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Abstract. In the present study, we report on the solid phase dy-
namic response due to time-varying duct flows when a portion of
a duct wall is cooled to below the liquidus temperature, along
which unidirectional solidification from the cooling duct wall,
perpendicular to the flow direction, is assumed. A one-dimensional
numerical model for the average solid phase thickness has been
formulated employing the boundary tracking method. It is shown
that a quasi-steady state temperature in the solid layer allows us
to develop an analytical solution, making use of perturbation
technique. The afore-mentioned perturbation analysis identifies
important three nondimensional parameters, i.e. the Biot number
based on the solid phase thickness at steady state, the Stefan
number based on the temperature difference between the cooling
wall and the liquidus temperatures, and the Stefan number based
on the liquidus and the flowing liquid temperatures. Results ob-
tained by both approaches agree well in general, and the time-
variation trends of solid phase thickness and its phase delay have
been obtained as a function of the non-dimensional angular fre-
quency of the modulating duct flow velocity, with the above three
non-dimensional parameters. Various applications in practical
engineering and in engineering education have been identified and
are being addressed by the developed Graphical Interface Frame-
work for Educational and Engineering Support (GIFEES).

Introduction

Solidification is widely seen both in our daily life and
in large scale processes pertinent to geophysics and plan-
etary physics. The formation of Earth’s crust at mid-ocean
ridges and crystallization of magma in magma chambers are
of great significance for understanding the structures of
Earth’s interior and plate kinematics [1,2]. The ice formation
and melting in the Earth Polar Regions is very important for
analyzing the global climate changes, due to its great ther-
mal impact on the Earth’s heat balance [3]. The amount of
snow fall and its melting in the high mountain regions has
a significant influence over the hydrological circulation in
the limnology, of which our environmental, agricultural and
industrial water resources are greatly dependent [4]. The
solidification also plays an important role in different indus-
trial applications, in particular in such fields as metal cast-
ings and production of single crystal silicon. Through multi-
component molten phase solidification [5] various metal
alloys can be formed and produced on commercial basis.

As mentioned above, a wide spectrum of solidification
phenomena can be observed and studied within the scope
of regular human activities. Most of the solidification re-
searches, however, have been conducted for fixed thermal
boundary conditions, i.e. the cooling and the liquid phase
temperatures are assumed constant throughout the solidi-
fication processes. In reality, either of them is seldom sat-
isfied in a strict sense. Periodic temperature change, for
example, is one of the typical cases of temperature varia-
tions. Solidification in a duct with a cooled wall has been
investigated for the past few decades in order to under-
stand freeze-shut phenomena in water running pipes [6,7].
Freezing in a duct is often an undesirable phenomenon in
many occasions. However, in certain cases, a formation of
finite solid layer covering the vessel and duct walls that
carry high temperature molten materials is necessary to
prevent erosions and corrosions of the wall material from
the highly reactive liquid substances at extreme tempera-
tures.

In the present study, we investigate the stability of a
thin solid layer formed on the wall, when the flowing veloc-
ity in the duct has a modulation. We first describe the basic
governing equations of a one-dimensional formulation, fo-
cusing on the average solid layer thickness. A numerical
solution is carried out by employing the boundary tracking
method, which enables us to handle the moving boundary
problem. A perturbation analysis is then performed under
the condition that the velocity modulation is small, com-
pared with the average flow velocity, and that the modula-
tion frequency is also small, in comparison with the trans-
versal diffusion time in the solid layer. An analytical form
describing the response of the solid layer to velocity modu-
lations in terms of the velocity modulation frequency and
the Stefan number based on the cooling temperature is
presented. A comparison made between the numerical and
the perturbation solutions shows a very good agreement,
demonstrating the usefulness of the analytical form due to
perturbation solution.

Mathematical Formulation and
Numerical Solution

Problem Statement and Formulation. A schematic
diagram of the present problem is shown in figure 1, in
which a relatively thin solid layer is formed on the side wall
of the duct by cooling the wall to a temperature below the
liquidus of the flowing liquid. A vertically descending fully-
developed laminar flow is assumed, and the thickness of the

* This paper was presented at the International Conference
"Automatics and Informatics '12", 3-7.10.2012, Sofia, Bulgaria



2 2012 3information technologies
and control

solidified layer remains small in respect to the duct width W.
As demonstrated by Kimura and Kanev [12], a one-dimen-
sional model can be a very good simplification for estimat-
ing the average solid layer thickness.

