n \rightarrow \infty} \mu\left(f^{-c_{1}^{n}} E_{1} \cap \cdots \cap f^{-c_{r}^{n}} E_{r}\right) \geqq R_{r} \mu\left(E_{\mathbf{1}}\right) \cdots \mu\left(E_{r}\right) .
$$

Notice that partially mixing is a stronger condition than ergodicity or weak mixing.
(6.2) Theorem. If $f: X \rightarrow X$ is C-dense, then f is partially mixing in all orders with respect to each $\mu=\mu_{f,\left(n_{k}\right)}$.

Proof. Let $I\left(c_{1}^{n}, \ldots, c_{r}^{n}\right) \rightarrow \infty$. Let $\alpha=\frac{1}{8} \delta^{*}$; by 3.9(i) choose n_{0} and $S>0$ so that $N_{n}(f) \geqq S N(n, 2 \alpha)$ for all $n \geqq n_{0}$.

Suppose E_{1}, \ldots, E_{r} are closed and $V_{i} \supset E_{i}$ with $V_{i} \in \Psi$. Choose $\varepsilon>0$ so that $B_{\varepsilon}\left(E_{i}\right) \subset V_{i}$. Choose k large enough so that $n_{k}>2 D(\varepsilon)$ (see 2.4) and n so that $I\left(c_{1}^{n}, \ldots, c_{r}^{n}\right)>M(\alpha)+n_{k}$. Let $\tau_{i}=\left\{\left[c_{i}^{n}-D(\varepsilon), c_{i}^{n}+n_{k}-D(\varepsilon)\right)\right\}$ and for $x \in \operatorname{Per}_{n_{k}}\left(V_{i}\right)$ define the specification s_{x} by $\tau\left(s_{x}\right)=\tau_{i}$ and $P_{s_{x}}(t)=f^{t-c_{i}^{n}}(x)$; let A_{i} $=\left\{s_{x}: x \in \operatorname{Per}_{n_{k}}\left(V_{i}\right)\right\}$. One notes now that $B=A_{1} \wedge \cdots \wedge A_{\tau}$ is an 8α-separated s-set which is $M(\alpha)$-delayed. Also, by 2.4 , we get

$$
U(B, \alpha) \subset \bigcap_{i=1}^{r} f^{-c_{i}^{n}} B_{\varepsilon}\left(E_{i}\right) \subset \bigcap_{i=1}^{r} f^{-c_{i}^{n}} V_{i} .
$$

By 3.7, we get

$$
N_{d}\left(\cap f^{-c_{i}^{n}} V_{i}\right) \geqq N_{d}(U(B, \alpha)) \geqq \frac{K(r, \alpha) \operatorname{card}(B) N\left(d, \delta^{*}\right)}{N\left(r n_{k}, \frac{1}{2} \delta^{*}\right)}
$$

for d sufficiently large. Now

$$
N\left(d, \delta^{*}\right) \geqq N_{d}(f), \quad \operatorname{card}(B)=\prod N_{n_{k}}\left(V_{i}\right)
$$

and, using 3.2(iii),

$$
N\left(r n_{k}, \frac{1}{2} \delta^{*}\right) \leqq N\left(n_{k}, \frac{1}{4} \delta^{*}\right)^{r} \leqq N_{n_{k}}(f)^{\top} / S^{\top} .
$$

Combining all these,

$$
\frac{N_{d}\left(\cap f^{-c_{i}^{n}} V_{i}\right)}{N_{d}(f)} \geqq R_{r} \prod \frac{N_{n_{k}}\left(V_{i}\right)}{N_{n_{k}}(f)}
$$

where $R_{r}=K(r, \alpha) S^{r}>0$. Letting $d \rightarrow \infty$,

$$
\varphi\left(\cap f^{-c_{i}^{n}} V_{i}\right)=\liminf _{d \rightarrow \infty} \frac{N_{d}\left(\bigcap f^{-c_{i}^{n}} V_{i}\right)}{N_{d}(f)} \geqq R_{r} \prod \frac{N_{n_{k}}\left(V_{i}\right)}{N_{n_{k}}(f)} .
$$

This being true for all big n,

$$
\liminf _{n \rightarrow \infty} \varphi\left(\cap f^{-c_{i}^{n}} V_{i}\right) \geqq R_{r} \prod \frac{N_{n_{k}}\left(V_{i}\right)}{N_{n_{k}}(f)}
$$

