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J. A. MONTALDI, R. M. ROBERTS AND I. N. STEWART 

We consider the effects of symmetry on the dynamics of a nonlinear hamiltonian 

system invariant under the action of a compact Lie group F, in the vicinity of an 
isolated equilibrium: in particular, the local existence and stability of periodic traject- 
ories. The main existence result, an equivariant version of the Weinstein-Moser 
theorem, asserts the existence of periodic trajectories with certain prescribed sym- 
metries Z c F x S1, independently of the precise nonlinearities. We then describe the 
constraints put on the Floquet operators of these periodic trajectories by the action 
of F. This description has three ingredients: an analysis of the linear symplectic maps 
that commute with a symplectic representation, a study of the momentum mapping 
and its relation to Floquet multipliers, and Krein Theory. We find that for some X, 
which we call cyclospectral, all eigenvalues of the Floquet operator are forced by the 
group action to lie on the unit circle; that is, the periodic trajectory is spectrally stable. 
Similar results for equilibria are described briefly. The results are applied to a 
number of simple examples such as F = SO(2), 0(2), Zn, D., SU(2); and also to the 
irreducible symplectic actions of 0(3) on spaces of complex spherical harmonics, 
modelling oscillations of a liquid drop. 

0. INTRODUCTION 

In this paper we use representation-theoretic methods to prove some general existence and 

stability results for periodic trajectories near equilibrium points of nonlinear hamiltonian 

systems that are invariant under the action of a compact Lie group of symmetries. 

(a) Existence 

First suppose that no symmetries are present. Let $X be a hamiltonian function on a 2n- 

dimensional phase space (symplectic manifold) P, and let p be a non-degenerate minimum of 

X., that is, DX, = 0 and D2MJ is positive definite. The eigenvalues of the linearization L of 

the vector field at p are purely imaginary pairs {??A1,..., +A }. Liapunov (1907) proved the 

centre theorem: if some A, is non-resonant then there exists a smooth two-dimensional sub- 

manifold of P, passing throughp, and intersecting each energy level nearp in a periodic trajectory 
with period near 2//IAJl, see Abraham & Marsden (1978). By 'non-resonant' we mean that 

A, is not an integer multiple of A, for anyj # i. In a celebrated generalization, Weinstein (1973) 
and Moser (1976) proved that even when there is resonance, there still exist n periodic 

trajectories on each energy level near p, each having period near 27r/IA,l for some i. In general, 
these no longer form smooth families through p (see, for example, Duistermaat I984). The 

theorems of Liapunov, Weinstein, and Moser apply to equilibria other than minima of X, and 

so do the results of this paper, but for the purposes of this introduction it is simpler to describe 
the results in the above setting. The importance of these results lies in the fact that periodic 

trajectories may often be used as a framework around which the dynamics of a system near an 

equilibrium can be organized. For example the K.A.M. theorem ensures that many periodic 
orbits are surrounded by invariant n-dimensional tori, hence lie at the centre of regions of 

stability, neglecting the exponentially small effect of Arnold diffusion. See Arnold (1978) and 

Henon (1983). 

Suppose now that r is a compact Lie group (not necessarily connected, so that we include 
finite groups) acting symplectically on P, that is, by 'canonical transformations'. Let fa be 

invariant under the action of and let p be a fixed point for r. In general such a group action 

will force some of the A, to be equal, restricting the applicability of the Liapunov centre theorem. 
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The Weinstein-Moser theorem can still be used, but the estimate of the number of periodic 

trajectories is usually weak. For instance, in the system of Henon & Heiles ( 1964) at low energy, 
the Weinstein-Moser theorem predicts two families of periodic trajectories, whereas in fact 

there are eight. For the spherical pendulum the Weinstein-Moser theorem also predicts two 

solutions, but there are infinitely many, falling into two orbits under the symmetry group 0(2). 
Our results predict all of these trajectories, as shown in ? 1. 

The reason for this is that the standard Weinstein-Moser theorem does not (directly) give 
information about the symmetry groups of periodic trajectories. If u(t) is a periodic trajectory with 

period T, so that u( T) = u(0), then so is yu(t) for all y E F. Phase-shifted solutions u(t + ) are 

also periodic trajectories. In fact there is a natural action of F x S1 defined by 

(y, ) u(t) = yu(t+ TO/2n) 

preserving periodic trajectories. Here we identify the circle group S1 with R/2iZ. The sym- 

metry group of u(t) is the group 

u= (y, 0) F S' Iyu(t+ TO/2iQ = ( t+ TO/2) = u(t)}. 