The energy balance on the solid-liquid boundary and
the transversal conduction equation in the solidified layer
are given by the following equations
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where ρs, L, x, t, h, ks,Tc,To,TL,Ts denote the solid-layer den-
sity, the latent heat, the horizontal coordinate, the time, the
convective heat transfer coefficient, the thermal conductiv-
ity of the solid layer, the cooling wall temperature, the
liquidus temperature, the upstream liquid temperature, and
the solid layer temperature, respectively.

If one introduces non-dimensional quantities and ap-
plies a coordinate transformation, the above two equations
can take the following form
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The corresponding initial condition for X in equation
(4) is provided as a very thin solid layer, 0.1% of the duct
width W, and the thermal boundary conditions appropriate
for θS in equation (5) are

θS = –1 at η = 0, and θS = 0 at η = 1
Equations (4) and (5) are discretized by finite differ-

ences, and solved simultaneously. An important parameter
that must be specified in the above formulation is the av-

erage convective heat transfer coefficient h between the
flowing liquid and the solidified layer over the length H of
the solidified layer. We obtain it through the Graetz solu-
tion for the duct flow
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where de and H represent the hydraulic diameter of the duct
and the vertical solid layer length respectively. The coeffi-
cient 1.6 in the front ensures that the heat transfer coeffi-
cients computed for various Reynolds numbers accord with
the experimental results.

Perturbation Solution

Quasi-Steady State One-Dimensional Model. Assum-
ing a quasi-steady temperature state in the solid layer greatly
simplifies the mathematical formulation, since it eliminates
the need of a second-order partial differential equation for
the heat diffusion. This assumption is valid as long as the
solid-liquid boundary moves more slowly than the heat
diffusion time within the solid layer. The condition can be
expressed in a strict sense by
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where αs, l, ω are the thermal diffusivity of the solid, the
average solid layer thickness at steady state, and the modu-
lation angular frequency of the flowing velocity, respec-
tively. If the above condition is satisfied, the right hand
side of equation (1) is replaced by the heat flux due to the
linear temperature distribution in the solid layer.
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The flowing velocity modulation affects the convec-
tive heat transfer coefficient h in eq. (6), and it can be taken
into account in the following form, by recognizing that h is
a function of the Reynolds number
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Figure 1.  Schematic diagram of a one-dimensional model for formation of a solid layer on a cold duct wall with liquid flowing
next to it
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where f(t) is a function of time that determines how the
velocity is modulated. In the present work we assume a
rectangular wave shape for the velocity modulation in the
velocity versus time graph. Therefore, f(t) can be expressed
by a Fourier series expansion as follows
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where P is the period of the velocity modulation. Before
seeking a solution for eq. (8), the equation should be
nondimensionalized in an appropriate way. Recognizing the
existence of a solid layer thickness l corresponding to the
(non-modulating) base duct flow we adjust the previously
employed (eq.(3)) nondimensionalization procedure. This
yields the following nondimensional form of eq. (8)
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in which the following nondimensionalization has been
performed,
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We assume that the solution for eq. (12) can be ex-
panded as XPV = XPV 0 +εXPV 1 + O(ε2), where ε is the relative
amplitude of the velocity modulation in respect to the mag-
nitude of the base flow. Substituting this series into eq.
(12), we have
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0th order Solution. By collecting the 0th order terms
in eq.(14), the following equation can be obtained
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At steady state XPV0 = 1 by the definition of eq. (13),
and the condition specified by eq. (15) is sufficient to de-
termine the average solid layer thickness l due to a base
flow.
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1st order Correction Term. By collecting the 1st order
terms, and taking XPV0 = 1 into consideration, the 1st order
correction term can be obtained as a solution of eq. (18).
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Substituting the square wave velocity modulation of
eq. (11) in the right hand side of the above equation, the
1st order correction term takes the following form:
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The first term in the right hand side of eq. (19) will
decay exponentially, and the second term will thus become
dominant, which is a steady periodic solution.
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The above solution indicates that the Stefan number
based on the cooling temperature and the frequency of the
modulation velocity are the parameters that determine the
amplitude of the oscillation of the solid layer thickness. It
is worth noting that eq.(18) admits various solutions due to
different forcing functions of f(τPV), such as sinusoidal or
triangular velocity modulations, all of which are expressed
by Fourier series expansions.