Letting $n_{k} \rightarrow \infty$,

$$
\liminf _{n \rightarrow \infty} \varphi\left(\cap f^{-c_{i}^{n} V_{i}}\right) \geqq R_{r} \prod \alpha_{\left\{n_{k}\right\rangle}\left(V_{i}\right) \geqq R_{r} \prod \mu\left(E_{i}\right)
$$

Now suppose $V_{i}^{1} \supset E_{i}$ open and choose the V_{i} above so that $V_{i}^{1} \supset \bar{V}_{i}$. Then

$$
\bigcap_{i} f^{-c_{i}^{n}} V_{i}^{1} \supset \mathrm{Cl}\left(\bigcap_{i} f^{-c_{i}^{n}} V_{i}\right) .
$$

Choose $B \in \Psi$ so that

$$
\cap f^{-c_{1}^{n} V_{i}^{1}} \supset \bar{B} \supset \bigcap f^{-c_{1}^{n}} V_{i} .
$$

Then

$$
\mu\left(\bigcap f^{-c_{i}^{n}} V_{i}^{1}\right) \geqq \alpha_{\left\{n_{k}\right\}}(B) \geqq \varphi\left(\bigcap f^{-c_{i}^{n}} V_{i}\right)
$$

and

$$
\liminf _{n \rightarrow \infty} \mu\left(\cap f^{-c_{i}^{n}} V_{i}^{1}\right) \geqq R_{r} \prod \mu\left(E_{i}\right)
$$

Now

$$
\mu\left(\cap f^{-c_{i}^{\pi}} E_{i}\right) \geqq \mu\left(\cap f^{-c_{i}^{n}} V_{i}^{1}\right)-\sum \mu\left(V_{i}^{1} \backslash E_{i}\right) .
$$

Letting $\mu\left(V_{i} \mid E_{i}\right) \rightarrow 0$ we get

$$
\liminf _{n \rightarrow \infty} \mu\left(\bigcap f^{-c_{i}^{n}} E_{i}\right) \geqq R_{r} \prod \mu\left(E_{i}\right) .
$$

For any $E_{i}{ }^{*} \in \mathscr{M}$ consider $E_{i} \in E_{i}^{*}$ closed. Then

$$
\liminf _{n \rightarrow \infty} \mu\left(\bigcap f^{-c_{i}^{n}} E_{i}^{*}\right) \geqq \liminf _{n \rightarrow \infty} \mu\left(\bigcap f^{-c_{i}^{n}} E_{i}\right) \geqq R_{r} \prod \mu^{\prime}\left(E_{i}\right)
$$

Now let $\mu\left(E_{i}\right) \rightarrow \mu\left(E_{i}^{*}\right)$.
(6.3) Corollary. Suppose $f: X \rightarrow X$ satisfying Axiom A^{*} is topologically transitive. Then the measure μ^{*} on X corresponding to $\mu_{f^{m},\left\{n_{k}\right\}}$ on one of its C-dense factors is ergodic under f.

Proof. See Remark 5.5.
The following standard fact was pointed out to us by W. Parry.
(6.4) Lemma. Suppose $f: X \rightarrow X$ is an ergodic automorphism of two equivalent normalised Borel measures m_{1} and m_{2}. Then $m_{1}=m_{2}$.

Proof. Let $d m_{1} / d m_{2}$ denote the Radon-Nikodym derivative. It is f-invariant, hence a constant (clearly 1) by ergodicity.
(6.5) Theorem. Let $f: X \rightarrow X$ be C-dense. Then all the $\mu_{f,\left\{n_{k}\right\}}$ have a common value μ_{f}.

Proof. 5.4, 6.2, and 6.4.
(6.6) Theorem. Let $f: X \rightarrow X$ be C-dense. If K is closed and $\mu_{f}(K)=0$, then

$$
\lim _{n \rightarrow \infty}\left(N_{n}(K) / N_{n}(f)\right)=0
$$

If U is open with $\mu_{f}(\partial U)=0$, then $\lim \left(N_{n}(U) / N_{n}(f)\right)=\mu_{f}(U)$.
Proof. Suppose $\left\{m_{j}\right\}$ is an increasing sequence of integers so that either

$$
N_{m_{\jmath}}(K) / N_{m_{3}}(f) \rightarrow a>0 \quad \text { or } \quad N_{m_{s}}(U) / N_{m_{s}}(f) \rightarrow b \neq \mu_{f}(U)
$$