The set Cu = {7u(t) yeF, teR) (0.1) 

is diffeomorphic to the quotient (F x S')//E. The projection H of Lu into F consists of all 

elements of F that take u(t) into a phase-shifted version of itself. However, it is important to 

work with Su rather than H because distinct u, may have the same projection H. For instance 

this occurs in the Henon-Heiles system: see example 1.3b. 

For simplicity of exposition in this introduction let us suppose that A, =...= A = A. (Our 
actual results apply more generally, see ?1.) Then the trajectories of the linearized vector field 

at p, defined on the tangent space T P, are all periodic with period 2n/1Al. This flow therefore 

defines an S1-action which commutes with the linearization of the r-action, the two together 

yielding an action of r x S' on Tp P. Let Y be a subgroup of F x S' and define the fixed-point 

subspace subspace Fix (L) = {v e T P I av = v Vor E }. 

Our existence result, theorem 1.1, states that there exist at least j dim Fix (L) periodic traject- 

ories of the nonlinear system, with periods near 2i/1lA and symmetry groups containing X, 

on each energy level sufficiently close to p. The Weinstein-Moser result may be recovered by 

taking L = 1, the trivial subgroup. We also have a version of the Liapunov centre theorem: if 

dim Fix (L) = 2 (and S is chosen to be maximal with respect to having this fixed-point subspace) 
then there exists a family of periodic trajectories, with symmetry groups equal to E, forming a 

smooth two-dimensional submanifold through p. Examples suggest that in 'generic' systems 
with symmetry, our result gives sharp estimates for the number of periodic trajectories with 

periods near those of the linearized system. 

(b) Stability 

After ?1 the rest of the paper is directed at the stability of these periodic trajectories. First 

recall some definitions. Let a: P x RI -P denote the flow generated by Ya and for fixed t e R 

write St = r(*, t). If u(t) is a T-periodic trajectory then its Floquet operator is 

(DaoT)u(O): T.(O)P-+ TU(O)P. 

17-2 
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Definition 0.1 

(a) A T-periodic trajectory u(t) is Liapunov stable (with respect to a metric 11 II on P) if for 

all e > 0 there exists 6 > 0 such that if v(t) is a trajectory satisfying 11u(0) -v(0) 11 < 6, then 

inf8 u(s) -v(t) II < e for all t > 0. 

(b) A T-periodic trajectory u(t) is linearly stable if it is Liapunov stable as a trajectory of the 

linearization of the vector field about u(t). 

(c) A T-periodic trajectory u(t) is spectrally stable if the eigenvalues of (DoT)U(O) all lie on the 
unit circle in C. 

Linear stability is neither necessary nor sufficient for Liapunov stability, but spectral stability 
is a consequence of either. For the analogous statements at equilibria see Holm et al. 

(I985). 
In the presence of a group action these definitions of Liapunov and linear stability are not 

appropriate. For example, consider those periodic trajectories of a spherical pendulum that lie 
in vertical planes (see example 1.3a). These are neither Liapunov nor linearly stable: small 

perturbations can gve quasiperiodic trajectories that drift away from the original periodic 
trajectory. Both types of stability can be recovered only by modifying the definitions, insisting 
only that the perturbed trajectory remains close to the entire F-orbit of the original periodic 
trajectory. However, these matters will be dealt with elsewhere: in this paper we concentrate 
on the weaker notion of spectral stability, whose definition does remain appropriate in the 

symmetric context. The planar periodic trajectories of the spherical pendulum are spectrally 
stable, see example 7.1. 

Our main result is theorem 5.1, which gives a set of sufficient conditions for a periodic 
trajectory near an equilibrium point to be spectrally stable. The examples in ??7 and 8 show 
that these conditions are satisfied sufficiently often for the theorem to be useful. Of perhaps 
wider significance is that in proving this theorem we develop machinery that describes precisely 
the constraints put on Floquet operators by group actions. 

Let p be an equilibrium point, as in the second paragraph above, and let u(t) be a periodic 
trajectory near p with symmetry group X and period T near 271/IAI, where A = A1, say. In ?5a 
we prove that the Floquet operator Mu: T7(O)P 

-* T7(o)P is close to the operator e-2`L/Al: Tp P-? 

