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PERIODIC SOLUTIONS IN NONLINEAR
NEUTRAL DIFFERENCE EQUATIONS
WITH FUNCTIONAL DELAY

MARIETTE R. MAROUN AND YOUSSEF N. RAFFOUL

ABSTRACT. We use Krasnoselskii’s fixed point theorem to show
that the nonlinear neutral difference equation with delay

z(t + 1) = a(t)z(t) + c(t)Az(t — g(t)) + q(t, z(1), z(t — g(1))

has a periodic solution. To apply Krasnoselskii’s fixed point theo-
rem, one would need to construct two mappings; one is contraction
and the other is compact. Also, by making use of the variation of
parameters techniques we are able, using the contraction mapping
principle, to show that the periodic solution is unique.

1. Introduction

Recently, there has been an increasing interest in the analysis of qual-
itative theory of solutions of difference equations. Motivated by the pa-
pers [2-5] and the references therein, we consider the nonlinear neutral
difference equation

(1.1)  z(t+1) = a(t)z(t) + c(t) Azt — g(t) + q(¢, z(t), z(t — g(¢))
which arises in a (food-limited) population model.
q:ZxRxR—R,

where Z is the set of integers and R is the set of real numbers.
Our motivation comes from the neutral nonlinear difference equation

Az(t) = b(t)z(t) + c(t)Ax(t - g(t) + q(t, =(t), z(t — g(t))

which can be easily put in the form of (1.1) with a(¢) = 1+b(¢t). Through-
out this paper A denotes the forward difference operator Az(n) =
z(n+1) —x(n) for any sequence {z(n), n=20, 1, 2-, -}. Also, we define
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the operator E by Exz(n) = xz(n + 1). For more on the calculus of dif-
ference equations, we refer the reader to [1]. The purpose of this paper
is to use Krasnoselskii’s fixed point theorem to show the existence of
a periodic solution for equation (1.1). To apply Krasnoselaskii’s fixed
point theorem we need to construct two mappings; one is contraction
and the other is compact.

Using the variation of parameters techniques, enables us to show
the uniqueness of the periodic solution by appealing to the contraction
mapping principle.

2. Existence of periodic solutions

Let T be an integer such that T > 1. Define Pr = {¢ : C(R, R), ¢(t+
T) = ¢(t)} where C(R, R) is the space of all real valued functions. Then
Pr is a Banach space when it is endowed with the maximum norm

t)| = t)].
(0] = _max | la(t)
In this paper we assume the periodicity conditions
(2.1) a(t+T) = a(t), c(t+T)=c(t), g(t+T)=g(t), g(t)>g" >0
for some constant g*. Also, we assume that
t—1

(2.2) II a(s) #1.

s=t-T

Throughout this paper we assume that a(t) 5 0 for all t € [0, T —1]. It is
interesting to note that equation (1.1) becomes of advanced type when
g(t) < 0. Since we are searching for periodic solutions, it is natural to
ask that ¢(t,z,y) is periodic in ¢ and Lipschitz continuous in z and y.
That is

(2.3) q(t+T,z,y) = q(t, z,y)

and

(2.4) la(t, z,y) — q(t, 2z, w)| < Lz — 2|| + K|y — w]|
for some positive constants L and E.

Note that

Lllz - 0|l + Kljy - 0]

Lijz]| + KTlyl-

<
<
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which gives us,

(2.5) la(t, =, y)| < izl + Kllyll + 1q(2, 0,0)[-

LEMMA 2.1 Suppose (2.1) and (2.2) hold. If z(t) € Pr, then z(t) is
a solution of equation (1.1) if and only if

z(t) = ot = Daz(t - g(t))

t—1

+ - Ht_ll Z [ (a(r)c(r —1) — c(r))

StT r=

-T
(2.6) + q(r,z(r) ]

Proof. We consider two cases; t > 1 and ¢t < 0. Let z(t) € Pr be a
solution of (1.1). For ¢t > 1 Equation (1.1) is equivalent to

A[ﬁ a"l(s)x(t)}
5=0

27 = [c(t)Am(t—g(t))+q(t,x( L2(t—r(t) ]Ha

s=0

By summing (2.7) from (¢t — T) to (t — 1) we obtain

t—1 r—1
> Al[[a )]
r=t-T s=0
t—1 T
= Y [e(r)Az(r — g(r) + glr,z(r),2(r — g(rI)] [] a7 (s).
r=t—-T =0
As a consequence, we arrive at
-T—

(t)ﬁa_l(s —z(t—-T H
s=0

t—1
= Y le(r)Az(r — g(r) + q(r, z(r), z(r — g(r)) H a”'(s
r=t=T

By dividing both sides of the above expression by
t—1

[[a'(s)

s=0
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and the fact that z(t) = z(t — T'), we get
t—1

1
M0 = I

r=t—T

=

c(r)Az(r — g(r))

t—1
(2.8) + q(ra(r),z(r - g(r)] T als).
s=r+1

Rewrite

1 t—1
e(r)Aa(r—g(r) ] a(s)

t—-T s=r+1

-1 t—1

= c(r) H a(s)Azx(r — g(r)).