Let ψ be a countable base closed under finite union and $\left\{n_{k}\right\}$ a subsequence of $\left\{m_{j}\right\}$ so that $\mu_{f,\left(n_{k}\right)}$ is defined with ψ.
Suppose $N_{m,}(K) / N_{m_{f}}(f) \rightarrow a>0$. If $B \supset K, B \in \psi$, then

$$
\alpha_{\left\{n_{k}\right\}}(B)=\lim \frac{N_{n_{k}}(B)}{N_{n_{k}}(f)} \geqq \lim \frac{N_{n_{k}}(K)}{N_{n_{k}}(f)}=a .
$$

It follows that $\mu_{f}(K)=\inf \alpha_{i n_{k}(}(B) \geqq a>0$, a contradiction. Suppose $N_{m_{f}}(U) / N_{m_{f}}(f)$ $\rightarrow b \neq \mu_{f}(U)$. For $B \supset \bar{U}, B \in \psi$ we have $\alpha_{\left\{n_{k}\right)}(B) \geqq b$; hence $\mu_{f}(\bar{U})=\mu_{f,\left(n_{k}\right)}(\bar{U}) \geqq b$. For $\bar{B} \subset U, B \in \psi$, we have $\alpha_{\left(n_{k}\right)}(B) \leqq b$; hence $\mu_{f}(U) \leqq b$. As $\mu_{f}(\partial U)=0, b \geqq \mu_{f}(U)$ $=\mu_{f}(\bar{U})=b$ and so $\mu_{f}(U)=b$, a contradiction.
(6.7) Corollary. Let $f: X \rightarrow X$ be C-dense. Then, for any $F \in C(X)$,

$$
\frac{1}{N_{n}(f)} \sum_{x \in \operatorname{Per}_{n}(f)} F(x) \rightarrow \int F d \mu_{f}
$$

as $n \rightarrow \infty$. (We say that μ_{f} is derived from f by periodic points to mean the above statement.)

Proof. Choose b such that $-b<F(x)<b$ for all $x \in X$. Let $\varepsilon>0$. Choose $-b$ $=a_{0}<a_{1}<\cdots<a_{r}=b$ with $a_{i+1}-a_{i}<\varepsilon, \mu_{f}\left(\left\{x: F(x)=a_{i}\right\}\right)=0$ and $F(x)=a_{i}$ for no periodic point x.

Let $U_{i}=\left\{x: a_{i-1}<F(x)<a_{i}\right\}$. Choose $N(\varepsilon)$ so big that

$$
\left|\left(N_{n}\left(U_{i}\right) / N_{n}(f)\right)-\mu_{f}\left(U_{i}\right)\right|<\varepsilon / b
$$

for all $n \geqq N(\varepsilon)$ and each i. This is possible since $F\left(\partial U_{i}\right) \subset\left\{a_{i-1}, a_{i}\right\}$ and so $\mu_{f}\left(\partial U_{i}\right)=0$ by construction; hence 6.6 applies to U_{i}. We also have

$$
\left|N_{n}(f)^{-1} \sum_{x \in \operatorname{Per}_{n}(f)} F(x)-\sum_{i=1}^{r} a_{i}\left(N_{n}\left(U_{i}\right) / N_{n}(f)\right)\right| \leqq \varepsilon .
$$

Putting our above two inequalities together one sees that

$$
\left|N_{n}(f)^{-1} \sum_{x \in \operatorname{Perr}_{n}(f)} F(x)-\sum a_{i} \mu_{f}\left(U_{i}\right)\right| \leqq 2 \varepsilon .
$$

Since $\left|\int F d \mu_{f}-\sum a_{i} \mu_{f}\left(U_{i}\right)\right| \leqq \varepsilon$, we finally get

$$
\left|\int F d \mu_{f}-N_{n}(f)^{-1} \sum_{x \in \operatorname{Per}_{n}(f)} F(x)\right| \leqq 3 \varepsilon
$$

for all $n \geqq N(\varepsilon)$.
7. The algebraic case. Suppose $f: G \rightarrow G$ is an automorphism of an n dimensional torus G. f is a hyperbolic if $D f: T_{e} G \rightarrow T_{e} G$ has no eigenvalues on the unit circle. Then (see [16]) f satisfies Axiom A* and is C-dense because G is connected (using 2.7). f of course preserves the normalized Haar measure m on G.
(7.1) Proposition. If f is a hyperbolic automorphism of a torus, then $\mu_{f}=m$.