Comparison Between Perturbation
and Numerical Solutions

Oscillating Solid Layer as a Function of Time. Solid
layer oscillations due to duct flow velocity modulations are
shown in figure 2.

The oscillation amplitude of the solid layer is given in
the ordinate axis, while the nondimensional time in terms of
period of velocity modulation P is given in the abscissa.
The perturbation solutions agree well with the numerical
solutions,   even in case of a relatively large modulation
amplitude in the heat transfer coefficient.

Oscillation Amplitudes of Solid-Layer Thickness. Os-
cillation amplitudes of solid-layer thickness are shown as a
function of nondimensional angular frequency for different
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values of S in figure 3. Perturbation predictions are indi-
cated with solid lines for several values of S, while the
numerical solutions are shown with dotted lines. Quite good

agreement between the analytical and the numerical results
can be seen in the figure.

Phase-Delay of Ice-Layer Oscillation. Another impor-

Figure 2. Perturbation analysis of an oscillating solid-layer amplitude as a function of nondimentional time compared with
numerical results for different values of ε

Figure 3. Perturbation analysis of oscillating solid-layer amplitude as a function of frequency wPV compared with numerical results
for different values of S (e = 0.143)
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Figure 4. Perturbation analysis of oscillating solid-layer phase delay as a function of frequency ωPV compared with numerical
results for different values of S (ε = 0.143)

tant observation is the phase-delay of the oscillating solid-
layer thickness relative to the velocity modulation in the
duct. Again, the phase-delays predicted by perturbation
analysis are shown with solid lines, while the numerical
results are displayed with dotted lines for three different
values of S in figure 4. Here the numerical results also agree
well with the perturbation results.

Region where the Perturbation Solutions are Accu-
rate. The region in terms of the Stefan number S and the
velocity modulation frequency ωPV is displayed in figure 5.
The lower area in the graph is the region where the pertur-
bation solution is accurate within 10% in comparison with
the numerical solutions.

Figure 5. Applicability limitation of Stefan number in perturbation analysis as a function of ωPV for two different values of ε
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Heat Transfer e-learning
Environment

 As already demonstrated in [8], visualizing the dy-
namic behavior of a solid layer due to the adjacent flow
velocity modulation is vital in order to grasp the complex
phase change phenomena and to develop appropriate intu-
ition regarding the heat transfer. The one-dimensional model
discussed in this paper extends our previous work while the
analytical solution delineates the important nondimensional
parameters as well as their impacts. This opens the way to
building new powerful tools for augmented heat transfer
simulations with consecutive visualization and their integra-
tion into the Graphical Interface Framework for Educational
Support (GIFES).

When adopted in Fluid Dynamics and Heat and Mass
Transfer classes, GIFES can effectively support engineering
students on their path of learning [8]. An advanced version
GIFEES (Graphical Interface Framework for Educational and
Engineering Support) extending beyond the scope of edu-
cation that can be employed by practitioners to address and
solve real engineering problems is currently under construc-
tion.

Conclusion

A perturbation solution has been developed for a
one-dimensional model of solid-layer thickness oscillation
due to periodic duct flow modulations arising from various
plant work operations. The perturbation solution demon-
strates that the relevant parameters are S (the Stefan number
based on the cooling temperature) and ω (the non-dimen-
sional angular frequency based on the diffusion time in the
solid layer). A numerical code for computing dynamic solidi-
fication processes based on a boundary tracking model has
been also  developed. The good agreement of the results
obtained by the two methods for a wide range of parameters
proves that the presented perturbation solution is capable

of capturing and reliably representing the in-depth mecha-
nisms of dynamic solidification processes. Results obtained
in the scope of this research are employed in the design
and development of an advanced version of the Graphical
Interface Framework for Educational and Engineering Sup-
port, GIFEES.
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