T s=r+1

t

r

~+

r=t

By considering Fy = ¢(r §;1+1 a(s) and y = ¢(r—1) Hi;i a(s) we get
y=-c(r—1) Hf;i a(s). Thus, by performing a summation by parts on
the above equation using the summation by parts formula

ZEyAz =yz — Zsz

we have
t—1 t—1
> enaz(r—g(r) [ als)
r=t—T s=r+1
t—-1
= c(t— 1) [T a(s)2(t — g(1))
s=t
t—1
—ct-T-1) [] a(s)z(t —T —g(t—1T))
s=t—T
t—1 t—1 .
= Y atr—geNA((etr = 1) [T als))
r=t-T s=r
t—1
= c(t—Da(t—g(t)) —c(t—1) [] a(s)z(t—q(t)
s=t—T



Periodic solutions 259

t—1 t—1

(2.9) = 3 wlr—gNA((etr = ) [T als)).

r=t-T s=r

Finally, substituting (2.9) into (2.8) completes the proof.
Now for ¢ < 0, Equation (1.1) is equivalent to

0
A{Ha(s)x(t)]
0
= [ethaatt (1) + alt.x(0), 2l ~ r()] T ate)
s=t+1

Summing the above expression from (¢ — T) to (¢t — 1) we obtain (1.1)
by a similar argument.
Using (2.6) we define the mapping H : Pr — Pr by

Next we state Krasnoselskii’'s fixed point theorem which enables us to
prove the existence of a periodic solution. But first, we define what we
mean by a mapping being compact.

Let S be a subset of a Banach space B and f : § — B. If f is continuous
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and f(S) is contained in a compact subset of B, then f is a compact
mapping. O

THEOREM 2.2 (Krasnoselskii). Let M be a closed convex nonempty
subset of a Banach space (B, || - ||). Suppose that A and B maps M into
B such that

(i) z,y € M, implies Az + By € M,

(ii) A is compact and continuous,
(iii) B is a contraction mapping.
Then there exists z € M with z = Az + Bz.

We note that to apply the above theorem we need to construct two
mappings; one is contraction and the other is compact. Therefore, we
express equation (2.10) as

(2.11) (Hep)(t) = (Bo)(t) + (Ap)(t)
where A, B : Pr — Pr are given by

(212) (Be)(t) = cft — 1)t — g(t))
and
(2.13)
t—1 q t1
4t = (1- II ) Y [et = grDle(r)e(r = 1) = c(r)
s=t-T r=t-T
t—1
+a(r, @), o(r = 9| T als)
s=r+1

LEMMA 2.3. Suppose (2.1)-(2.4) hold. If A is defined by (2.13), then
A : Pr — Pr and is compact.

Proof. First we want to show that (Ap)(t +T) = (Ap)(t).
Let ¢ € Pp. Then using (2.13) we arrive at

(Ap)(t+1T)
t+T~1 71
=[1- IT a)] X [elr = gtrDlatr)etr - 1) = c(r)
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Let j =r—T, then

(Ag)(t +T)
t+T-1 _y il
[ I o] 3 [l +T -G +TlaG+T)eli +T = 1)
s=t =t -T
’ +7-1
ST+ g+ ToplG Tl +T=gG+T)] ] als)
s=j+T+1
t+T—1 o=l
= [1= TI a)] [0l — 9iNalieli = 1) - ei)]
s=t j=t=T
H+T-1
SREEIRECETTON I | ERIC
=j+7T+1

Now let k = s — T, then

(Ap)(t +T)
t—1 t—1

[ T )] X el - slaleti - 1) — (i)

k=t—-T _] =t-T
t—

)

1
+ a(Ge() e — 9GN] T als) = (4e)(2).
k=j+1

To see that A is continuous, we let ¢, € Pr with [j]] < C and [f4]f <
C. Let

= I1naxX ! »
tel0,7-1]1 (1 —Hti 1 als)
(2.14) ot
8= g latr)elr = 1) —eln)f v = e, T at)

