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PERIODIC POINTS AND TOPOLOGICAL ENTROPY

OF MAPS OF THE CIRCLE

CHRIS BERNHARDT

Abstract. Let / be a continuous map from the circle to itself, let /"(/) denote the

set of integers n for which/has a periodic point of period ». In this paper it is shown

that the two smallest numbers in P(/) are cither coprimc or one is twice the other.

1. Introduction. Let/be a continuous map of the circle into itself, let P(f) denote

the set of positive integers n such that / has a periodic point of (least) period n. If

P(f) does not consist of a single point, let px and p2 denote, respectively, the

smallest and second smallest elements of P(f). It will be shown that either/;, and p2

are coprime or p2 — 2pv

This result can then be combined with results in [1,3 and  6] to prove

Theorem   1.  Let f G C°(S\ Sl).  Suppose that P(f) contains more than  one

element. Let p¡ and p2 denote the smallest elements of P( f ), with px < p2.

lf2pK =£ p2 then:

( 1 ) p, and p2 are coprime;

(2) a/;, + ßp0 G P(f) where a and ß are any positive integers;

(3) The topological entropy off, h(f)s* log pp¡ p^ where rlPuPl is the largest zero of

xP,+p2 - xPl - XP: - j

(4) There exists a map fpiP, G C°(S[, S1 ) such that

HfP,.J= {aP]+ßPl\aGN+ .ßGN+} U {/>„ p2)

andh(fPl.Pl) = \°ePP¡.P:-

I/2P\ = Pi there exists a map,fp¡p2. with P(fPl,Pz) = {/>,. P2) andhUPi.P._) = 0.

2. In this section the following theorem is proved.

Theorem 2.1. Let f G C°(S\ S]). Suppose that P(f) is not a singleton. Let px, p2

denote the two smallest elements of P(f). Then either /?, and p2 are coprime or

Pz = 2pv

The theorem is trivially true if px — 1, so throughout this section it will be

assumed that/has no fixed points.

Definition 2.2. Let / be an endomorphism of the circle of degree 1 and let F

be   a   lifting   of  /.   The   rotation   number   p(F, x)   is   defined   by   p(F. x)—

limsup„_K!(l/«)(/;'"(x) — x), and the rotation set p(F) = {p(F, x): x G R}.

Received by the editors March 8, 1982 and, in revised form. June 14. 1982.

1980 Mathematics Subject Classification. Primary 58F20.

ÍÍ983 American Mathematical Society

0O02-9939/82/OOO0-0753/S01.75

516

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MAPS OF THE CIRCLE 517

The rotation set p(F) is a closed interval or a single point, and a different lifting

of/just translates the rotation set by an integer (see [7 and 4 or 8]).

In [4 and 8] the following is shown.

Lemma 2.3. Let f G C°(S\ S1) be a degree one map with rotation interval [a, b).

Then for any rational number m/n G [a, b], with m and n coprime, n belongs to P( f ).

Lemma 2.4. Let a/b, c/d be two rational numbers contained in the interval [0, 1].

Suppose that a/b < c/d and that b and d have a common factor. Then there exists a

rational number m/n satisfying a/b *£ m/n =£ c/d, such that:

(i) n < max(¿>, d);

(n)n g {b,d}.

Proof. The proof will be divided into two cases depending on whether the

fractions a/b, c/d are expressed in lowest terms or not.

Case 1. Suppose that both a/b and c/d are already in lowest terms, i.e. the

numerator and denominator are coprime. Then both a/b and c/d will occur in the

ma\(b,d) row of the Farey series. By elementary number theory there exists a

rational number m/n, with required properties (see, for example, [5]).

Case 2. Suppose that a/b and c/d are not already in lowest terms. Cancellation

either gives the required result immediately or reduces to the first case.

Proof of Theorem 2.1. Since/has no fixed points it must have degree one. Thus

the rotation set is defined and, without loss of generality, may be assumed to be

contained in the unit interval [0. 1].

Choose x G S] such lhatfp'(x) — x and choose v G S1 such lhal fPz(y) — y.

Suppose that p] and p2 have a common factor. Then write px—kq and p2 = Iq

where k and / are coprime.

Let p(x) = a/kq and p(y) = b/lq. Clearly (a, kq) = 1, otherwise Lemma 2.3

would imply the existence of a periodic point with period smaller than px.

Suppose that a/kq ¥= b/lq. Then applying Lemma 2.4 and then Lemma 2.3 shows

that there exists a point of period n, where n ¥=p¡ and n < p2. This contradicts the

definition of />, andp2.

Thus a/kq = b/lq and so bk — al. Since (k, /) = 1, k divides a; but (a, kq) — 1

and so k = 1.

It has been shown that if p, andp2 are not coprime thenp2 = lpt and p(x) — p(y).

Now consider the map/Pl. This has a fixed point x, and y is a point of period /.

Clearly 1 and / are the two smallest elements of P(f). Since f is of degree one

there exists a lifting g such that p(x) — p(y) — 0.

Thus g G C°(R, R) and 1 and / are the two smallest elements of P(g). (if a lifting

of a degree one map has a periodic point of period k, then so does the map).

Sarkovskii's theorem then shows that 1—2.

3. Proof of Theorem 1. Louis Block has extensively studied the case when /?, = 1.

When/?, = 1, Theorem 1 is weaker then the results in [2 and 3].

Ito [6] has shown the following:
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Theorem 3.1. Let f G C°(S\ Sl). Let m, n G P(f) such that m s* 2, n 3* 2 and

(m, n) = 1. Then h(f) > logum „ where um „ is the largest zero of xm+n - xm - x"
- 1.

In [1] the following is proved.

Theorem 3.2. Let f G C°(S\ Sl). Let px, p2be the two smallest elements of P(f).

If(P\'Pi)— li tnen aPi + ßPi ^ P(f) for any positive integers a and ß.

Thus statements (1), (2), and (3) of Theorem 1 are true.

To complete the proof it is only necessary to construct maps^, , with minimal

entropy and with minimal number of periodic points.

When (/»,, p2) = 1, Ito [6] constructs a map f : S] -> S]. By looking at the

associated A -graph he shows that h(f ,) = log pp¡ . The A -graph also shows that

P(fPl,Pl) ={aPl+ßp2\aGN+,ßGN+}U {px\ Pl).

Now consider the case p2 — 2/7,. Let S1 = R/Z and let/,2: S1 — S' be the map

induced from Fx2: R — R defined by

2x, 0<x<j,

-x + 1,    f <C~*«'j,

2x-l,    f«* <V,

and F(x + k)= F(x) for k G Z.

It is easily checked that/, 2 has only periodic points of periods 1 and 2.

Similarly, \elfp2p: Si — Sl be the map induced from //,,2/,: R ~* R defined by

"2x + l//7>     0<x< 1/3/7,

-x + 2/pt     1/3/j <x< 2/3/;,

2x, 2/3/7 <x =e I//?,

x+ I//»f      \/p<x< 1,

and Fp2p(x + k) = ,f/2//x) for k G Z. This map has only periodic points of period

/7 and 2/7. Clearly/!(/',) = 0.
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