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Periodic Resource Model for Compositional Real-Time Guarantees �

Insik Shin and Insup Lee
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104 USA

�ishin,lee�@cis.upenn.edu

Abstract

We address the problem of providing compositional hard
real-time guarantees in a hierarchy of schedulers. We first
propose a resource model to characterize a periodic re-
source allocation and present exact schedulability condi-
tions for our proposed resource model under the EDF and
RM algorithms. Using the exact schedulability conditions,
we then provide methods to abstract the timing requirements
that a set of periodic tasks demands under the EDF and RM
algorithms as a single periodic task. With these abstrac-
tion methods, for a hierarchy of schedulers, we introduce a
composition method that derives the timing requirements of
a parent scheduler from the timing requirements of its child
schedulers in a compositional manner such that the timing
requirement of the parent scheduler is satisfied, if and only
if, the timing requirements of its child schedulers are satis-
fied.

1. Introduction

Scheduling is to assign resources according to schedul-
ing policies in order to service workloads. The scheduling
can be accurately characterized by a scheduling model that
consists of three elements: a resource model, a scheduling
algorithm, and a workload model. In real-time schedul-
ing, there has been a growing attention to a hierarchical
scheduling framework [4, 8, 10, 12, 5] that supports hi-
erarchical resource sharing under different scheduling al-
gorithms for different scheduling services. A hierarchical
scheduling framework can be generally represented as a
tree, or a hierarchy, of nodes, where each node represents
a scheduling model and a resource is allocated from a par-
ent node to its children nodes, as illustrated in Figure 1.
To characterize such a resource allocation between a parent
node and a child node, we consider a scheduling interface

�This research was supported in part by NSF CCR-9988409, NSF
CCR-0086147, NSF CCR-0209024, Boeing, and ARO DAAD19-01-1-
0473.

model ���� � ���, where�� represents the real-time guar-
antee that the parent node supplies to the child node and
�� represents the real-time guarantee that the child node
demands to the parent node. It is desirable that such a hier-
archical scheduling framework satisfies the following prop-
erties: (1) independence: the schedulability of a scheduling
model is analyzed independent of other scheduling models,
(2) separation: a parent scheduling model and each child
scheduling model are separated such that they interact with
each other only through a scheduling interface model, (3)
universality: any scheduling algorithm can be employed
in a scheduling model, and (4) compositionality: a par-
ent scheduling model is computed from its child schedul-
ing models such that the timing guarantee of the parent
scheduling model is satisfied, if and only if, the timing guar-
antees of its child scheduling models are satisfied together
in the framework. In this paper, we introduce a scheduling
interface model for constructing a hierarchical scheduling
framework that meets these desirable properties.

Deng and Liu [4] and Lipari and Baruah [10] intro-
duced hierarchical scheduling frameworks where a schedul-
ing interface model ���� � ��� is implicitely specified in
terms of a uniformly slow resource, or a fractional resource
�� ��� � that is always available only at a fractional capac-
ity �� . A parent scheduling model provides a fractional re-
source �� ���� to a child scheduling model, and the child
model demands a fractional resource�� ���� to the parent
model. The schedulability of the child scheduling model
is analyzed with �� according to the traditional scheduling
theories, and �� can be easily derived from this schedu-
lability analysis. However, �� does not capture any task-
level timing requirements of the child model. Thus, the par-
ent model’s scheduler was limited to the EDF scheduler that
needs to interact with the child model’s scheduler for the
knowledge of the task-level deadline information.

Feng and Mok [5] proposed the bounded-delay resource
partition model ����� � ��� for a hierarchical scheduling
framework. This resource partition model describes a be-
havior of a partitioned resource that is available at its full
capacity at some times but not available at all at the other
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Figure 1. Hierarchcial scheduling framework:
parent and children scheduling models.

times, with reference to a fractional resource �� ����.
The following property holds between ����� � ��� and
�� ����: when an event � happens � time after another
event �� over �� , the time distance between � and �� over
�� is between � � �� and � � �� . This property yields
the following sufficient schedulability condition: a schedul-
ing model is schedulable over �� if all the tasks in the
scheduling model complete their execution�� time earlier
than their deadlines over �� . This bounded-delay resource
partition model ����� � ��� can be used for specifying
the real-time guarantees supplied from a parent model to a
child model. The schedulability of the child model is then
sufficiently analyzed with ����� � ��� accordingly. Even
though the child model runs over a partitioned resource, its
schedulability is analyzed as if it runs over a fractional re-
source. Thus, the scheduling algorithms in all child models
are required to handle this difference by employing the no-
tion of virtual time scheduling.

Regehr and Stankovic [12] introduced another hierar-
chical scheduling framework that considers various kinds
of real-time guarantees. An implicit scheduling interface
model ���� � ��� is specified such that �� and �� can be
of different kinds of real-time guarantees. They focused on
converting one kind of guarantee to another kind of guar-
antee such that whenever the former is satisfied, the latter
is satisifed. With their conversion rules, the schedulabil-
ity of the child model is sufficiently analyzed such that it
is schedulable if �� is converted to �� . They assumed
that �� is given for any child model and did not consider
the problem of deriving �� from a child model, which we
address in this paper.

