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SUMMARY 
This paper deals with the periodic response of an oscillating system which is supported on a frictional interface. The base 
excitation is assumed harmonic and the frictional force is assumed to be of the Coulomb type. Though each segment of 
the motion of such a system is described by linear equations, its complete response is highly non-linear and varied. The 
most fundamental periodic solutions are derived analytically and numerically. The results indicate that such a system has 
several subharmonic resonant frequencies and that while the friction reduces the peak response of the system when it is 
excited at its ‘fixed-base’ natural frequency, w,, the sliding can induce considerably higher levels of response, when 
compared with those of a non-sliding, fixed-base system, for frequencies less than w,. The results obtained herein may 
find application in the area of vibration isolation. 

INTRODUCTION 

This paper has been primarily motivated by the considerable interest in the earthquake engineering 
community to reduce the levels of response of structural and mechanical systems subjected to strong 
earthquake ground shaking. One of the vibration isolation methods that has received considerable interest in 
the recent past deals with the concept of mounting such systems on surfaces which permit sliding.’ The 
rationale behind this is that if sliding could occur between the base of the system and the ground (or rubber 
pads, say, connected to the ground), the consequent slippage of the structure could reduce the peak 
displacements (relative to the base) of the system (Figure 1). Thus the stresses in the structure could be 
reduced at the expense of relative displacements between the structure and the ground. Though the 
plausibility of using such an isolation technique has often been proferred, very few, if any, analytical studies 
to date have been carried out to assess the merit of this idea for actual structural systems. Crandall et aL2 
have studied the problem of a rigid block supported on a sliding frictional interface subjected to random 
excitation and have shown that this philosophy may hold some promise. Caughey and Dienes3 studied the 
response of a similar system to white noise excitation. Den Hartog4 and Hundal’ have used Coulomb 
friction es a damping mechanism to study the response of a single degree of freedom oscillator subjected to 
dynamic loads. 

In this paper we extend the work of Crandall et al. and Caughey and Dienes, and study the response of a 
simple structural system (Figure 1) which rests on a frictional interface. The system chosen is generic in 
nature and it is anticipated that the analysis of this basic mechanics problem will yield a suitable framework 
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FORCE 

Figure 1. Coordinate systems for the sliding oscillator 

for further studies of more complex systems. We mention here in passing that the dynamics of such a system 
would find application in several other areas of engineering practice such as in the design of mechanical 
equipment, especially, for large control valves in the nuclear industry. 

The frictional resistance between the base and the structure is assumed to be of the Coulomb type and the 
coefficients of static and dynamic friction are taken to be the same. The frictional interface influences the 
excitation transferred to the system. It is found that the sliding mechanism could significantly alter the 
response characteristics of the oscillating structural system as compared to those of a rigid block. The non- 
linear system is shown to exhibit subharmonic resonant responses, the frequencies of which are related to 
those of the 'fixed-base', non-sliding oscillator. 

THE MATHEMATICAL METHOD 

The system is modelled by two masses m ,  and m2 which are connected by a spring of stiffness k ,  and a 
dashpot with damping c (Figure 1). There is a Coulomb frictional force between the base (mass m,) and the 
rigid horizontal plane such that sliding will occur when the shear force at  the contact of the base mass with 
the supporting plane exceeds p N ,  where N is the total normal force ( N  = g(m, +m2)) .  During the time 
intervals when sliding is not occurring, the system behaves as an oscillator excited by the motion of the rigid 
plane. During a sliding phase the mass m2 experiences a Coulomb force, p N ,  of constant magnitude, 
independent of the plane's motion. Assuming that the static and dynamic friction coefficients are identical, 
the equations of motion for the two states can be written in terms of the relative displacement x( t )  as 
(Figure 1): 

(1) during non-slip 

f + 2 0 & + 0 , 2 X  = - f i t )  = Z(t) 

with the condition 

1 yx + 21 <pg 

where 

and, 
(2) during slip 

with 

where 

(3) 

(4) 
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For large k ,  the spring will rigidly connect m ,  and m2, and thus the system will tend to behave as a rigid 
block with a mass of m,  +m,. For small k ,  the force on m2 due to the relative motion x(t )  will be much less 
than the inertial forces on m2 and the base will respond as a rigid block with mass equal to m2 and an 
equivalent coefficient of friction p' = p(ml +m,) /m2.  Equations (3) and (4) when contrasted with equations (1) 
and (2) indicate that the system would exhibit different properties in the non-slip mode from those in the slip 
mode. Equation (4) indicates that the effective damping and stiffness in the slip condition have increased from 
the values k and c to k(l --y)-' and c(1 respectively. 