Given ¢ > 0, take § = ¢/M such that {{p — ¥|| < 6, where M =
T~yn]B + L + K]. By making use of (2.4) into (2.13) we obtain
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[(#et0) - (4vt0)|

= ||1_H_tT :Z [((r = gr)) = v(r = g(r)))
(e(r = a(r) - e(r)) + (qw(m,w(r—g(r»)
~g(r, (1), 0(r = 9(r))))] I a(s)

s=r+1

5> [llp = w18+ Lile = il + Ko - i}
r=t—T

< S (BBl vl

r=t—T

= MT(B+L+K)lle -

= Mlpo—9l|=Mé<e
where L and K are given by (2.4). This proves A is continuous.
Next, we show that A maps bounded subsets into compact sets. Let J
be given, S = {p € Pr | ¢ ||< J} and Q = {(Ap)(t) : ¢ € S}, then
S is a subset of RT which is closed and bounded thus compact. As A

is continuous in ¢ it maps compact sets into compact sets. Therefore
Q = A(S) is compact. O

LEMMA 2.4. If B is given by (2.11) and
(2.15) Hc(t - 1)” <(<1,

then B is a contraction.
Proof. Let B be defined by (2.12). Then for ¢, € Pr we have

IB(p) - B)| = max |B(p)-B(¥)

t€[0,7—1]

= max [t = Dp(t — g(t) ~ eft ~ 1ib(t - g(1)

= max fe(t= 1)t - o) - vit - 9(0)

< Clle =il

Hence B defines a contraction mapping with contraction constant {. [J
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THEOREM 2.5. Let o = ||q(t,0,0)||. Let n, 8 and v be given by (2.14).
Suppose (2.1)-(2.4) and (2.15) hold. Suppose there is a positive constant
G such that all solutions x(t) of (1.1), x(t) € Pr satisfy [z(t)| < G, the
inequality

(2.16) {<+mT(,6+L+K)}G+mTa <G

holds. Then equation(1.1) has a T—periodic solution.

Proof. Define M = {y € Pr: |[¢|| < G}. Then Lemma 2.3 implies
A:M — Pr and A is compact and continuous. Also, from Lemma 2.4,
the mapping B is a contraction and it is clear that B : M — Pr. Next,
we show that if ¢, 1 € M|, we have ||A¢ + By|| < G. Let ¢, € M with
[ll],11¥]] < G. Then from (2.11)-(2.12) and the fact that |g(t,z,y)| <
L||z|| + K||y|| + o, we have

| (4et0)) + (B;_blw) ll

h Hl_% > [w(r —9(r)) (c(r ~ 1a(r) — c(r))

Hs:t—T r=t-T
t—1

+alrp(r)o(r— o)) TT als) + et = (e - g(t)
s=r+1
t—1

<m Y. |Llgl+ Kl + Blel +a] +Cllyl

r=t-T
<mlB+ L+ K)ol + T + |
<MT(B+L+K)G+nmyTa+ G¢

—~ {c +mT(B+ L+ K)}G-HwTa
<a.

(]

We see that all the conditions of Krasnoselskii’s theorem are satisfied
on the set M. Thus there exists a fixed point z in M such that z =
Az + Bz. By Lemma 2.1, this fixed point is a solution of (1.1). Hence
(1.1) has a T'—periodic solution.

REMARK: The constant G of Theorem 2.5 serves as a priori bound
on all possible T-periodic solutions of equation (1.1)
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THEOREM 2.6. Suppose (2.1)-(2.4) and (2.15) hold. Let 1,3 and ~
be given by (2.14). If

C+T7n(ﬂ+L+K) <v<l,

then equation (1.1) has a unique T —periodic solution.

