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Abstract. There is a theorem of Sarkovskii which characterizes the sets of periods
of periodic points for continuous maps of an interval into itself. We give a similar
characterization for continuous maps of degree one of a circle into itself.

Introduction
The aim of this paper is to give a full characterization of the set of periods for a
continuous map of degree one of a circle into itself.

By the period of a periodic point we always mean its smallest period. By P(f)
we denote the set of periods of all periodic points of a given map /.

Consider the Sarkovskii ordering of the set Z+ of all positive integers: 3, 5, 7,
9 , . . . , 2 • 3, 2 • 5, 2 • 7, 2 • 9 , . . . , 22 • 3, 22 • 5, 22 • 7, 22 • 9 , . . . , 24, 23, 22, 2, 1.
For n e Z+ we shall denote by III (n) the set consisting of n and all numbers standing
to the right of n in this ordering. By ui (2°°) we denote the set {..., 24, 23, 22, 2,1}
of all powers of 2. The famous Sarkovskii theorem says that for a continuous map
/ of an interval into itself, P(f)= ill(n) for some n eZ+u{2°°}, and for all such n
there exists / with P(f) = ill (n) ([11], see also [12], [4]).

In the case of a circle instead of an interval, i.e. for a continuous map / : S1 -» S1,
it is known that:

(i) if 1 eP(f) then P{f) = BuS, where

B = {«eZ+:n>ft} and S = u^s)

for some b e T and s e Z+ u {2°°} ([3]);
(ii) if |deg/ |a2 then P(f) = Z+ with one exception: if d e g / = - 2 it is possible

alsothatP(/) = Z+\{2}([4],[7]);
(iii) if deg / = 0 then P(f) = III (n) for some « e Z + u {2°°} ([4], [7]);
(iv) if deg/ = - 1 then P(f) = III (n) for some n e Z+ u{2°°} ([7], [3]).
The remaining, but most complicated, case is of deg/= 1 (notice that if / has

no fixed points then deg/= 1). For this case, some partial results were obtained
by Bernhardt [1], [2], Jefremova [7] and Falbo [private communication from
D. Fried].

In this paper, we prove the following theorem:

THEOREM, (a) For a continuous map f-.S^^^S1 of degree one, there exist a,beU
and / , reZ+u{2°°} with a<b and such that P(f) = M(a, b)vS(a,l)\jS(b,r),
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where:
M(a,b) = {neZ+: there exists keZ such that a < k/n <b};

(0 if a is irrational,

{{ns: s e ill (/)} if a = k/n for k and n coprime,
andS(b, r) analogously.

(b) For every setAcZ+ of the above form, there exists a map of class C°°,f:S1->S1

of degree one, with P{f) = A.

Remark. For /, reZ+u{2°°} either m (/)<= ui(r) or m (/•)<= m (/). Hence, if a =b,
then we can take r and / equal.

In the following, / will be a continuous map S1->S1, F its lifting to U,e the
natural projection U-*Sx{e{X) = exp (2wiX)).

We shall use the techniques of [4]. For maps of degree one, one of the main
tools is the theory of rotation numbers ([8], [4]). Since we are interested only in
periodic points, we present this theory along the lines of [4] rather than [8].

For a periodic point xeS1 of period n and XeU with e(X) = x, we have
F"(X) =X + kfor some k e Z. We call the number p(F,x) = k/n the rotation number
of x. It does not depend on the choice of X from e~x({x\). Rotation numbers have
the following properties ([8], [4]):

(i) for a lifting G=F" + m off,

p(G,x)=p-p{F,x) + m;

(ii) if k and n are coprime and p(F, x)<k/n <p(F, y) for some x , y e 5 then
there exists a periodic point z e S with p{F,z) = k/n.

The following fact follows from [6] and [8]. We shall give its simple proof in
the spirit of [4].

