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(Communicated by Hal L. Smith)

Abstract. In this paper we prove the existence of periodic solutions for dif-
ferential inclusions with nonconvex-valued orientor field. Our proof is based
on degree theoretic arguments.

1. Introduction

In a recent paper Hu-Papageorgiou [6] proved the existence of a periodic solution
for a nonconvex differential inclusion in RN . To the best of our knowledge, this
was the first existence result for nonconvex periodic problems. All earlier works
had assumed that the orientor field (multivalued vector field) is convex valued. We
refer to the works of Haddad-Lasry [4], Aubin-Cellina [1], Macki-Nistri-Zecca [7]
and Plaskacz [11]. The approach of Hu-Papageorgiou [6] was based on direction-
ally continuous selectors for the orientor field and on a Nagumo type tangential
condition. In this paper our approach is different and is based on degree theoretic
arguments. So our hypotheses on the orientor field are different, in some respects
weaker, than the ones used by Hu-Papageorgiou [6] (compare the growth hypoth-
esis H(F)(iii) here and in [6]) and also uses a function like the guiding function
of Mawhin [8], which gives us a priori bounds and thus makes possible the use of
degree theory.

2. Preliminaries

In what follows by Pk(RN ) we will denote the collection of all nonempty and
compact subsets of RN . Let T = [0, b]. A multifunction F : T × RN → Pk(RN ) is
said to be graph measurable iff GrF = {(t, x, v) ∈ T × RN × RN : v ∈ F (t, x)} ∈
L × B(RN ) × B(RN ) with L being the Lebesgue σ-field of T and B(RN ) the
Borel σ-field of RN . A graph measurable multifunction F (t, x) has the property
that if x : T → RN is measurable, then t → F (t, x(t)) is graph measurable; i.e.
GrF (·, x(·)) ∈ L × B(RN ). So by Aumann’s selection theorem (see Wagner [12],
Theorem 5.10), we can find a measurable function g : T → RN such that g(t) ∈
F (t, x(t)) a.e. on T .
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Let X, Y be Hausdorff topological spaces. A multifunction G : X → 2Y \{∅} is
said to be lower semicontinuous (abbreviated as l.s.c.), if for every open subset U
of Y , the set G−(U) = {x ∈ X : G(x) ∩ U 6= ∅} is open in X . If Y is a metric
space, then this definition of lower semicontinuity is equivalent to saying that for
all y ∈ Y , the R+-valued function x → d(y, G(x)) = inf{dY (y, y′) : y′ ∈ G(x)} is
upper semicontinuous (here dY (·, ·) denotes the metric on Y ).

Finally, a subset K of L1(T, RN) is said to be decomposable, if for all (A, g1, g2) ∈
L ×K ×K, the function χAg1 + χT\Ag2 belongs in K. Here by χA (resp. χT\A),
we denote the characteristic function of A (resp. of T \A).

3. Main result

In this section we establish the existence of an absolutely continuous function
x : T → RN which solves the following multivalued periodic problem:{

x′(t) ∈ F (t, x(t)) a.e. on T = [0, b],
x(0) = x(b).

(1)

The hypotheses on F (t, x) are the following:

H(F). F : T ×RN → Pk(RN ) is a multifunction such that

(i) (t, x) → F (t, x) is graph measurable;
(ii) x → F (t, x) is l.s.c. for every t ∈ T ;
(iii) for every r > 0 there exists ar ∈ L1(T ) such that for all ‖x‖ ≤ r we have

|F (t, x)| = sup{‖v‖ : v ∈ F (t, x)} ≤ ar(t) a.e. on T ; and
(iv) there exists ϑ ∈ C1(RN , R) and r > 0 such that ϑ′(x) 6= 0 for all x ∈ RN with

‖x‖ ≥ r, −(ϑ′(x), x)RN ≤ ‖ϑ′(x)‖2 for all x ∈ RN (here by (·, ·)RN we denote
the inner product in RN), ϑ(x) → +∞ as ‖x‖ → +∞, if x ∈ W 1,1(T, RN)
with min{‖x(t)‖ : t ∈ T } ≥ r, then

∫ b

0 (ϑ′(x(t)), g(t))RN dt ≤ 0 for all g ∈
L1(T, RN), g(t) ∈ F (t, x(t)) a.e. on T , and finally for almost all t ∈ T and
all v ∈ F (t, x), (ϑ′(x), v)RN ≤ η(t) with η ∈ L1(T )+.