Proof. Suppose $g \in G$ and $E \subset G$ is closed. Let $\mu_{f}=\mu_{f,\left(n_{k}\right)}$ be defined via the base Ψ. Consider $B \in \Psi$ with $B \supset E+g$. There are $B^{1} \in \Psi$ and open V such that $B^{1} \supset E$, $g \in V$ and $B^{1}+V \subset B$. By 3.9(ii) there is an N such that $N_{n}(V)>0$ for all $n \geqq N$. For $n_{k} \geqq N$ and $g_{n_{k}} \in \operatorname{Per}_{n_{k}}(V)$ we have $g_{n_{k}}+\operatorname{Per}_{n_{k}}\left(B^{1}\right) \subset B$. If $x \in \operatorname{Per}_{n_{k}}\left(B^{1}\right)$, then as f is a group automorphism $f^{n_{k}}\left(g_{n_{k}}+x\right)=f^{n_{k}}\left(g_{n_{k}}\right)+f^{n_{k}}(x)=g_{n_{k}}+x$; so $g_{n_{k}}+x \in \operatorname{Per}_{n_{k}}(B)$. Thus $N_{n_{k}}(B) \geqq N_{n_{k}}\left(B^{1}\right)$ for $n_{k} \geqq N$ and $\alpha_{\left\{n_{k}\right\}}(B) \geqq \alpha_{\left\{n_{k}\right\}}\left(B^{1}\right) \geqq \mu_{f,\left(n_{k}\right\}}(E)$. Varying $B, \mu_{f,\left\langle n_{k}\right)}(g+E) \geqq \mu_{f,\left\langle n_{k}\right)}(E)$. Using $-g$ instead of $g, \mu_{f,\left(n_{k}\right)}(g+E) \leqq \mu_{f,\left(n_{k}\right)}(E)$. Thus $\mu_{f}(E)=\mu_{f}(g+E)$ for all $g \in G$ and E closed; it follows that μ_{f} is Haar measure.

Now let G be a torus acting freely on a compact metric space X (i.e. $g_{1} x=g_{2} x$ implies $g_{1}=g_{2}$) and let μ be normalized Haar measure on G. Let $\pi: X \rightarrow X_{G}=X / G$ be the projection map. Now suppose X_{G} has a normalized Borel measure m_{G}. Suppose $F \in C(X)$. If $\pi\left(x_{1}\right)=\pi\left(x_{2}\right)=y$, then

$$
\int_{G} F\left(g x_{1}\right) d \mu=\int_{G} F\left(g x_{2}\right) d \mu
$$

for $x_{1}=g_{1} x_{2}$ for some $g_{1} \in G$ and then $F\left(g x_{1}\right)=F\left(g_{1} g x_{2}\right)$ is obtained from $F\left(g x_{2}\right)$ (as a function on G) by translating the variable. Denote this common value by $H_{F}(y) ; H_{F} \in C\left(X_{G}\right)$. Define a measure m on X by

$$
\int_{X} F d m=\int_{X_{G}} H_{F} d m_{G} .
$$

Now suppose $S: X \rightarrow X$ is a homeomorphism and $\sigma: G \rightarrow G$ an automorphism such that $S(g x)=\sigma(g) S(x)$. Then S induces a homeomorphism S_{G} of X_{G} such that $\pi \circ S=S_{G} \circ \pi$. If S_{G} preserves m_{G}, then S preserves m and we say (S, m) is a σ extension of (S_{G}, m_{G}).
(7.2) Proposition. Let (S, m) be a σ-extension of $\left(S_{G}, m_{G}\right)$ with σ a hyperbolic automorphism of the torus. If m_{G} is derived from S_{G} by periodic points, then m is derived from S by periodic points.

Proof. Let $F \in C(X)$ and $\varepsilon>0$. Choose $x_{1}, \ldots, x_{s} \in X$ such that for each $x \in X$
there is an x_{i} such that $\left|F(g x)-F\left(g x_{i}\right)\right| \leqq \varepsilon / 3$ for all $g \in G$. Since μ is derived from σ by periodic points (see 6.7), there is an $N(\varepsilon)$ such that

$$
\left|N_{n}(\sigma)^{-1} \sum_{g \in \operatorname{Per}_{n}(\sigma)} F\left(g x_{i}\right)-\int_{G} F\left(g x_{i}\right) d \mu\right| \leqq \varepsilon / 3
$$

for any $n \geqq N(\varepsilon)$. Combining the above inequalities we get

$$
\left|N_{n}(\sigma)^{-1} \sum_{g \in \operatorname{Per}_{n}(\sigma)} F(g x)-\int_{G} F(g x) d \mu\right| \leqq \varepsilon
$$