TpP, which has eigenvalues et 2A/IAI, on the unit circle. In ?5b we use 'Krein theory' to show 

that if neither A, nor A, - A. (j i) is an integer multiple of A (so that in particular e?2nA/lAl 1) 
then the eigenvalues of Mu near e?2At/IAl remain on the unit circle for u nearp. The eigenvalues 
of Mu near 1 fall into two classes: those that remain at I because of the group action, and the 
rest. Those forced to equal 1 are discussed in ?4. Let C = (,u as in (0.1). Clearly aT\ I C, is the 

identity mapping, so Mu I Tu(0)Ju is also the identity. More eigenvalues of Mu are forced to equal 
1 because the flow a- must leave invariant the momentum mapping, or 'constants of motion', 
associated to the F-action by Noether's theorem. Theorem 4.5 lets us divide out those parts of 

Tu(O)P corresponding to eigenvalues of Mu forced to 1, defining a restricted Floquet operator Nu 
whose eigenvalues are the remaining eigenvalues of Mu. 

To describe our approach to the eigenvalues of Nu, we again suppose, for simplicity only, 
that A1 =... = An = A, say. Then Nu is a linear symplectic map which commutes with an action 
of ? derived from tile restriction of the F x S'-action on Tp P. (This is not obvious: see theorem 

6.4.) We are therefore able to apply general results about equivariant symplectic maps, proved 
in ?2. These include a representation-theoretic characterization of cyclospectral representations, i.e. 
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representations of X for which every ?-equivariant symplectic linear map has all its eigenvalues 
on the unit circle (theorem 2.3). This result provides the final ingredient for theorem 5.1. It 
also has other applications, and in ? 3 we apply it to find sufficient conditions for the spectral 
stability of an equilibrium point. The machinery of ??2 and 4 will also be an essential part of 

any general discussion of equilibria and periodic trajectories in hamiltonian systems with 

symmetry. 
In the final two sections we illustrate our results on a number of examples. In ?7 we consider 

equilibria fixed by actions of Z., D, S0 (2), 0(2), 0 (n) and SU(2), showing how results, some 
of which are perhaps well known, follow from purely group-theoretic considerations. When the 

symmetry group F is abelian, the methods of this paper provide no essentially new information 
on existence or stability, because irreducible symplectic representations are then two dimen- 
sional and generically a combination of the standard Liapunov centre theorem and Krein 

theory yields the same results. However, when F is not abelian the methods do provide new 

information, as even the simplest examples show. 
In ?8 we look in greater detail at equilibria fixed by actions of 0(3). Near these, under 

suitable conditions, we prove the existence of a variety of periodic trajectories with prescribed 
symmetries. These can be approximated by certain linear combinations of rotating spherical 
harmonics, see figure 6. For low-order spherical harmonics many of these trajectories are forced 

by the group action to be spectrally stable. As the order increases this is no longer true, although 
there are always two types of rotating wave that are spectrally stable. However, even here we 
can use the group action to limit the possible forms that the Floquet operator can take. 

An informal discussion of these results, together with further examples, and including 
applications to vibrations of molecules and crystal lattices, is given in Montaldi et al. 

(I988a). 

1. EXISTENCE OF PERIODIC SOLUTIONS 

In this section we prove an equivariant version of the Weinstein-Moser theorem on the 
existence of periodic solutions of a hamiltonian system near an equilibrium (see Weinstein 

1973, 1978; Moser 1976). Suppose that the symmetry group is F, and let S1 denote the circle 

group acting as phase shifts on periodic solutions. The main result, theorem 1.1 below, states 
that under suitable hypotheses, for each isotropy subgroup X of a certain action of r x S1, there 
exist periodic solutions with symmetry group containing E. The number of such solutions is at 
least half the dimension of the fixed-point subspace of S. We also make a number of remarks 
on generalizations of the main theorem and related matters, and describe three examples: the 

spherical pendulum, the H6non-Heiles system, and the spring pendulum. 
We begin by making the setting precise. Let P be a finite-dimensional symplectic manifold, 

Xa a hamiltonian function on P, and X its associated vector field, i.e. 

o(X(z), v) = Dk,(v) (VzeP, ve TP), (I.1) 

where w is the symplectic form on P. Suppose that r is a group acting symplectically on P, and 
X is F-invariant, ., 

(g'z) = XK'(z) (geF, zeP). 

Then X is equivariant with respect to the induced action of F on TP, 

X(g z) =gX(z) (VgeF,zeP). 
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Let pe P be a critical point of J$, hence an equilibrium point of X, and suppose that p is fixed 

by r. 
Let Wk( T) denote the space of continuously k-times differentiable T-periodic maps u: R -* P. 