Remark 3.1. If ϑ(·) is convex and ϑ′(0) = 0, then (ϑ′(x), x)RN ≥ 0, so the hypoth-
esis that −(ϑ′(x), x)RN ≤ ‖ϑ′(x)‖2 is trivially true.

Theorem 3.1. If hypothesis H(F) holds, then problem (1) has a solution.

Proof. Let D = {x ∈ W 1,1(T, RN) : x(0) = x(b)} = W 1,1
p (T, RN) and also let

L : D ⊆ L1(T, RN) → L1(T, RN ) be the linear operator defined by L(x) = x′+x for
all x ∈ D = W 1,1

p (T, RN). In what follows by ‖·‖ we will denote the Euclidean norm
of RN and by ‖ · ‖∗ the l1-norm of RN . Recall that the two are equivalent. So there
exist ϑ1, ϑ2, ϑ3, ϑ4 > 0 such that ϑ1‖·‖∗ ≤ ‖·‖ ≤ ϑ2‖·‖∗ and ϑ3‖·‖ ≤ ‖·‖∗ ≤ ϑ4‖·‖.
Then for x(·) = (xk(·))N

k=1 ∈ D we have

‖L(x)‖1 =
∫ b

0

‖x′(t) + x(t)‖dt ≥ ϑ1

∫ b

0

‖x′(t) + x(t)‖∗dt

= ϑ1

∫ b

0

N∑
k=1

|x′k(t) + xk(t)|dt = ϑ1

N∑
k=1

∫ b

0

|x′k(t) + xk(t)|dt.

(2)
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Fix k ∈ {1, 2, . . . , N} and let T+
k = {t ∈ T : xk(t) > 0} and T−

k = {t ∈ T : xk(t) <
0}. We have∫ b

0

|x′k(t) + xk(t)|dt ≥
∫

T+
k

|x′k(t) + xk(t)|dt +
∫

T−k

|x′k(t) + xk(t)|dt

≥
∫

T+
k

(x′k(t) + xk(t))dt−
∫

T−k

(x′k(t) + xk(t))dt

=
∫ b

0

|xk(t)|dt +
∫

T+
k

x′k(t)dt−
∫

T−k

x′k(t)dt.

Let (ak, dk) be a component of T +
k . Then since xk(dk) = xk(ak) = 0, we have∫ dk

ak
x′k(t)dt = 0, from which it follows that

∫
T+

k
x′k(t)dt = 0 (note that if [0, a) ⊆ T +

k ,

then (d, b] ⊆ T +
k ). Similarly we obtain that

∫
T−k

x′k(t)dt = 0. Hence we deduce that∫ b

0

|xk(t)|dt ≤
∫ b

0

|x′k(t) + xk(t)|dt.(3)

Using inequality (3) in (2), we have

‖L(x)‖1 ≥ ϑ1

N∑
k=1

∫ b

0

|xk(t)|dt = ϑ1

∫ b

0

‖x(t)‖∗dt

≥ ϑ1ϑ3

∫ b

0

‖x(t)‖dt = ϑ1ϑ3‖x‖1.