HARMONIC RESPONSE OF A SLIDING RIGID MASS 

As an introduction to the sliding oscillator problem, consider a rigid block of mass m resting on a flat, 
horizontal surface with the coordinate system as shown in Figure 2. Denoting the coefficient of sliding 

p ,  COULOMB 
FRICTION COEFFICIENT 

Figure 2. The sliding rigid block system 

friction by p and noting that the two forces acting on the block during sliding are the inertia force, my(t), and 
the sliding force, pgm, the condition for slip to occur is 

IWl=  C19m ( 5 )  

Y(t) = +pg  (6) 

(7) 

(8) 

(9) 

During the sliding mode 

and thus 

L(t) = * Pg(t - t o )  + N o )  

i(tf) = L(tJ = k P d t f  - t o )  + L(to) 

z ( t )  = a. sin wt 

where to is the time of initiation of the sliding. The sliding mode will cease a t  t = tf such that 

To demonstrate the various types of sliding response, the periodic solutions to a base acceleration 

will be determined with the condition for sliding to occur given by equation (5). It is seen that the condition 
for slippage to occur is independent of the frequency of the base motion and can be expressed as 

Once the block is sliding it will either stick or start sliding in the opposite direction at the end of the current 
sliding mode. For r]  close to unity, the sliding will stop before the ground acceleration exceeds pg for the next 
half cycle, and thus the periodic solutions will consist of two sliding and two non-sliding modes per cycle of 
input, as shown in Figure 3. These types of solutions will be referred to as slipstick solutions. As r]  decreases, 
the duration of the sliding mode will increase until the time of the end of slip, t l ,  exceeds the time of initiations 
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w t  

w t  

Figure 3. The accelerations and velocities for slipstick motion of the rigid block. 

of sliding in the opposite direction, t2 .  For this case the response would consist of two sliding modes (in 
opposite directions) per cycle of base motion, as shown in Figure 4, and will be referred to as a slip-slip 
solution. 

Consider one cycle of the base acceleration for the slip-stick mode of solutions, as shown in Figure 3. The 
condition for ro,  the initiation time of the sliding mode, is found from equations (6) and (9) and is 

( 1  1 )  
1 .  

to = -[sin-'(+q)+2nn], n = 0, 1,2 ,... 
0 

The condition for t,, the time at the end of the sliding mode, is given by equation (8) along with equation 

(12) 
As previously stated, for small q, t ,  exceeds the initiation time for the next slip mode and so the periodic 
solutions will taken the form of those in Figure 4. The value of q for this transition is found by requiring that 
the times at which any two consecutive sticks and slips occur satisfy 

(9), which yields 

cos ot, f qw(t, - to) = cos wt, 

w(t, - to) = n 

The numerical solution of equation (1 l), (12) and (13) gives 

q = 0.53 

By definition of the sliding mechanism the base acceleration, j;(t),  is always bounded by 

I Y(t) I G P g  (15) 
and j is bounded by 
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7 < 0.53 

Figure 4. The accelerations and velocities for slip-slip motion of the rigid block 

For the pure sliding solutions, q <0.53, the velocity of the block is bounded by its value at tf (or to) as shown 
in Figure 4, and thus 

(17) 
a0 I jJ I <-I cos Wtf l  
0 

where t, is calculated from equations (12) and (13). 