In this paper, we propose a periodic resource model

�� ����� for a scheduling interface model in a hierarchi-
cal scheduling framework. The periodic resource model can
characterize a resource allocation of � time units every �
time units. When this periodic resource is given as the real-
time guarantees supplied from a parent model to a child
model, we introduce the necessary and sufficient schedu-
lability conditions for the child model with the EDF and
RM scheduling algorithms. Using this exact schedulabil-
ity analysis, the real-time guarantees demanded by a child
model to a parent model can be derived as a traditional pe-
riodic task model [11]. With a scheduling interface model
that is specified in terms of a periodic resource model and a
periodic task model, we introduce a composition method to
develop a parent scheduling model from its child scheduling
models in a compositional manner. In addition, we derive
the utilization bounds of a periodic resource and the capac-
ity bounds of a periodic resource for a set of peridic tasks
under the EDF and RM algorithms, respectively.

The rest of this paper is organized as follows: Section 2
presents our system models and problem statements. Sec-
tion 3 proposes a periodic resource model. For a scheduling
model that contains our proposed resource model, Section
4 presents its schedulability analysis and Section 5 provides
its schedulability bounds for the RM scheduling algorithm
and the EDF scheduling algorithm, respectively. Section
6 shows a composition method for a hierarchical schedul-
ing framework that supports compositional real-time guar-
antees. Finally, we conclude in Section 7 with discussion
on future research.

2. System Model and Problem Statement

A scheduling model � is defined as �	���
�, where
	 is a workload model that describes the workloads (ap-
plications) supported in the scheduling model, � is a re-
source model that describes the resources available to the
scheduling model, and 
 is a scheduling algorithm that de-
fines how the workloads share the resources at all times. For
the workload model, we consider the Liu and Layland peri-
odic task model [11] that defines a task � as ��� ��, where
� is the period of � and � is the execution time require-
ment of � . In this paper, we assume that each task is in-
dependent and preemptive. For the scheduling algorithm,
we use the rate monotonic (RM) algorithm, which is an op-
timal fixed-priority algorithm, or the earliest deadline first
(EDF) algorithm, which is an optimal dynamic scheduling
algorithm. For the resource model, we consider a parti-
tioned resource model. For instance, the bounded-delay re-
source partition model ����� � ��� is a good example of
a partitioned resource model, where �� is the overall ca-
pacity (utilization) of a partitioned resource and �� is the
bounded delay between the partitioned resource and a frac-
tional resource with a capacity �� [5]. A scheduling model

2
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�������� is said to be schedulable if a set of periodic
workloads � is schedulable under a scheduling algorithm
� with a partitioned resource �. Example 2.1 shows how
to model a partitioned resource with a bounded-delay re-
source partition model ����� � ��� and then shows how
to analyze the schedulability of a scheduling model contain-
ing����� � ���. This example is a motivating example to
show the difficulty of a schedulability analysis with a parti-
tioned resource.

Example 2.1 Consider two periodic tasks, ����� �� and
������ ��, that are to execute under the EDF scheduling al-
gorithm with a partitioned resource � that guarantees the
resource allocations of 3 time units every 5 time units. In
modeling this partitioned resource � with a bounded-delay
resource partition model����� � ���, �� and�� are de-
termined as follows:

�� � ��� and �� � �� by Definitions 4 and 7 in [5].

Then, we can construct a scheduling model � as
������ ���� ���		
� ��� 
�� �. Over the fractional re-
source with a fractional capacity �� � 		
, �� and ��
finish their execution at least� time units earlier than their
deadlines, where � � � in this example. According to The-
orem 1 in [5], � is schedulable if � � �� . In this ex-
ample, since � � � and �� � �, it turns out � � �� .
Hence, the schedulability of � is inconclusive�.

The bounded-delay resource partition model is intro-
duced to characterize a delay between a partitioned re-
source and its corresponding fractional resource, not neces-
sarily to characterize a periodic behavior of a partitioned re-
source. In this paper, we propose a periodic resource model
����
� that describes a partitioned resource guaranteeing
an allocation of 
 time units every � time unit period. With
our proposed periodic resource model, it is possible to con-
sider the following problems.

1. Exact schedulability analysis: given���, and�, de-
termine whether or not������ �� is schedulable in
the necessary and sufficient way.

2. Periodic capacity bound: given � ,�, and �, find
the smallest possible periodic capacity bound (
���)
such that ��������
�� �� is schedulable if 
 �

�. This problem can be viewed as modeling a work-
load task set � under algorithm � as a single pe-
riodic task � �
� �� by abstracting its timing require-
ments such that 
 � � and � � 
�.

�It is shown in Example 4.1 that the schedulability of� is conclusive,
when the partitioned resource � is modeled with our proposed periodic
resource model.

3. Utilization bound: given � and �, find the largest
possible utilization bound �� such that ������ ��
is schedulable if

�

����

��

�
� ��	

4. Algorithm set: given � and �, find a set of al-
gorithms � such that ������ �� is schedulable if
� � �.

5. Compositional guarantee: given � scheduling mod-
els, derive a new scheduling model from the �
scheduling models such that we call the new schedul-
ing model a parent scheduling model of the � models
and that the parent scheduling model is schedulable,
if and only if, the � child models are schedulable.

In this paper, we address the problems #1, #2, #3, and
#5, but not the problem #4.