This space will, of course, contain all T-periodic trajectories of X. Identify the circle group S' 
with R/2nZ and define an action of F x S1 on Ck(T) by 

(7, ) u(s) = yu(s+ T/2n) 
for all y r, 0eSl, u E W(T). 

Recall that for any action of a group G on a set Y the isotropy subgroup Gy of a point y Y is 
defined by 

Gy = (orG: o"y = y}, 

and that for any subgroup Z of G the fixed-point set Fix (Z; Y) is defined by 

Fix (Z; Y) = {(yeY: a-y = y for all aES}. 

We write Fix (Z) for this if there is no ambiguity. When G acts linearly, Fix (Z) is a linear 

subspace. 
Let u be a T-periodic trajectory of X, or indeed of any equivariant vector field, and consider 

u as an element of k( T) with the above F x S1-action. The isotropy subgroup of u is called the 

symmetry group of u. Note that this definition depends on specifying the period T of u, which may 
not be minimal. In fact u has minimal period T/k if and only if X. n S1 = Zk, the finite cyclic 

group of order k. 

Below we state a theorem on the existence of T-periodic trajectories near p, with prescribed 
symmetry group. This theorem will be proved by considering X as a perturbation of its 
linearization at p, the trajectories of which are the solutions of 

i+Lx = 0, (1.2) 

where L = DXp. The equivariance of X implies that L is a F-equivariant linear transformation 
of V = Tp P. Let A be a non-zero purely imaginary eigenvalue of L, and define the resonance space 
VA for A to be the unique subspace of V, maximal with respect to all eigenvalues of L I V. being 
integer multiples of A. In other words, VA is the real part of the sum of the generalized 
eigenspaces of L for eigenvalues kA, ke Z. Assume the following conditions on X. 

HI: D2Jp is a non-degenerate quadratic form; 
H2: D2p I VA is positive definite. 

The condition HI is equivalent to L being non-singular; and H2 implies that LIVA is semi- 

simple, that is, can be diagonalized over C. 
The F-equivariance of L implies that V. is invariant under the action of rF on V. It is clear 

that V^ is also invariant under the flow obtained by integrating (1.2). Because LI V. is semi- 

simple, the trajectories of this flow on VA are all periodic with period 2i/IAI and so define an 
action of S1. This action of S1 commutes with that of rF and so together they define an action 
of FxS1. 

The S'-action can be described explicitly as follows. Let the eigenvalues of L I VA be + m A, 
where m1, ..., mn are strictly positive integers. Then VA can be identified with Cn and S1 with 
the complex numbers e1i, 0 < < 2n, acting by 

eir(z Z,..., ) = (eiml zl,..., eimn' zn). 

The periodic trajectories of X, whose existence will be proved below, are obtained by perturbing 
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periodic solutions of (1.2) lying in V^. An essential point of the theorem is that symmetry groups 
are preserved by these perturbations. 

THEOREM 1.1. (Equivariant Weinstein-Moser theorem.) Suppose the hamiltonian # satisfies HI 

and H2. Thenfor every isotropy subgroup Z of the r x S1-action on VA, andfor all e sufficiently small, there 

exist at least dm F 
i dim Fix (?, VA) 

periodic trajectories of X, with periods near 2/1 Al and symmetry group containing X, on the energy surface 

.t(x) = JXP(p) + e2 

Note that by taking I to be trivial and I to be the trivial isotropy subgroup we recover the 

Weinstein-Moser theorem. Our proof of theorem 1.1 is an equivariant adaptation of Weinstein 

(1978). 

Proof. Because the theorem is local we may, without loss of generality, identify P and the r- 
action in a neighbourhood ofp with V = Tp P and its r-action. This follows from an equivariant 
version of Darboux's theorem (Guillemin & Sternberg I984), theorem 22.2. The point p 
becomes the origin in V. We may also suppose .X(0) = 0. The trajectories of X are solutions 

of the differential equation +X()=0. (1.3) 
X + X(x) = 0. (1.3) 

Writing x = y and dividing by e (1.3) becomes 

+ Ly+ eX(y) =0, (1.4) 

where X(y) = C2[X(y) - cLy ] is a smooth r-equivariant vector field. Equation (1.4) has 

X(y) = e-2.* (ey) as a hamiltonian function. So T-periodic solutions of (1.3) with energy ?2 

correspond precisely to T-periodic solutions of (1.4) with energy equal to 1. 