Proof. Let the mapping H be given by (2.10). For ¢,y € Pr, in view
of (2.10), we have

| (o) - (w0 |

H(Bw(t) (4e0) - (Bv®) = (4900)]
[((Be0) = (Bo)) + ((ae0) - (4v0) )|
|(Bo®) - (Be®)]| + | (4¢) - (4v0))]

t—1

<clo—sll+vm Y [Llie - vl + Ko = o)+ Blle — ]

IN

r=t—T
< [¢c+Tw(p+L+K)|le -9l

<v|e -]
By the contraction mapping principle, (1.1) has a unique T—periodic
solution. O
3. Example

Consider equation (1.1) along with conditions (2.1)-(2.4) and (2.13)-
(2.14). Suppose that a(t) # 1 for all t € {0, T — 1]. Set

— mi -1, 6=
p teg}ngl]la() B tef&g{”k(t),

where k(t) = c(t) — c(t — 1).
Suppose 1 — [|¢|| > 0. If

p(L—1lell) > (1 = lel)(6 + L + K) + Tp(lla - 1]| + L + K)
holds, and G is defined by
a(1 = [lell + Tp

O ) = (-l T L+ K) ~Ta(la— 1 + L+ K)
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satisfies inequality (2.16), then (1.1) has a T—periodic solution.

Proof. We rewrite (1.1) as

(3.1) Ax(t) = (alt) ~ 1)2(t) + c(H)Aa(t - 9(8)) + a(t,2(t), 3(t - 9(1))

Let the mappings A and B be defined by (2.13) and (2.12), respectively.

Let z(t) € Pp. A summation of equation (1.1) from 0 to T — 1 gives
T-1

> Ax(s)

s=0

T—

= 3 [(als) = ats) + els)An(s = g(s)) + a(s,a(s), 35 — 9(5))]
0

(T) - 2(0)
71

—

8

N

!

= 3" [(als) = 1)a(s) + els)An(s ~ 9(5)) + a5, 2(s), 2(s = g(5))]

8

Il
o

Since z(t) € Pr, z(T') = 2(0). Therefore
(3.2)

0
T-1

= Z {(a(s) — D)a(s) + c(s)Az(s — g(s)) + q(s, z(s), 2(s - g(s))]

$=0

Rewrite and then sum by parts, using the summation by parts formula

ZEyAz =yz — Zsz

with Ey(s) = ¢(s) and z = (s — g(s)). As a consequence, we have

c(s)Ax(s — g(s))
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= ¢(T — 1)z(T — g(T)) — c(-1)z(0 — ¢(0))

T-1

— > a(s — g(s))le(s) — (s — 1)]
s=0
T-1

= = 3 a(s - 9(s))lels) — (s - 1),

s=0
As a result (3.2) becomes

T-1

[a(s) — 1]x(s)

W
li
(-}
—

= ) z(s—g(s)le(s) — c(s = )] = q(s,2(s), z(s — g(s)).

s=0

Let § = 8_0 'a — lH l We claim that there exists a t* €
[0,T — 1]such that

~3

T’a(t*) - 1Ha:(t*) <

!a(s) — le(s)'

Il
=)

8§

Suppose such t* does not exist. Then

T{a(t*) . lux(t )| > s,
which implies that
T‘a(t*) - 1“
or
5= Juc) - e > 3 2

Hence, § > S + ¢, which is a contradlctlon. Therefore, such t* exists.

From (3.3), it implies that there exists a t* € (0,7 — 1) such that

Tla(t) - 1][o(t")] < > [k(®)||as — a(s))| + |a(s, 2(s), 2(s — 9(s))|
5=0
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By taking the maximum over ¢ € [0,7 — 1], we obtain from the above
inequality

~

Tolla)l| < 3 (8llall + Lilall + Ellall + o)

ML LML

(6 +L+E)llz|| +a)

@
I
[a]

= T((@+L+B)lial + ),

which gives us

(3.3) =)} < - (5+L+K)HIH+;

Since for all ¢t € [0,T — 1]

taking maximum over ¢t € [0,7 — 1] and using

lz ()] < [Ja(t” H+Z|Aif
yields
(3.4) llz(®)]] < (5+L+E)Ilrll+ + T]|Azl].

Taking the norm in (1. 1) yields
Az < fla = [ |t + llcil [[Azl| + Kl2][ + L{lz(] + o

(1=t} liaze < (lla = i+ B+ L) la]] + o

Thus

(lla~ 1+ £+ L)llzll +a
L= fel]

A substitution of (3.6) into (3.5) yields

(lla =101+ K + L) lJal] + e
1= {fel]

(3.5) 1Az (t)]] <

z(®)]] < (6+L+K [|x||+—/; +T
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Hence
llz(®)Il

3 (1 — ||| + Tp) e

—op(=lell) = @ = lelD(6 + L+ E) = Tp(lla = 1] + L + E)
Thus, for all 2(t) € Pr we have shown that

lz(®)l] < G.
Define M = {¢ € Pr: ||¢|| £ G}. Then by Theorem 2.5, equation (1.1)
has a T—periodic solution. This completes the proof. O
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