3. Periodic Resource Model

For real-time systems, the Liu and Layland periodic task
model [11] and its various extensions have been accepted
as a workload model that accurately characterizes many
traditional hard real-time applications, such as digital con-
trol and constant bit-rate voice/video transmission. Many
scheduling algorithms based on this workload model have
been shown to have good performance and well-understood
behaviors. We define a periodic application as a real-time
application that consists of periodic tasks and thus exhibits
a periodic behavior. In abstracting a periodic application
with a workload model, we naturally consider an approach
to abstract it as a single periodic task�. We can then directly
use the traditional real-time scheduling theories based on
the periodic task model. When a resource is allocated to a
workload such that the workload’s periodic timing require-
ment is satisfied, then the resource allocation to the work-
load clearly has a periodic behavior. Thus, there needs to
be a resource model that characterizes accurately a periodic
behavior of a resource allocation. We propose a periodic re-
source model ����
� in order to characterize a partitioned
resource that guarantees allocations of 
 time units every �
time units, where a resource period � is a positive integer
and a resource allocation time 
 is a real number in �	���.
For example, ���� �� describes a partitioned resource that
guarantees 3 time units every 5 time units, and ���� �� rep-
resents a dedicated resource that is available all the time, for
any integer �.

�In this paper, we do not address the issue of modeling a non-periodic
application as a single periodic task. This issue has been addressed well in
the literature [9, 14, 15, 4].

3
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Figure 2. Resource supply function: (a) how to calculate the minimum resource supply of � during �

and (b) the minimum resource supply and its linear lower-bound for ���� ��.

We define the resource supply of a resource as the
amount of resource allocations that the resource provides.
During a time interval, a dedicated resource can clearly pro-
vide a resource supply equal to the interval length, however,
a partitioned resource is to provide a resource supply that is
smaller than or equal to the interval length. For a periodic
resource ������, we define a resource supply bound func-
tion ������� of a time interval length � that calculates the
minimum resource supply of � during � time units as fol-
lows:

������� �
�
�� �����

�

�
��� ��� (1)

where

�� � 	
�
�
�� �������

�
�� �����

�

�
� ������ �

�

� 	
�
�
�� 
�������

�
�� �����

�

�
� �
�
�

Figure 2 (a) illustrates how Eq. (1) calculates the minimum
resource supply of � during �. The supply bound function
���� is a non-decreasing step function. Here, the follow-
ing lemma introduces a linear function that lower-bounds
�������.

Lemma 1 A linear supply bound function ���� ���� lower-
bounds ������� as follows:

�������� �
�

�
��� 
 � ������ � ��������

Proof. We consider two cases depending on the value of ��
in �������: (1) �� � � and (2) �� � �.

For the first case where �� � �,

�� 
�������
�
�� �����

�

�
� �� (2)

In this case,

������� � �
�
�� �����

�

�
�

From Eq. (2), we have

�

�
��� 
������ � �

�
�� �����

�

�
� (3)

Eq. (3) shows �������� � �������.
For the second case where �� � �,

�� 
�������
�
�� �����

�

�
� �� (4)

In this case,

������� � �� 
������ �����
�
�� �����

�

�
�

From Eq. (4), we have

�� 
�����

�
�

�
�� �����

�

�
� �� (5)

With Eq. (5) and the definition of � (� � � � �), we have

�������� ��������

� �����
�
�� 
�����

�
�

�
�� �����

�

��

� ��

�

Example 3.1 Consider a periodic resource ���� ��. Figure
2 (b) plots its minimum supply ��� ���� and its linear supply
lower bound ��������. For instance, during a time interval
of 10 time units, the periodic resource ���� �� supplies at
least a resource allocation of 4 time units.

We define the service time of a resource as the duration
that it takes for the resource to provide a resource supply.
It is obvious that it takes a service time of � time units for
a dedicated resource to provide a resource supply of � time
units. It is also clear that it takes a service time longer than

4
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Figure 3. Service time function: (a) how to calculate the maximum service service of � for a supply
of � � �� � �� � �� and (b) the maximum service time and its linear upper-bound for ���� ��.

or equal to � time units for a partitioned resource to provide
a resource supply of � time units. For a periodic resource
��	�
�, we define a service time bound function �������
of a resource supply of � that calculates the maximum ser-
vice time of � for a �-time-unit resource supply as follows:

������� � �	�
� � 	 �

� �



�
� ��� (6)

where

�� �

�
	�
� ��


�
�

�

�
if
�
��


�
�

�

�
� �

�
� otherwise

(7)

Figure 3 (a) illustrates how Eq. (6) calculates the maximum
service time of � for a resource supply of �. The service
time bound function ������� is a non-decreasing step func-
tion. Here, the following lemma shows a linear function
that upper-bounds �������.

Lemma 2 A linear service time bound function ���� ����
upper-bounds ��� ���� as follows:

�������� �
	



� �� ��	�
� � ��������

Proof. The idea of proving this lemma is similar to that for
Lemma 1. Due to the space limit, we refer [13] for a full
proof. �

Example 3.2 Consider a periodic resource ���� ��. Figure
3 (b) plots its maximum service time ������� and its linear
service time upper bound ���� ����. For instance, it takes up
to 7 time units to receive a resource supply of 3 time units.