For e = 0, the 2n/IAI-periodic solutions of (1.4) are precisely the trajectories of the linearized 

equation (1.2) that lie in VA. This gives a F x S1-equivariant embedding of V into rk(2r/1Il). 
With this identification, the 2r/IA-periodic solutions with energy I correspond to the points on 

an ellipsoid S in VA. We claim that S is a non-degenerate periodic manifold for (1.3) with 
? = 0, in the sense of Weinstein (1978). This is easily checked by the corollary on p. 246 of that 

paper. 
Theorems on pp. 241 and 247 of Weinstein (I978) imply that for any neighbourhood U of 

S x {2t/1A1} in Ck(2t/IlAI) x R there exists eo > 0 such that for 161 < eo there is an embedding e, of 

S in U, and a smooth function A. on e,(S), such that the critical points (u, T) of A, are precisely 
the pairs in U given by T-periodic solutions of (1.3) with energy equal to 1. 

The submanifold S is invariant under the r x S'-action on ck(27/IAI). Remark 1 on p. 243 

of Weinstein (1978) implies that e6 is equivariant with respect to this action (extended to be 

trivial on the factor R in 'Ft(271/1A1) x R), and A, is invariant under the induced action on 

e,(S). 
Let E be an isotropy subgroup of the r x S1-action on VA, and hence also for its induced 

action on S. Then the critical points of A. fixed by Z are precisely the critical points of the 

restriction of A6 to Fix (Z; e,(S)), by the principle of symmetric criticality, see Palais (I979). This 

fixed-point set is diffeomorphic to a sphere; moreover, because the S1-action commutes with 

that of r, it restricts to an action on Fix (Z; e,(S)) which leaves the restriction of A6 invariant. 

It now follows by theorem 1.3 of Weinstein (I973) that A6 must have at least 

'[dimFix (; e(S))+1] = 2dimFix (, VA) 

S1-orbits of critical points fixed by S. ? 
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Remarks 1.2 

(a) If X is maximal (with respect to inclusion) among isotropy subgroups of non-zero points 
in VA, then we can make the slightly stronger statement that there are at least 2 dim Fix (X; VA) 

periodic trajectories with symmetry group equal to X, on each level for a sufficiently small 

positive energy. 

(b) By a closer examination of the proofs of the Weinstein-Moser theorem it can be shown 

that if dim Fix (X; VA) = 2 (an important special case in which X is necessarily maximal) then 

through p there is a C' two-dimensional submanifold of P that is foliated by periodic trajectories 
with periods near 21/lAI and symmetry groups Z. The tangent space to this submanifold at p is 

equal to Fix (1; VA). This is an equivariant generalization of the Liapunov centre theorem 

(Abraham & Marsden 1978 theorem 5.6.7). For higher-dimensional fixed-point spaces we 

expect the periodic trajectories to form families that are C' away from the origin, but have 

conelike singularities at the origin. These families lie inside submanifolds of P that are C' at 

p for any finite k, and have tangent spaces at p equal to Fix (1; VA). A similar situation is treated 
in Duistermaat (I984). 

(c) It can also be shown that H2 may be relaxed to the condition that L I VA is semisimple 
and D2X I Fix (Z; VA) is positive definite. 

(d) Suppose, for simplicity, that VA = V = P. Then the hamiltonian Ye of theorem 1.1 is 

said to be in Birkhoff normal form if it is invariant under the action of S1 defined by the 

linearization of X at p. This can always be arranged, by an equivariant symplectic change of 

coordinates, to any finite degree in the Taylor series of Y about p (see, for example, Churchill 

et al. I983), but the resulting formal power series is not, in general, convergent. 
If Ye is in Birkhoff normal form then the proof of theorem 1.I follows directly from the 

Weinstein-Moser theorem together with the observation that for each 1 the restricted vector 

field X I Fix (1; V) is tangent to Fix (1; V) and has a I Fix (1; V) as hamiltonian. The periodic 
trajectories of X that are fixed by 12 are precisely the periodic trajectories of XI Fix (1; V), and 
so the theorem follows from the Weinstein-Moser theorem applied to this vector field. 

(e) The previous result is related to the approach of Churchill et al. (1983) to periodic orbits 

in symmetric hamiltonian systems. Suppose that G is a compact Lie group acting symplectically 
on P and let $: P- g* be the associated momentum map (see ?4 and references therein). 