For every u ∈ L1(T, RN), the periodic problem x′(t)+x(t) = u(t) a.e. on T , x(0) =
x(b), has a unique solution (see Mawhin [8], p. 72). So L(·) is surjective. Then
from Theorem 2.11.6, p. 42, of Hille-Phillips [5], we have that L−1 : L1(T, RN) →
L1(T, RN ) is a continuous linear operator. Evidently the range of L−1 is D =
W 1,1

p (T, RN).
Claim. L−1 : L1(T, RN) → L1(T, RN ) is completely continuous (i.e. it is contin-

uous and maps bounded sets into relatively compact sets).
To this end let K ⊆ L1(T, RN) be bounded. We will show that L−1(K) is

relatively compact in L1(T, RN ). For this purpose let x ∈ L−1(K). Then x =
L−1(u) with u ∈ K, so ‖L(x)‖1 = ‖u‖1. But we saw in the beginning of the
proof that ‖x‖1 ≤ ‖L(x)‖1. Hence ‖x‖1 ≤ |K| = sup{‖u‖1 : u ∈ K} < +∞ and
then ‖x′‖1 ≤ ‖u‖1 + ‖x‖1 ≤ 2|K|. From these bounds we infer that L−1(K) is
bounded in W 1,1

p (T, RN). But W 1,1
p (T, RN ) is embedded compactly in L1(T, RN)

(see for example Brezis [3]). Therefore L−1(K) is relatively compact in L1(T, RN).
Also if un → u in L1(T, RN) as n → ∞, then {L−1(un) = xn}n≥1 is relatively
compact in L1(T, RN ) and xn → x = L−1(u) in L1(T, RN ) as n →∞ (since L−1(·)
is continuous from L1(T, RN) into L1(T, RN)). Therefore xn → x = L−1(u) in
L1(T, RN ) as n →∞, proving the desired complete continuity of L−1 : L1(T, RN) →
L1(T, RN ).

Now for 0 < λ < 1 we consider the following problem:{
x′(t) ∈ F (t, x(t)) − λϑ′(x(t)) a.e. on T ,

x(0) = x(b).
(4)

Claim. The solutions of (4) are bounded in C(T, RN ), uniformly in 0 < λ < 1.
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Suppose not. Then we can find xn ∈ W 1,1(T, RN), ‖xn‖∞ ≥ n and 0 < λn < 1
such that {

x′n(t) = gn(t)− λnϑ′(xn(t)) a.e. on T ,

xn(0) = xn(b)

for some gn ∈ L1(T, RN ), gn(t) ∈ F (t, xn(t)) a.e. on T, n ≥ 1. Taking the inner
product with ϑ′(xn(t)) we obtain:

(x′n(t), ϑ′(xn(t)))RN = (gn(t), ϑ′(xn(t)))RN − λn‖ϑ′(xn(t))‖2.

Hence using hypothesis H(F)(iv), we have

d

dt
ϑ(xn(t)) ≤ η(t) a.e. on T .

We extend xn(·) and η(·) by b-periodicity on all of R. Then for all s ∈ R and all
t ∈ [s, s + b], we have

ϑ(xn(t)) ≤ ϑ(xn(s)) +
∫ t

s

η(τ)dτ

which implies that

max
t∈T

ϑ(xn(t)) ≤ min
s∈T

ϑ(xn(s)) + ‖η‖1.

If tn ∈ T, n ≥ 1, is such that ‖xn(tn)‖ = ‖xn‖C(T,RN ), then

ϑ(xn(tn)) ≤ max
t∈T

ϑ(xn(t)),

so by hypothesis H(F)(iv) we have that maxt∈T ϑ(xn(t)) → +∞ and so

min
s∈T

ϑ(xn(s)) → +∞ as n →∞.

Now let sn ∈ T be such that ‖xn(sn)‖ = mins∈T ‖xn(s)‖. Then we have

min
s∈T

ϑ(xn(s)) ≤ ϑ(xn(sn)).

Since mins∈T ϑ(xn(s)) → +∞ as n →∞, it follows that

‖xn(sn)‖ = min
s∈T

‖xn(s)‖ → +∞ as n →∞.