4. Schedulability Analysis

For a scheduling model ������ �� that characterizes
all its three elements, we address the problem of analyz-
ing the schedulability of � . This section presents suffi-
cient and necessary schedulability conditions for a set of

5 10 15 20
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resource demand

re
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em

an
d

time

Figure 4. An example of a maximum demand
bound and its linear upper-bound.

periodic workloads under the EDF algorithm and a fixed-
priority scheduling algorithm with a periodic resource.

4.1. Schedulability Analysis under EDF Scheduling

We define the resource demand of a workload set as
the amount of resource allocation that the workload set re-
quests. For a periodic workload set � , we define a resource
demand bound function ���� ��� of a time interval length �
that calculates the maximum resource demand of � under
EDF scheduling during � time units as follows:

���� ��� �
�
����

� �
��

�
� 	��

Figure 4 shows an example of the maximum resource
demand of a periodic workload set � . As shown in Fig-
ure 4, the resource demand function ���� ��� is a discrete
step function. Here, the following lemma shows a linear
function that upper-bounds ���� ���.

Lemma 3 A linear demand bound function ����� ���
upper-bounds ���� ��� as follows:

����� ��� � 
� � � � ���� ����
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where �� is the utilization of the workload set � .

Proof. According to the definition of ���� ��� and �� , we
have the followings:

���� ��� �
�

����

� �
��

�
� ��

�
�
����

�

��
� �� � �� � � � ����� ����

�

With a dedicated resource, a workload set � is schedu-
lable with the EDF scheduling algorithm if and only if the
resource demand during a time interval is no greater than
the length of the time interval for all time intervals during a
hyperperiod [2], i.e.,

���� ��� � �� for all � � � � � � �	
� � (8)

where�	
� is the least common multiplier of the periods
of all the workloads in the workload set � .

Now, we consider a sufficient and necessary schedulabil-
ity condition for a workload set with a partitioned resource.
The traditional schedulability condition of Eq. (8) basically
means that for any time interval, the resource demand of a
workload set during the time interval should be no greater
than the resource supply of a resource during the same in-
terval. Since the resource demand of a workload set is in-
dependent of a resource, the left-hand side of Eq. (8) is not
affected by a partitioned resource. However, the right-hand
side of Eq. (8) that represents the resource supply should
change depending on a partitioned resource. For a peri-
odic partitioned resource�, since the resource supply bound
function ������� defines the minimum resource supply of �
for a time interval length �, the right-hand side of Eq. (8) is
replaced by �������.

Theorem 1 (EDF Schedulability Analysis) For a given
scheduling model
����� ��
 �,
 is schedulable if and
only if the resource demand of � during a time interval is

no greater than the resource supply of � during the same
time interval for all time intervals during a hyperperiod,
i.e.,

�� � � � � � �	
� � ���� ��� � �������� (9)

Proof. To show the necessity, we prove the contrapositive,
i.e., if Eq. (9) is false, all workload members of � are
not schedulable by EDF. If the total resource demand of �
under EDF scheduling during � exceeds the total resource
supply provided by � during �, there is clearly no feasible
schedule.

To show the sufficiency, we prove the contrapositive, i.e.,
if all workload members of � are not schedulable by EDF,
then Eq. (9) is false. Let �� be the first instant at which a job
of some workload member �� of� that misses its deadline.
Let �� be the latest instant at which the resource supplied to
� was idle or was executing a job whose deadline is after
��. By the definition of ��, there is a job whose deadline is
before �� was released at ��. Without loss of generality, we
can assume that � � �� � ��. Since �� misses its deadline
at ��, the total demand placed on � in the time interval
���� ��� is greater than the total supply provided by � in the
same time interval length �. �

Example 4.1 Consider a scheduling model

������� 	�� ��
 �, where � � ����
� 	�� ������ ���.
Figure 5 plots the minimum resource supply of � and the
maximum resource demand of � . According to Theorem 1,

 is schedulable if and only if the resource supply of � is
no less than the resource demand of � for a time interval
of length �, for � � � � � � �	
�. It is shown in Figure
5 that ���� ��� � �������, for � � � � ��. Thus, 
 is
schedulable.

4.2. Schedulability Analysis under Fixed-Priority
Scheduling

For a given scheduling model 
 �������� ��� 
� �,
where ���� �� represents a dedicated resource and 
� is
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a fixed-priority scheduling algorithm, � � is schedulable
if and only if the worst-case response time of each work-
load in � is no greater than its relative deadline [7]. The
worst-case response time �� of a workload �� occurs when
�� experiences the worst-case interference from its higher-
priority workloads. �� is maximally interfered by its higher-
priority workloads when it is released together with all of its
higher-priority workloads at the same time, which is called
a critical instant. Using the iterative response time analysis
method introduced in [1], �� can be computed as follows:

�
���
� � ���

�

����� �� ����

�
�
�����
�

��

�
���� where �� � ���� ����

(10)
where �� ������ denotes a subset of � that consists of
the higher-priority workloads of ��. The iteration continues
until ����� � �

�����
� , where ����� � ��.