for any $x \in X$ and any $n \geqq N(\varepsilon)$.
Recall that $\int_{X} F d m=\int_{X_{G}} H_{F} d m_{G}$ where $H_{F}(\pi(x))=\int_{G} F(g x) d \mu$. As m_{G} is derived from S_{G} by periodic points there is an $M \geqq N(\varepsilon)$ such that

$$
\left|\int_{X_{G}} H_{F} d m_{G}-N_{n}\left(S_{G}\right)^{-1} \sum_{y \in \operatorname{Per}_{n}\left(S_{G}\right)} H_{F}(y)\right| \leqq \varepsilon
$$

for any $n \geqq M$. At this stage of the proof we need the following.
Lemma. If $S_{G}^{n}(y)=y$, then $S^{n}(x)=x$ for some $x \in \pi^{-1}(y)$.
Proof. Let $z \in \pi^{-1}(y)$. Then $S^{n}(z)=g_{1} z$ for some $g_{1} \in G, S^{n}(g z)=\sigma^{n}(g) g_{1} z$. We want to solve $S^{n}(g z)=g z$ or $g=\sigma^{n}(g) g_{1}$. In additive notation $\left(\sigma^{n}-I\right) g=-g_{1}$. Since σ^{n} is hyperbolic, there is such a g. Let $x=g z$. By this lemma for $y \in \operatorname{Per}_{n}\left(S_{G}\right)$ choose $x_{y} \in \pi^{-1}(y) \cap \operatorname{Per}_{n}(S)$. Then

$$
\left|H_{F}(y)-N_{n}(\sigma)^{-1} \sum_{g \in \operatorname{Per}_{n}(\sigma)} F\left(g x_{y}\right)\right| \leqq \varepsilon .
$$

Now $g x_{y} \in \operatorname{Per}_{n}(S)$ if and only if $\sigma^{n}(g) x_{y}=\sigma^{n}(g) S^{n}\left(x_{y}\right)=S^{n}\left(g x_{y}\right)=g x_{y}$, i.e. if and only if $g \in \operatorname{Per}_{n}(\sigma)$. Thus

$$
\operatorname{Per}_{n}(S)=\left\{g x_{y}: g \in \operatorname{Per}_{n}(\sigma), y \in \operatorname{Per}_{n}\left(S_{G}\right)\right\}
$$

(for clearly $z \in \operatorname{Per}_{n}(S)$ implies $\pi(z) \in \operatorname{Per}_{n}\left(S_{G}\right)$). Thus

$$
N_{n}\left(S_{G}\right)^{-1} \sum_{y \in \operatorname{Per}_{n}\left(S_{a}\right)} N_{n}(\sigma)^{-1} \sum_{g \in \operatorname{Per}_{n}(\sigma)} F\left(g x_{y}\right)=N_{n}(S)^{-1} \sum_{z \in \operatorname{Per}_{n}(S)} F(z) .
$$

Hence, as $\int_{X} F d m=\int_{X_{G}} H_{F} d m_{G}$, we have

$$
\left|\int F d m-N_{n}(S)^{-1} \sum_{z \in \mathrm{Per}_{n}(S)} F(z)\right| \leqq 2 \varepsilon
$$

for all $n \geqq M$.
Suppose $f: N / \Gamma \rightarrow N / \Gamma$ is a hyperbolic automorphism of a nilmanifold (one can see [13] or [16] for the definition). Then N / Γ has a unique normalized Borel measure m which is invariant under the action of $N ; m$ is f-invariant. It is well known that (f, m) is obtained through a succession of extensions via hyperbolic toral automorphisms with a single point as the initial base space. By 7.2 we have that m is derived from f by periodic points.
(7.3) Theorem. If f is a hyperbolic automorphism of a nilmanifold, then $\mu_{f}=m$.

Proof. f satisfies Axiom A^{*} and is C-dense since N / Γ is connected (by 2.7). 6.7 says that μ_{f} is derived from f by periodic points. At most one measure can be derived from f by periodic points.
(7.4) Remark. Conversations with W. Parry, S. Smale, and P. Walters were helpful in finding a proof for 7.3. Parry in particular pointed out how the periodic points of S are related to those of S_{G} and σ. Hyperbolic automorphisms of nilmanifolds thus distribute their periodic points uniformly with respect to the usual measure. For this particular case $\S \S 6$ and 8 yield already known facts (see [2] or [13] for example).
8. The entropy of μ_{f}. We refer the reader to [5] for a definition of measure theoretic entropy.
(8.1) Suppose $f: X \rightarrow X$ satisfying Axiom A^{*} is topologically transitive. Then $h_{\mu},(f)=h(f)$.