So we can find n0 ≥ 1 such that mins∈T ‖xn(s)‖ ≥ r for all n ≥ n0. Since
ϑ′(xn(t)) 6= 0 for all t ∈ T, 0 < λ < 1, from hypothesis H(F)(iv) we get that

0 = ϑ(xn(b))− ϑ(xn(0))

=
∫ b

0

(gn(t), ϑ′(xn(t)))RN dt− λn

∫ b

0

‖ϑ′(xn(t))‖2dt < 0,

which is absurd. So the claim is true and there exists ρ1 > 0 independent of
0 < λ < 1, such that ‖x‖C(T,RN ) ≤ ρ1 for all solutions x(·) of (4).

Next let ρ > bρ1 and set Bρ = {x ∈ L1(T, RN ) : ‖x‖L1(T,RN ) ≤ ρ} and consider
the multifunction R : Bρ → 2L1(T,RN ) defined by R(x) = {u ∈ L1(T, RN ) : u(t) ∈
F (t, x(t)) a.e. on T }. From the discussion in section 2 and hypothesis H(F)(iii),
we see that R(·) has nonempty, closed and decomposable values. Also Theorem
3.5 of Papageorgiou [10] tells us that R(·) is l.s.c. Thus we can apply Theorem 3
of Bressan-Colombo [2] to obtain a continuous map r : Bρ → L1(T, RN) such that
r(x) ∈ R(x) for all x ∈ Bρ.
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Now define the map h : [0, 1]×Bρ → L1(T, RN) by

h(λ, x) = (1− λ)L−1(r(x) − λϑ′(x) + x).

From the complete continuity of L−1 : L1(T, RN) → L1(T, RN ) established in the
first claim, we see that h(λ, x) is a compact homotopy. Moreover since by hypothesis
H(F)(iv), −(ϑ′(x), x)RN ≤ ‖ϑ′(x)‖2 for all x ∈ RN , the estimation conducted in the
proof of the second claim is still valid, so there exists an a priori bound independent
of 0 < λ < 1 for the solutions x ∈ C(T, RN) of x = h(λ, x). Therefore exploiting
the fact that degLS(I, Bρ, 0) = 1 and since the Leray-Schauder degree is homotopy
invariant, we conclude that h(0, x) = x has a solution x ∈ C(T, RN). But for λ = 0,
we obtain L(x) = r(x)+x, so x′(t) = r(x)(t) ∈ F (t, x(t)) a.e. on T , x(0) = x(b).

Remark 3.2. Let F : T × RN → Pk(RN ) be a multifunction satisfying hypotheses
H(F)(i), (ii) and
(iii)′ there exists ϕ ∈ L1(T, RN) such that |F (t, x)| ≤ ϕ(t) for almost all t ∈ T and

all x ∈ RN .
Also let K ∈ Pkc(RN ) = {C ∈ Pk(RN ) : C is also convex} such that intK 6= ∅.

By translating things if necessary, we can always assume that 0 ∈ intK. Then if
by TK(x) we denote the Bouligant tangent cone to K at x ∈ K, we know that
intTK(x) 6= ∅ and x → intTK(x) has open graph (see Aubin-Cellina [1], Proposi-
tion 4, p. 221). Then from Proposition 3.5 of Hu-Papageorgiou [6], we have that
F̂ (t, x) = F (t, x) ∩ intTK(x) ⊆ F (t, x) ∩ TK(x) (see Papageorgiou [9], Lemma γ)
satisfies hypotheses H(F)(i), (ii) and

(iii)′′ |F̂ (t, x)| ≤ min{ϕ(t), |K|} where |K| = sup{‖v‖ : v ∈ K}.
Then if ϑ(x) = ‖x‖2

2 , we have that ϑ(·) is convex and ϑ′(x) = x. So by virtue
of Proposition 3, p. 220, of Aubin-Cellina [1], we see that hypothesis H(F)(iv)
is satisfied with r > 0 such that Br(0) ⊆ K. So according to our theorem here
and since F̂ (t, x) ⊆ F (t, x), the periodic problem x′(t) ∈ F (t, x(t)) a.e. on T ,
x(0) = x(b), has a solution. So we recover the result of Hu-Papageorgiou [6] when
the “constraint” set K is time independent. Note that in Hu-Papageorgiou [6], K
is time varying.
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