Now, we consider a periodic partitioned resource
������ such that � is not necessarily equal to � and a
scheduling model ����������� 	� �. For the schedu-
lability analysis of � , we first consider the worst-case
response time �� of a workload �� under fixed-priority
scheduling with a periodic partitioned resource ������.
The response time analysis method of Eq. (10) has been
developed under the traditional assumption of a dedicated
resource and therefore under the assumption that the ser-
vice duration of a resource for a resource supply of 
 time is

 time. The service duration of a partitioned resource for a
resource supply of 
 time can be longer than 
 time. Consid-
ering this, we extend the traditional response time analysis
method of Eq. (10) for a periodic partitioned resource. For a
workload �� with a periodic partitioned resource ������,
its maximum response time �� can be computed using the
following iterative method:

�
���
� ��� � ������

���
� �� (11)

where

�
���
� � �� �

�
����� �� ����

�
�
�����
� ���

��

�
� ��� (12)

�� captures the worst-case interference to a workload ��
from its higher-priority workloads, and ����� represents the
maximum service duration of a resource supply of ��. The
iteration continues until ����� � �

�����
� , where ����� � ��.

Theorem 2 (Fixed-Priority Schedulability Analysis)
For a given scheduling model ������ 	� �, where 	� is
a fixed-priority scheduling algorithm, � is schedulable if
and only if

��� �� � ����� � ��� where �� � ���� ���� (13)

Proof. An individual workload is schedulable with � if and
only if the maximum service duration of � for the execu-
tion time of the workload is no greater than the workload’s
relative deadline. The maximum response time of a work-
load �� occurs when �� experiences the worst-case interfer-
ence from its higher-priority workloads and � provides the
worst-case resource supply. For a workload ��, the worst-
case interference from its higher-priority workloads is given
by �� and the maximum service duration of � for �� is given
by ��������, which is the maximum response time �� of ��
with �. Consequently, a necessary and sufficient condition
for �� to meet its deadline with � is ����� � ��. The entire
workload set � is schedulable with � if and only if each of
the workloads is schedulable with �. This means

��� �� � ����� � ��� (14)

Thus, Eq. (14) is necessary and sufficient for the workload
set to be schedulable with �. �

Example 4.2
Consider a scheduling model �������� 	�� 
��, where
� � ����
� 	�� ������ ���. In this example, we first show
how to calculate the maximum response time of �� in � .
According to Eq. (12), � ���� � 	 � �
�	� � 	 � 	. Ac-

cording to Eq. (11), ����� ��� � �����	� � �� � 	� � 	 �

		�	
 � �� � �, where �� � 
. Subsequently, � ���� � 	

and �
���
� ��� � �. Since ����� ��� � �

���
� ���, the iteration

stops here, and ����� � �. We then show how to cal-

culate �����. Initially, � ���� � � � ���	� � 	 � � and

�
���
� ��� � ������� � �� � 	� � 	 � 	��	
 � �� � �
,

where �� � �	������	 � 	��	
 � �. Then, � ���� � 
 and

�
���
� ��� � ��. Subsequently, � ���� � �
 and ����� ��� � �
.

Eventually, � ���� � �
, ����� ��� � �
. Since �
���
� ��� �

�
���
� ���, the iteration stops here, and ����� � �
. Accord-

ing to Theorem 2, since ����� � �� and ����� � ��, � is
schedulable.

5. Schedulability Bounds

For a scheduling model � that characterizes its two el-
ements but does not characterize the other element, we ad-
dress the problems of deriving a schedulability bound for
the missing element of� . When � characterizes its work-
load � and scheduling algorithm �, we find a periodic ca-
pacity bound for its resource� that guarantees the schedula-
bility of ������ ��. Similarly, when � characterizes its
resource� and scheduling algorithm�, we find a utilization
bound for its workload � that guarantees the schedulabil-
ity of ������ ��. We derive the periodic capacity bounds
and the utilization bounds for the EDF algorithm and the
RM algorithm, respectively.
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5.1. Periodic Capacity Bounds

We define the periodic capacity �� of a periodic re-
source ������ as ���. In this section, given a set of
periodic workloads � under a scheduling algorithm �,
we address the problem of characterizing a set of periodic
resources that satisfy the timing requirements of � un-
der �. A reasonable approach is to classify such a set of
periodic resources by their periodic capacities subject to
their resource periods. For such a classification, we de-
fine the periodic capacity bound ���� ��� �� of a re-
source period � as a number such that a scheduling model
����������� �� is schedulable if

���� ��� �� �
�

�
�

With this ���� ��� ��, we can easily determine whether
or not a given periodic resource ������ can satisfies the
timing requirements of � under �. Moreover, we can
easily abstract the timing requirements of � under � as
a single periodic workload 	 �
� �� such that 
 � � and
� � � � ���� ��� ��. In this section, we derive the pe-
riodic capacity bounds for the EDF algorithm and the RM
algorithm.

5.1.1 Periodic Capacity Bound for EDF scheduling

Given � under the EDF scheduling algorithm, we first ad-
dress the problem of finding the optimal (minimum) peri-
odic capacity bound of a resource period �. The following
theorem derives the optimal bound using the exact schedu-
lability condition in Theorem 1.