Proof. By 5.5 we may assume f is C-dense. Cover X by open sets U_{1}, \ldots, U_{T} with diam $U_{i}<\delta^{*}$. Choose disjoint Borel sets A_{1}, \ldots, A_{r} such that $U_{i} \supset \bar{A}_{i}$ and $X=\bigcup_{i=1}^{r} A_{i}$. In [8] L. Goodwyn shows that for any f-invariant normalized Borel measure ρ on X (and $f: X \rightarrow X$ any continuous map) we have $h_{\rho}(f) \leqq h(f)$. We complete our proof by showing the partition $\beta=\left\{A_{1}, \ldots, A_{r}\right\}$ satisfies $h_{u_{f}}(f, \beta)$ $\geqq h(f)$. For any $1 \leqq i_{0}, \ldots, i_{m-1} \leqq r$ consider the sets

$$
V=\bigcap_{k=0}^{m-1} f^{-k} U_{i_{k}} \partial \bigcap_{k=0}^{m-1} f^{-k} A_{i_{k}}=D\left(i_{0}, \ldots, i_{m-1}\right) .
$$

By 3.9 (v) there are m_{0} and $S>0$ such that $\theta(V) \leqq 1 / S N_{m}(f)$ for all $m \geqq m_{0}$. Then $\mu_{f}(D) \leqq \theta(V) \leqq 1 / S N_{m}(f)$. Define the function

$$
h_{m}=\frac{1}{m} \sum_{\left(i_{0}, \ldots, i_{m-1}\right)}\left(-\log \mu_{f}(D)\right) \chi_{D}
$$

where χ_{D} is the characteristic function of D. For $m \geqq m_{0}$ we have

$$
-\log \mu_{f}(D) \geqq \log S+\log N_{m}(f)
$$

By definition

$$
\int_{h_{m}} d \mu_{f} \rightarrow h_{u_{f}}(f, \beta)
$$

as $n \rightarrow \infty$. Hence, using 4.5,

$$
h_{u_{f}}(f, \beta) \geqq \lim \frac{1}{m}\left[\log N_{m}(f)+\log S\right]=h(f) .
$$

References

1. R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. MR 30 \#5291.
2. D. V. Anosov and Ja. G. Sinaĭ, Certain smooth ergodic systems, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 107-172 = Russian Math. Surveys 22 (1967), 103-167. MR 37 \#370.
3. A. Avez, Propriétés ergodiques des endomorphismes dilatants des variétés compactes, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A610-A612. MR 37 \#6944.
4. K. Berg, Convolution of invariant measures, maximal entropy, (to appear).
5. P. Billingsley, Ergodic theory and information, Wiley, New York, 1965. MR 33 \#254.
6. R. Bowen, Topological entropy and Axiom A, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R. I., 1970.
7. ———, Markov partitions for Axiom A diffeomorphisms, Amer. J. Math. (to appear).
8. L. W. Goodwyn, Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc. 23 (1969), 679-688.
9. M. Hirsch, Expanding maps and transformation groups, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R. I., 1970.
10. M. Hirsch and C. Pugh, Stable manifolds and hyperbolic sets, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R. I., 1970.
11. K. Krzyżewski and W. Schlenk, On invariant measures for expanding differentiable mappings, Studia Math. 33 (1969), 83-92.
12. W. Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc. 112 (1964), 55-66. MR 28 \#4579.
13. -_, Ergodic properties of affine transformations and flows on nilmanifolds, Amer. J. Math. 91 (1969), 757-777.
14. Ja. G. Sinaĭ, Markov partitions and Y-diffeomorphisms, Funkcional. Anal. i Priložen. 2 (1968), 64-89 = Functional Anal. Appl. 2 (1968), 61-82. MR 38 \#1361.
15. ——, Classical dynamic systems with countably-multiple Lebesgue spectrum. II, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 15-68; English transl., Amer. Math. Soc. Transl. (2) 68 (1968), 34-88. MR 33 \#5847.
16. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 37 \#3598.
17. R. F. Williams, Classification of one dimensional attractors, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R. I., 1970.
18. W. H. Gottschalk and G. A. Hedllund, Topological dynamics, Amer. Math. Soc. Colloq. Publ., vol. 36, Amer. Math. Soc., Providence, R. I., 1955. MR 17, 650.
19. W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966. MR 35 \#1420.