LEMMA \.LetxmeSl (m = 1, 2, 3,...) be periodic points and let limmp(F,xm) = k/n.
Then there exists a periodic point x0 with p(F, x0) = k/n.

Proof. Set G =F" — k. Suppose that G has no fixed points. Then the number
c =infXeR\G(X)—X\ is positive. Hence, if p is a period of xm and e(Xm) = xm, we
have

\Gp(Xm) -Xm | >pc.

Consequently,

p(F,xm) —
n

1, , „ >, c
> - forallm

n
which is a contradiction.

Thus, G has a fixed point, say Xo. The point x0 = e (Xo) has rotation number

) ( ( G ) + k)p •
n n

From (ii) and lemma 1 it follows that if / has a periodic point then the set {p(F,x):
X is periodic} is an intersection of some closed interval (perhaps degenerated to a
single point) with the rational numbers. We shall call this interval the rotation
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interval and denote its endpoints by a (F) (the lef thand one) and b (F) (the righthand
one). In the degenerate case, a(F) = b(F).

In the case when / has no periodic points, it is easy to see (for any k/n look at
the graph of F" - k) that the limit a = lim« (1/n )(F" (X) -X) exists, does not depend
onXeR, and is irrational. Then we set a(F) = b(F) = a.

Consider a continuous map t>-*ft from an interval / to the space C?(5J, S1) of
continuous maps of S1 into itself of degree one. Then we can find a continuous
map t y-*F, from / to C°(R, R) (with the topology of uniform convergence) such
that for every t, Ft is a lifting of /,.

Simple arguments, based on the fact that a (F) < k/n < b (F) if and only if
G = F " — k has a fixed point, show that the following lemma holds ([8]):

LEMMA 2. In the above situation, the maps t <-* a (F,) andt *-*b{Ft) are continuous. •

For homeomorphisms, the notion of the rotation number was known long ago [10].
In this case the rotation interval always reduces to one point.

LEMMA 3. Let f,g:Sl -*Sl be continuous maps with liftings F,G respectively. If
G^Fand f or g is a homeomorphism, then a(G)^b(F).

Proof. Suppose that / is a homeomorphism (the other case is analogous). Take
X eR. Then, sinceF is increasing,

Since / is a homeomorphism, we have (see e.g. [9])

Hence,

\im-(Fn(X)-X) =
» n

lim inf - (G " {X) - X) = lim inf - G " (X) > lim - F " (X)
n n n n " n

= lim-(Fn(X)-X) =

But if e(X) is periodic for g then

= \im-(Gn(X)-X),
n n

and hence a{G)>b(F). •

Remark. (A) If F is non-decreasing then it is easy to see that for every X,
lim - ( F " (X) -X) = a (F) = b (F).

(B) In a general case, the maps aF and /?F, defined as

= inf F(Y), pF(X)= sup F(Y),
ye(-oo,X]

are also liftings of continuous maps of a circle and are non-decreasing. Moreover,

a(aF) = a(F) and

https://doi.org/10.1017/S014338570000153X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000153X


224 Michat Misiurewicz

(C) In view of (A), (B) and lemma 3, we obtain that in the general case, G>F
implies a(G)>a(F) and b(G)^b{F). However, we shall only need to use lemma
3, and not this more general result.

Before proving the theorem, we have to prove several auxiliary facts. We shall
be interested also in obtaining some estimates of the topological entropy h{f).

PROPOSITION 4. / / a(F)<0<b(F) then f has periodic points of all periods with
rotation number 0, and h (/) s log 3.

Proof. Take x, y periodic with p(F, y)<0<p(F,x), and X, YeU with e(X) = x,
e(Y) = y, X <Y. Set:

m=max{k>0:Fk(X)<Y}; Z = min{Fk(AT): k >m};

n=max{k>0:Fk(Y)>Fm(X)}; T = max{Fk(Y): k >n}.