Theorem 3 (Optimal Periodic Capacity Bound for EDF)
For a given periodic workload set � under the �
�
scheduling algorithm, the optimal (minimum) periodic ca-
pacity bound ����

�
��� �
� � of a period � is

����
� ��� �
� � �

��

�
�

where �� is the smallest possible � satisfying

�� � � � ����� � ���� ��� � �������� (15)

A scheduling model����������� �
� � is schedula-
ble if and only if ����

� ��� �
� � � ��.

Proof. According to Theorem 1, ����������� �
� � is
schedulable if and only if Eq. (15) holds with �. Since ��

is the smallest possible � satisfying Eq. (15), the schedu-
lability of � is guaranteed if and only if ������ � ��.

�

Due to the max operation in Eq. (15), Theorem 3 in-
herently presents an algorithm to find the optimal periodic

capacity bound rather than a function to derive it. Here, the
following theorem presents a function to derive a periodic
capacity bound.

Theorem 4 (Periodic Capacity Bound for EDF) For a
given periodic workload set � under the �
� scheduling
algorithm, a periodic capacity bound ���� ��� �
� � of
a resource period � is

���� ��� �
� � �
��

�
� where

�� � 	
�
���������

��
��� ���� � 
����� ���� ��� ���

�

�
�

(16)

Proof. Since �������� � �������, we can have the follow-
ing from Theorem 1:

���� ��� � �������� �
�

�
��� �� � ��� � ��������

(17)
From Eq. (17), we have

� �

�
��� ���� � 
����� ���� ��� ���

�
� (18)

Hence, when we find �� such that �� is the smallest
possible � satisfying Eq. (18), we can guarantee that
����������� �
� � is schedulable if ������ � ��.

�

Example 5.1 For a given � � �	���� ��� 	����� ��� un-
der the EDF algorithm, this example considers the problem
of deriving a periodic capacity bound. We systematically
find the optimal periodic capacity bound of resource pe-
riod 5 according to the algorithm in Theorem 3, as 0.75
with �� � ����. That is, we can model � under the EDF
algorithm as a single period workload 	 ��� ����� preserv-
ing its timing requirement. Hence, for a scheduling model
������ �
� � where � does not yet characterize its re-
source, we define � as ���� ����� and make � schedu-
lable. According to Theorem 4, we can numerically find
a periodic capacity bound of resource period 5 as 0.77,
with �� � ��
�. We can also model � under EDF as
	 ��� ��
��.

5.1.2 Periodic Capacity Bound for RM Algorithm

In this section, we address the issues of deriving periodic ca-
pacity bounds for the RM scheduling algorithm. Given �
under the RM scheduling algorithm, the following theorem
shows how to find the optimal (minimum) periodic capacity
bound of a resource period � using the exact schedulability
condition in Theorem 2.
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Theorem 5 (Optimal Periodic Capacity Bound for RM)
For a given periodic workload set � under the ��
scheduling algorithm, the optimal (minimum) periodic ca-
pacity bound ����

� ��� ��� of a resource period � for
a periodic partition resource � is

����
� ��� ��� �

��

�
�

where �� is the smallest possible � satisfying the following
necessary and sufficient schedulability condition in Theo-
rem 2:

��� �� � ����� � 	�� where �� � �	�� 
��� (19)

A scheduling model ����������� ��� is schedula-
ble if and only if ����

� ��� ��� � ��.

Proof. According to Theorem 2, ����������� ��� is
schedulable if and only if Eq. (19) is true with �. Since ��

is the smallest possible � satisfying Eq. (19), the schedu-
lability of � is guaranteed if and only if ������ � ��.

�

The supply bound function �����
� that is used to cal-

culate the maximum response time �
���
� ��� has a discrete

operation as shown in Eq. (7). Like the optimal periodic ca-
pacity bound for the EDF algorithm, due to this discrete op-
eration, Theorem 5 inherently presents an algorithm to find
the optimal periodic capacity bound rather than a function
to derive it. Here, we present an integrative method to de-
rive a periodic capacity bound using ������
� that linearly
upper-bounds �����
�.

Recall that the maximum response time ����� ��� is com-
puted with the following iterative method:

�
���
� ��� � ������

���
� �� (20)

where

�
���
� � 
� �

�

����� �� ����

�
�
�����
� ���

	�

�
� 
�� (21)

Let ������ ��� denote the upper-bound of the maximum re-
sponse time that is computed as follows:

��
���
� ��� � �������

���
� �� (22)

Lemma 4 A scheduling model������ ��� is schedula-
ble if ��� �� � ������ � 	�.

Proof. Since �����
� � ������
�, clearly, ����� ��� �

��
���
� ���. Then, it is obvious that for all �� � � , if
������ � 	�, then ����� � 	�. �

Theorem 6 (Periodic Capacity Bound for RM) For
a given periodic workload set � under the �� schedul-
ing algorithm, a periodic capacity bound ���� ��� ���
of a period � for a periodic partition resource � is

���� ��� ��� �
��

�
� where

�� � 	
�
�����

�
��	� � ��� �

�
�	� � ���� � 
���
�

�
�

(23)
where

�� � 
� �
�

����� �� ����

�
	�
	�

�
� 
�� (24)

Proof. According to Theorem 2, ������ ��� is schedu-
lable even though for all �� � � , �� � 	�. �� cap-
tures the worst-case interference to a workload �� from its
higher-priority workloads. According to Lemma 4, then
����������� ��� is schedulable, if ��������� � 	� for
all �� �� , that is,