THE SLIDING OSCILLATOR RESPONSE 

The replacement of the rigid block by the system of Figure 1, will alter the system state at which slip occurs 
since the base of the system will now experience the time dependent spring and dashpot forces of the 
oscillator. These forces can either inhibit or promote slippage of the base depending on the frequency of 
motion and the value of q. As seen from equations (1)-(4), the system has a different natural frequency and 
damping for its sliding and non-sliding modes. Since the condition for the continuation of a sliding mode is 
that i-j does not change sign, it is clear that the response of ml relative to m2 during a sliding mode is 
independent of the ground motion, z. However, it does depend on the initial conditions of x( t )  and i ( t )  (and 
therefore z )  at the time when the sliding initiates. Thus, during a period of sliding the right hand side of 
equation (3) is a constant. Therefore, the response during the sliding modes is equivalent to the free vibration 
of a damped single degree of freedom oscillator vibrating about a displaced origin, and can be described by, 

$+25'w:,fj+o:,*4 = o  (18) 

with 
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a. Determination of slip condition 
Consider the input base acceleration, z(t), to be harmonic and given by equation (9). For the rigid block it 

was seen that the block slipped only for q < 1; now, however, the sliding condition is also dependent on the 
oscillator parameters. To derive the maximum value of q for sliding to exist, the steady state solution for the 
non-slip condition [equation (l)] with z given by equation (9), is derived as 

L a d y  state = ado/oJ2C(1 - (W/wJ2I2  + (2to/uA2I -+  sin (wt-8) 

tan 8 = 2<w/o,( 1 - ( W / O , ) ~ )  - 

(20) 

with the phase, 8 given by 

(21) 

[ y X + Z [  = pg (22) 

q* = ( ~ 2 + 2 j c O s e +  I)+ (23) 

Since sliding will occur when 

for slip to occur, q needs to be less than or equal to q* where 

with 

The values of ?* have been calculated (< = 0.02) and are shown plotted vs. w/o ,  for several values of the mass 
ratio, y, in Figure 5.  As the top mass, m,,  approaches zero the solution approximates that of a rigid block, 
q = 1, except near the resonant frequency of the system, where the top mass displacement becomes large and 
hence the force exerted on mass m, by the oscillation of mass m ,  becomes appreciable. The decrease in q* for 
frequencies slightly larger than o, is due to the reversal in phase of the top mass relative to the base 
acceleration which decreases the total force on mass m,. Thus, for o / w ,  > 1, sliding of the base mass, m2, may 
be inhibited by virtue of the oscillations of mass m,.  The phase agreement when o<on increases the base 
force and thus the value of q* for sliding. 

Figure 5. The maximum value of q, q*, for steady state sliding of the oscillator versus the frequency ratio, o/w,, for various mass ratios, 
y, and = 0.02 
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As w/w, approaches zero the oscillator becomes relatively stiff and the relative displacement of mass mf 
with respect to mass m2 will become small for a fixed amplitude of excitation. In this case the system response 
will approach that of a rigid block, r] = 1, as previously discussed. For w/w,>> 1, equation (1) becomes 

X(t) = -y(q (25)  

and the slip condition, equation (4), becomes 

This is equivalent to the slip condition for a rigid block [equation ( S ) ]  with an effective friction coefficient, p’, 
of p’ = (1 - y ) - ’ .  Since rigid block sliding occurs at r]’ = 1, for w/o,>> 1 the values of r]* approach (1 - y) as 
shown in Figure 5. 

This frequency dependent behaviour of the parameter q* can be viewed, for convenience, in terms of the 
transfer function of a ‘slip-filter’, so that for a given value of the dimensionless acceleration amplitude q, one 
can find the range of frequencies over which slippage could occur. It is seen that for r] > (1 - y), slippage occurs 
for O<a<w/w,<b< 00 where the bandwidth, (b-a), is always finite. For all frequencies outside this 
bandwidth, no slippage occurs. On the other hand, for q < 1 -y, excitation at  all frequencies except for those 
lying in a finite bandwidth will lead to slippage. 

b. The periodic solutions 
Consider the periodic solutions to equations (1)-(4) with the period equal to that of z(t), namely, 2740. The 

general structures of perhaps the simplest of such possible solutions will be the two types noted for the sliding 
block problem; a slipslip, or stick-slip response. It will also be assumed that the response consists of at most 
two slip intervals, in opposite directions, per cycle of input excitation. For large values of m1/m2 and for 
w/u,<< 1 there can exist numerous slipnon-slip intervals per half cycle. 