Then F(Fm(AT))>Z, F(Z)>Z, F(Fn(Y))<T and F(T)<T. Therefore for the
intervals I = \T,Fm{X)\ J = [Fm(X),Fn{Y)] and K = [F"(Y),Z], we get (cf.
figure 1):

FIGURE 1

F( / )=>/ u /u / s r , F(/)=>/u/u/sT and F{K)=>I u / uK. Hence, F has periodic
points of all periods (cf. [4]). Their images under e are periodic for / and have
rotation number zero. Consequently, they have the same periods for F and / (see
[4, theorem 3.2]).

The set C = { W: Fk (W) e [T, Z] for all k > 0} is F-invariant and closed. We have
h(F\c)slog 3. Since e\c is at most p-to-1 for some integer p, we get

A(/)>/I(/Uc)) = / I (F| c)>log3. •

LEMMA 5. If X is periodic of period s for f and p (Fn, x) = k e Z, and k and n are

coprime, then p(F,x) = k/n and x has period sn for f.

Proof. By property (i) of rotation numbers, p(F,x) = k/n. Therefore the /-period
of x is pn for some integer p. But then the /"-period of x is p, and hence p = s. •

PROPOSITION 6. If a (F) < k/n < b (F) and k and n are coprime then f has periodic
points of all periods sn, s eZ+, with rotation number k/n. The topological entropy of
f is at least \/n log 3.

Proof. For the lifting G=Fn-k of /", we have a(G)<0<b(G). By proposi-
tion 4 for all s e Z+ there exist periodic points of period 5 with G-rotation
number 0. Their F"-rotation number is k, and by lemma 5, their F-rotation
number is k/n and their /-periods are sn. By proposition 4, h (/") > log 3, and hence
h(/)>!/« log3. •
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Since k/n = ks/ns, we get the following corollary:

COROLLARY 7. / / a (F) < k/n < b (F) then f has a periodic point of period n. •

Proof of theorem
Denote by Po the periods of periodic points with rotation number in the open
interval (a (F), b (F)), by Pi the periods of periodic points with rotation number
a{F), and by P2 the periods of periodic points with rotation number b(F). Then
obviously P(f) = Po u Pi u P2.

Set a =a{F), b = b(F). By corollary 7, M(a, b)<=-P0, and by the definition of a
and b,P0<^M(a,b). Therefore Po = M(a, b). If a is irrational then, clearly, P\ = 0 .
If a = k/n where k and n are coprime, then we look at the lifting G —F" —k of
/". By the Sarkovskii theorem, P(G) = HI (/) for some / e it u{2°°}. As in the proof
of proposition 4, there is one-to-one correspondence (preserving periods) between
periodic points of /" with G-rotation number zero and periodic points of G. Hence,
by lemma 5, Pi = n • III (/). In both cases, Pi = S(a, I). Analogously, P2 = S(b, r) for
some reZ+u{2°°}. This completes the proof of (a).

To prove (b), we have to describe for given a, b, I and r how to construct / with
P(f) = M(a, b)uS(a,l) uS{b, r). We start with a homeomorphism f0 (of class C°°)
with a (Fo) = a. If a is irrational, we require also that the set of non-wandering
points n(/0) is a Cantor set (an example of such a homeomorphism for irrational
a was given recently by Hall [5]). If a is rational, we require that fl(/0) consists of
only one periodic orbit, attracting from the left and repelling from the right (this
is very easy to construct). Then we deform /0 (in a C°° way) outside fl(/o) to get
a fixed point whose rotation number is an integer k > a (we 'push a part of the
graph up'), all the time keeping the lifting larger than or equal to Fo. By lemma
2, for some /„ we get b (Ft) = b. In view of lemma 3, a (F,) = a (Fo) = a (we did not
change the map on fl(fo))- Clearly, we may start from b(F) and then 'push a part
of the graph down' to obtain the required a(F).

We make the above construction if at least one of the numbers a or b is irrational.
If only one of them is irrational, then we start from the other side. If both a and
b are rational, we take instead a map / (of class C°°) such that the graph of F lies
between the lines Y =X + a and Y = X + b and touches each of them along a
lifting of one periodic orbit of /.