��� � � � ��������� �
�

�
� �� � ������ � 	�� (25)

�� captures the smallest possible � satisfying Eq. (25).
Thus, it is guaranteed that ����������� ��� is schedu-
lable if ������ � ��. �

Example 5.2 Given � � ������ ��� ������ ��� under the
RM scheduling algorithm, this example shows how to derive
periodic capacity bounds of resource period 5. According to
Theorem 5, we can systematically find the optimal periodic
capacity bound ����

� ��� ��� as 0.85, with �� � ����.
Thus, we can model� under RM as a single periodic work-
load � ��� �����. According to Theorem 6, we can also nu-
merically find a periodic capacity bound ���� ��� ���.
According to Eq. (24), �� � � and �� � �. According
to Eq. (23), �� � ���� since Eq. (25) is true for ��
with � � ���� and true for �� with � � ����. Thus,
���� ��� ��� � ��
� with �� � ����, and we can also
model � under RM as � ��� �����.

5.2. Utilization Bounds

Given a periodic resource �, we define the utilization
bound ������ of a scheduling algorithm � as a number
such that a scheduling model ������ �� is schedulable if�

����


�
	�

� �������

These utilization bounds are useful in performing an admis-
sion test of a periodic workload set � over a periodic re-
source � with a scheduling algorithm �. In this section, we
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Figure 6. An example of linear upper-bound
of demand and linear lower-bound of supply.

derive the utilization bounds for the EDF algorithm and for
the RM algorithm.

5.2.1 Utilization Bound for EDF Algorithm

When a scheduling model ����������� ��� � is
schedulable, it is clear that the utilization of� is no greater
than the periodic capacity of �. That is,

�� � �� �
�

�
� (26)

Recall the definitions of two linear functions, ����� �	�
and ������	�, as follows:

����� �	� � �� � 	 and ������	� �
�

�
�	� � � �������

When ����������� ��� � is schedulable, we can eas-
ily observe that the slope of ����� �	� is no greater than
the slope of ������	�, since �� � �

�
. As shown in Fig-

ure 6, it is obvious that if ����� �	�� � ������	
��, then

����� �	� � ������	� for all 	 
 	�. Let �� denotes the
smallest period in a periodic workload set � . The follow-
ing lemma shows that if ����� ���� � �������

��, then
������ ��� � is schedulable.

Lemma 5 When �������
�� � ����� ����, a scheduling

model ������ ��� � is schedulable, where �� is the
smallest period in � .

Proof. Due to the space limit, we refer [13] for a full proof.
�

Based on Lemma 5, the following theorem presents a
utilization bound for the EDF algorithm over a periodic re-
source.

Theorem 7 (Utilization Bound for EDF Algorithm)
Given a periodic resource ������, a utilization bound

������� � of the EDF algorithm for a periodic workload
set � is

������� � �
�

�

�
�� ������

��

�
� (27)

where �� is the smallest period in the workload set � .

Proof. Lemma 5 says that if ����� ���� �
�������

��, ����������� ��� � is schedulable. When
����� ���� � �������

��, we can get

����� ���� � �� ��� � �������
�� �

�

�
�������������

With the above equation, we can get

�� � ������	�

��
�

�

�

��� � ������

��

�

�
�

�

�
�� ������

��

�
�

�

Example 5.3 Given a periodic resource ���� 	� under the
EDF scheduling, this example shows how to derive a utiliza-
tion bound. Let �� denotes the shortest period of a periodic
workload set � . According to Theorem 7, when �� � �
,
������� � � �	
�� � ��� ����� 	�
�
� � 
�	�. When
�� � �

, ������� � � �	
�� � ��� ����� 	�
�

� �

���.

5.2.2 Utilization Bound for RM Algorithm

In this subsection, we derive a utilization bound for the RM
scheduling algorithm. Given a periodic resource �, the fol-
lowing theorem derives a utilization bound of the RM algo-
rithm.

Theorem 8 (Utilization Bound for RM Algorithm)
Given a periodic resource ������, a utilization bound
������� of the RM scheduling algorithm for a set of �
periodic workloads is

������� �
�

�

�
��

�

�
�� ���

�

�
������

��

�
� (28)

where �� is the shortest period of � .

Proof. Due to the space limit of this paper, we present a
sketch of our proof. We refer [13] for a full proof that is
based on Theorem 3, Theorem 4 and Theorem 5 in [11].
Consider a periodic workload set � � ���� � � � � ���,
where �� is defined as (��� ��), for � � � � �. Without
loss of generality, we assume that �� 
 ���� 
 � � � 

�� 
 ��. The main idea of the proof is to show that the
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achievable utilization factor of � is minimized when the
execution time requirement �� of each workload �� is set as
follows:

�� �
�

�
����� � ���� for � � � � �

�� � ��������� ���� � �� � � � �� ������

and the period �� of each workload �� is set as follows:

�� � �������� � ��� for � � � � ��

�

For large �, Eq. (28) becomes

	
����� �
�

�

�
�	 ��

�

�
������

��

�
� �

�

�
�	 �����

��

�
�

Example 5.4 Given a periodic resource 
��� �� under the
RM scheduling, this example shows how to derive a uti-
lization bound. Let �� denote the shortest period of a pe-
riodic workload set � . Assume � has a large number
of workloads. According to Theorem 8, when �� � �
,
	
����� � ��
�� � ��	 � � �� � ��
�
� � 
���. When
�� � �

, 	
����� � ��
�� � ��	 � � �� � ��
�

� �

��
.