To derive the equation for the slipslip periodic solutions we start with a solution in terms of a general 
initial time to and piece together two segments of slip motion to obtain a periodic slip-slip motion. Using 
equation (18) and (19), the response, x(t), during either slip interval is written in terms of the initial conditions 
at the beginning of that slip interval, x(to),  as 

where 

and 

with 

and. 
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Assuming that the slippage continues until time t,, the slipslip periodic solutions then satisfy 

w(t, - to)  = 71 

~ ( t , )  =  to) = A(n/o) x(to)+b(n/o) 

(29) 

Further, the periodicity of the solution implies that 

(30) 

which yields, 

 to) = - [A(z/w)+ I]-' b(n/W) 

The solutions for x(to) calculated from the above equation and scaled by CI are shown plotted vs. w/o ,  in 
Figure 6 for various 4 values. It is seen from this figure that the system exhibits a set of response peaks for 

15 

/*I 

10 

5 

Figure 6 .  The top displacement at the onset of each slip mode for the periodic slipslip solutions 

o)/un( 1. These resonant frequencies can be simply derived for zero damping (5  = 0) from the zeroes of the 
determinant of [A(n/w) + I]. From equation (28) it is found that 

(32) I /  A(n/o) + I I/ = [COS (nob/w) + 112  

the zeroes of which occur at w = oQ/(2n+ I) ,  n = 0, I ,  2, ... . 
The growth of the solutions at these subharmonic frequencies is expressible from equation (30) where 

x(t,) = cos {t&(rf-tt,)} x(tO)+~sgn(i-j i)[cos {wb(tf-to))-  13 (33) 

x(t,)= -x(to)-2usgn(i-j) (34) 

At '1 = 1,3,5,  ..., the value of w(t,-tt,) approaches n, and thus equation (33) becomes 
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for x(t,) large. Over a full period then the initial displacements for these undamped solutions will grow to 

1 x(t,  + 27qo) 1 = 1 x(t,) I + 4a (35) 
Therefore, similar to the harmonic resonance of an undamped linear oscillator, the peak response per cycle, 
or the amplitude envelope, grows linearly in time. As seen from the form of the solution in equation (31) x(t) is 
linearly dependent on p and inversely dependent on the mass ratio (1 -y) .  As the acceleration of the top mass, 
i ( t ) ,  grows during this resonance, y ( t )  also grows, but the two are out of phase in order to satisfy equation (4). 
The slipslip type of periodic solution can exist only for q less than some particular value, say q*, as with the 
rigid block solutions, and this q* must be less than or equal to the value of q for any form of sliding solution 
as given in Figure 5. Since the system will slip for larger values of q at o/o,> 1 (Figure 5), and the peak 
response is generally much greater for w/o ,  < 1, the system is qualitatively more sensitive to frequencies 
lower than the natural frequency, on, of the fixed-base system. Examples of these periodic solutions are 
shown in Figure 7 for three frequency ratios. 

<=0.05. ~ ~ 0 . 5 .  p=Q.I 

i.v 

X ( t )  

i .i 

Figure 7. The top displacement, x(t), and the ground and base velocities, i ( t )  and y(t) ,  of periodic solutions for 5 = 0.05, p = 0.1 and 
y = 0.5. The shaded regions denote the domains of i(t) for the x( t )  response shown 

We note that one can visualize several aperiodic and periodic accelerations, z(t), all of which would yield 
identical responses, x(t). As an example, all of the analytic functions i ( t )  which lie in the shaded regions shown 
in Figure 7 and which have identical values of z(c) and i ( t )  at the slip reversal points s1 and s2 would yield the 
same response, x( t ) .  The input, then, is not uniquely determinable from the response, making the inverse 
problem virtually unsolvable. This suggests that evaluating the peak acceleration amplitudes of strong 
earthquake ground motion from the observed response of sliding objects would be difficult, particularly for 
objects that were caused to slip for a majority of the time. Unlike linear and some non-linear dynamic models 
the response is not as dependent on the peak amplitude of z(t) as on some other norm of z(c) which represents 
the relative amount of sliding and the conditions of the system at the onset of slip. 
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In a similar manner to the slipslip type, other periodic solutions can be derived by proposing a sliding- 
non-sliding behaviour and constructing the solution transformations for each mode involving the continuity 
and periodicity conditions. Unlike the slipslip solutions, however, the resulting equations will be 
transcendental and must be solved numerically. To determine the totality of periodic solutions, it is best to 
take advantage of the linear structure of the solution within each sliding or non-sliding interval. For such 
linear equations with damping present it can be shown that the solutions are asymptotically stable about the 
steady solution since the displacements and velocities are continuous at all times.6 The periodic solutions 
for the damped systems can thus be determined by numerically calculating the transient solution to 
equations (1) through (4) with arbitrary initial conditions, and the solution will approach the periodic 
solution as time increases. This method was employed to calculate numerically the peak responses of the 
solutions versus w/wn for 5 = 005 [Figures 8(a), 8(b) and 8(c)]. 