In such a way in all cases when a (or b) is rational, there is only one orbit with
that rotation number. If / (or r) is different from 1, then we replace this orbit by
a periodic interval and then put on it a corresponding Sarkovskii example (see [11],
[12]; it is easy to do it in a C°° manner). •

Our theorem describes all possible sets P(f). However, one can ask further
questions about the structure of the sets M(a, b), S(a, I) and S(b, r). The structure
of the sets S(a, I) and S(b, r) is very simple and needs no further explanation.
Hence, we are left with the question about the structure of M(a, b). This is
a number-theoretical problem: given a <b, what are the (positive) denominators
of fractions from (a, b)l
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If a<O<b, we have all denominators (0/n=0). If a = 0 then we have all
denominators larger than E(\/b), where E denotes the integer part. The situation
for b = 0 is analogous - we have all denominators larger than E(-l/a). The case
b <0 may be reduced to the case a > 0 by replacing (a, b) by (-b, -a).

Thus, we are left with the case 0 < a < b. In this case, the answer is not obvious.
Moreover, it is even not quite obvious what should be considered as a satisfactory
answer. One of the possibilities is to find an easy way of determining, for given a,
b and n, whether there exists an integer k such that a < k/n < b.

PROPOSITION 8. Let 0<a <b and let n be a positive integer. Then there exists an
integer k with a < k/n <b if and only if E(na) +1 < nb.

Proof. If: We set k = E(na) +1 and assume that k <nb. Then a <k/n <b.
Only if: We assume that a < k/n < b for some integer k, then na < k, and hence
E(na) + \<k<nb. O

Another possibility is to find an easy way of writing the denominators down (in
some order). This can be done, when we notice that a < k/n < b if and only if
k/b <n <k/a. Hence, to obtain all the denominators, we take all integers from
(k/b, k/a), k = 1,2,3,.... We can end this procedure when we reach l/(b -a),
since if n>l/{b—a) then b-a>l/n and consequently there is some k with
a <k/n <b. Hence, past l/(b —a) we already obtain all integers.

If a and b are rational, we can provide different kinds of answers. Unfortunately,
they are only partial.

LEMMA 9. Let I, m, p, q, r and s be positive integers such that l/m < p/q. Then

I
m

rl + sp

^ rl + sp ^p
rm+sq q

rm(l/m)+sq(p/q)

Proof. The number

rm +sq rm+ sq

is a weighted average of l/m and p/q. •

The above lemma allows us to deduce the result of [1] from proposition 6. If the
smallest elements m, q of P{f) are coprime and larger than 1 then we can distinguish
two cases. Either the corresponding periodic points have the same rotation numbers
- then this rotation number is an integer and we use the properties of the Sarkovskii
ordering - or these rotation numbers are of the form l/m and p/q and we use
lemma 9 and proposition 6. In both cases we deduce that / has periodic points of
periods rm +sq for all r, s > 1.

Under an additional assumption, we can reach a stronger conclusion than that
in lemma 9.

PROPOSITION 10. Let l/m <p/q and let m and q be coprime. Then for a positive
integer n there exists an integer k such that l/m < k/n <p/q if and only if there exist
positive integers r and s such that n (mp —lq) = rm+ sq.
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Proof. If: We assume that such r and s exist. Then, by lemma 9, for

k

mp — Iq

we get

/ k p
m n q

Since mp - Iq divides rm +sq, it also divides the following integers:

p(rm + sq) — r(mp - Iq) = q(rl + sp)

and

l(rm +sq) + s(mp—lq) = m(rl + sp).
Therefore, since q and m are coprime, mp — Iq divides rl + sp. Consequently, k is
an integer.
Only if: We let II m <k/n <p/q. Then for r = np-kq and s =mk-ln, we have
n(mp—lq) = rm+sq. •
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