6. Compositional Real-Time Guarantees

A hierarchical scheduling framework is said to support
compositional real-time guarantee if each parent schedul-
ing model is computed from its child scheduling models
such that the real-time guarantee of the parent scheduling
model is satisfied, if and only if, the real-time guarantees of
its child scheduling models are satisfied in the framework.
In this section, we address the problem of developing a par-
ent scheduling model from its child scheduling model in
order to construct a hierarchical scheduling framework that
supports compositional real-time guarantees. The follow-
ing theorem introduces a composition method that derives
a parent scheduling model from its child scheduling mod-
els and shows how to construct a hierarchical scheduling
framework supporting compositional real-time guarantees.

Definition 6.1 (Composition Method)
Given multiple scheduling models ��� � � � ���, we derive
a scheduling model �� ��� �
� � �� � from ��� � � � ���

as follows:

� we assume that �� and �� are given;

� we derive �� by simply mapping the resource
model of a child scheduling model 
��������
to its periodic task ������ ��� such that �� �
����������� � � � � ����������;

� we first derive ��
���
��� � �� � according to The-

orem 3 or Theorem 5 depending on �� . If
��
���

��� � �� � is derived, we then compute ��

such that �� � �� � ��
���
��� � �� �.

Theorem 9 (Compositional Real-Time Guarantees)
Given multiple scheduling models ��� � � � ��� that are
individually schedulable, we derive a scheduling model
�� ��� �
� � �� � from ��� � � � ��� according to the
composition method in Definition 6.1. Then, we construct a
hierarchical scheduling framwork� such that�� is a par-
ent scheduling model of ��� � � � ���. � supports the com-
positional real-time guarantees such that �� is schedu-
lable, if and only if, ��� � � � ��� are schedulable in the
framework.

Proof. To show its sufficiency, we consider ��� � � � ���

are schedulable together in the framework. That is, the com-
bined timing requirements of ��� � � � ��� can be satisfied.
According to the composition method, for all � � � � �,
�� in �� has the same timing requirements as 
� in ��

has. Thus, the combined timing requirements of ��� � � � � ��
can be also satisfied. Then, ��
���

��� � �� � is derived
as ��� 
�� such that 
 � ��� � �� , according to Theorem
3 and Theorem 5. Since the composition method derives
�� as ��� , �� is derived to be schedulable.

To show its necessity, we consider �� is schedulable.
Then, for all � � � � �, �� and its corresponding 
� are
guaranteed to receive �� time units every �� time units. That
is, �� receives from �� a resource allocation of �� time
units every �� time units. Thus, ��� � � � ��� are schedula-
ble together in the framework. �

Example 6.1 Consider two schedulable scheduling models
������
���� ��� ��� and ������
����� ��� ���. This
example shows how to derive a parent scheduling model
�� from �� and �� preserving the real-time guaran-
tees of �� and ��. For �� ��� �
� ��� ��� �� �� �,
we assume that �� is given as EDF and �� is given
as 5. Then, we derive �� and �� according to
the composition method in Definition 6.1. We con-
struct �� as �� � ������ ��� ������ ��� and compute
��
���

��� ��� � to derive �� . As shown in Example
5.1, ��
�

��
��� ��� � is 0.75 according to Theorem 3.

Then, �� is set as � � 
��� � ����. Now, we create ��

as �� ������� ��� ������ ����
��� ������ ��� �. Accord-
ing to Theorem 3, �� is schedulable.

7. Conclusion

We proposed a resource model that can describe a peri-
odic behavior of a partitioned resource and provided the ex-
act schedulability condition for a scheduling model with our
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proposed model. For a hierarchical scheduling framework,
we introduced a scheduling interface model that bridges
two independently developed scheduling models by model-
ing the temporal guarantees of a parent scheduling model
as a periodic resource model and abstracting the tempo-
ral requirement of a child scheduling model as a periodic
workload model. With this scheduling interface model, a
scheduling model can use any scheduling algorithm and its
schedulability is independently analyzed without any inter-
action with another scheduling model. Furthermore, we
provided a composition method to derive a parent schedul-
ing model from its child scheduling model in a composi-
tional manner such that if the parent scheduling model is
schedulable, if and only, its child scheduling models are
schedulable.

In this paper, we derive a parent scheduling model from
its child scheduling models. To preserve the timing require-
ments of the child scheduling models, the parent scheduling
model may demand more timing requirements than a simple
sum of the timing requirements of all individual schedul-
ing models. We are evaluating the overhead to support the
compositional timing guarantees. We are also studying the
properties that our compositional framework has, i.e., an as-
sociativity. In this paper, we consider only a periodic task
workload model for characterizing hard real-time applica-
tions. Our future work is to extend our resource model and
its scheduling theory to different task workload models for
soft real-time applications such as the ��� ��-firm deadline
model [6] and the weakly hard task model [3]. In this paper,
we assume that each task is independent. However, tasks
may interact with each other through communications and
synchronizations. The study of this issue remains as a topic
of future research.
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