For low values of q the solutions are of the s l ipsl ip  type and exhibit the multiple peaks at frequencies 
lower than on. At w/w,<< 1 the forces exerted on mass m, due to oscillations of mass rn, are much larger than 
the inertial force for non-sliding, m2 z, and the sliding is primarily perpetuated by the oscillations of mass m , .  
Basically then the transient part of the motion would consist of the build up of the energy in the oscillator by 
the input motion, and at the steady state, the input energy will balance the slip and viscously dissipated 
energy. The energy of the oscillator, however, may be greater than that in one which is not sliding. For 
w/wn>> 1 the inertial force on rn2 will be greater than the force on rn, due to the oscillations of mass rn,, and 
thus rn2 will behave as a rigid block. In the limit x(t )  will approach - y(t), the negative of the displacement of 
m,. From Figure 8 it is seen that the peak response of the non-sliding oscillator bounds the sliding response 
for this frequency range. For frequencies slightly larger than w, the sliding system response equals the non- 
sliding oscillator response for some frequency range. This range corresponds to the frequencies in Figure 5 
over which a low value of q is necessary to maintain slip for the periodic solutions, again pointing out the 
greater sensitivity for the oscillator to slide at low values of w/w, compared to the range w/w, > 1. 

(C) 
(a) 

Figure 8. The peak displacement response of the periodic solutions versus w/w, for y = 0.1 (a), y = 0 5  (b), and y = 0.9 (c), and C: = 0.05 
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Figure 8. (continued) 
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CONCLUSIONS AND DISCUSSION 

The analysis of the periodic solutions of the harmonically excited system investigated herein, exhibits several 
interesting aspects. 

( 1 )  Whereas the condition for the initiation of slip for a rigid block resting on a frictional interface is that 
the base acceleration amplitude, uo, equals pg ,  the condition for the initiation of slippage for the system 
under study here is frequency dependent. In fact it is shown that for values of a, considerably less than 
pg(q > I), slippage can still prevail provided the excitation lies in a suitable frequency band. The effect of the 
oscillatory system on the initiation of slip is manifested by the curves of Figure 5. Sliding initiates at higher 
values of v (and therefore lower values of a,) for the frequency range w/w, < 1, and for lower values of q for 
the range w/w, > 1. When w/w,>> 1, the system behaves similar to a rigid block and the response, x(t), is 
bounded by the non-sliding response. The fundamental resonant peak of the system near w/w, N 1 occurs at 
larger values of w/w, as q decreases (Figure 8). 

(2) The system shows several subharmonic resonant frequencies so that the peak response, x(t) ,  of such a 
system to harmonic excitation may not necessarily be less than that of a non-sliding, fixed-base system. 

(3) The nature of the system response to base excitations shows that, in fact, various periodic and 
aperiodic inputs could yield identical responses. Thus the inverse problem of the determination of the peak 
ground acceleration from records of the system response, x(t), may lead to non-unique solutions. 

(4) Although only the periodic solutions have been discussed, numerical calculations for a variety of 
frequencies, damping ratios and mass ratios showed that the solutions converged quite rapidly to the 
periodic solutions for most cases (usually within 15 cycles for zero initial conditions), indicating that the 
periodic solutions are a significant part of the response to harmonic excitations. However, for a dynamic 
system such as this it is difficult to infer any information about the transient response to non-periodic 
excitation (e.g., earthquake motion) from the period response. The multiple response peaks at w/Q,< 1 may 
not contribute significantly to the transient response since their existence depends heavily on the periodicity 
of the excitation. The transient response of such a system will be discussed in a paper to follow. 
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