Suppose ge g* is a regular value of (f. Then 4)-'(,) is a smooth manifold on which G, (the 

isotropy group of the co-adjoint action of G on g* at i) acts. The smooth part Q of the quotient 

`-l(c)/G, inherits a symplectic form from P. This is the Marsden-Weinstein reducedphase space 

(see Abraham & Marsden I978; Arnold 1978). If X is a G-equivariant hamiltonian vector 

field on P then there is an induced hamiltonian vector field Y on Q such that trajectories of X 
in (D-'(g) project to trajectories of Y on Q. In particular, equilibrium points of Y correspond 
to G,-orbits in -'(u) that are invariant under the flow generated by X. These are the relative 

equilibria of X with respect to the G-action. If G = S' then relative equilibria are periodic 
trajectories. Conversely, if V = VA = P and X is in Birkhoff normal form as in remark 4, then 

the periodic trajectories near p with periods near 2r/1IAI are the relative equilibria of X with 

respect to the S'-action on V, provided that Q is smooth at the appropriate point. 
Now suppose that F is another compact group acting symplectically on P, that this action 

commutes with that of G, and that X is F-equivariant as well as G-equivariant. Then there 

is an induced action off on Q with respect to which Y is equivariant. Any isolated fixed point 
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q e Q of this action must be an equilibrium point of Y and hence a relative equilibrium of X. 
There may, of course, be others. 

Churchill et al. use these ideas to study hamiltonian vector fields on R4, with separate 
arguments to deal with the singular points of Q and to show that periodic trajectories of the 
Birkhoff normal form persist as periodic solutions of the original system, sufficiently close to the 

equilibrium point. 
(f) Fadell & Rabinowitz (1978) have shown that (roughly) the number of periodic traject- 

ories with period near 2t/1IA, in hamiltonian systems that do not satisfy H2, but for which 
L IV is still semisimple, is at least 'IPI where v is the signature of D2X IVA. In these cir- 

cumstances the flow of the elinearized equations still defines an S1-action on VA, and in a r- 

equivariant system there will also be -action. We conjecture that if is an isotropy subgroup 
of the F x S1-action on VA, then the number of periodic trajectories with period near 2t/1AI and 

symmetry groups containing X will be at least 

|lsgn D2P I Fix (X; VA)I. 

(g) We can also prove an equivariant version of the result of Moser (I976) for conservative 

systems. We continue to suppose that L = DXP is non-singular, but now take x to be only a 

conserved quantity satisfying H2. With these hypotheses theorem 1.1 remains true, except that 

we can guarantee only one periodic trajectory fixed by X, no matter what the dimension of 

Fix (X) is. The equivariant Liapunov centre theorem also continues to hold in this case. 

(h) Following Schmidt (1976) and Alexander & Yorke (1978), Hopf bifurcation theorems 

can be used to prove the existence of periodic solutions near equilibria of hamiltonian and 

conservative systems. In the same way, equivariant Hopf bifurcation theorems, such as those 

in Golubitsky & Stewart (1985) and Fiedler (1986), may be applied to symmetric hamiltonian 

and conservative systems. For hamiltonian systems the conclusions obtained in this manner 

are decidedly weaker than theorem 1.1. For conservative systems the results are essentially 

equivalent to those in remark (g). 
The calculations needed to apply theorem 1.1 to specific systems, namely the computation 

of isotropy subgroups of the F x S1-action on VA, are identical to those needed to apply the 

equivariant Hopf bifurcation theorems of Golubitsky & Stewart (1985) and Fiedler (1986). 
This will be clear in the examples below. 

(i) Theorem 1.1 is an existence result. For an explicitly given hamiltonian, perturbation 
series expansions for the periodic orbits near an equilibrium point can, at least in principle, be 

calculated by using Liapunov-Schmidt reduction and Birkhoff normal form. Examples will be 

given in (Montaldi et al. 1988b). 

Examples 1.3 

(a) The spherical pendulum. The spherical pendulum is symmetric with respect to rotations 

about the equilibrium position and reflections in vertical planes containing the support. Thus 

the symmetry group is 0(2). The stable vertical equilibrium position is fixed by 0(2); we can 

identify the tangent space V to the phase space at this point with C2. The group 0(2) is 

generated by its subgroup of rotations, SO (2) = {60: 0 < < 2n) and an arbitrary reflection K. 

We show in ?7 below that the action on V = C2 can be written as 

6(z1,z2)= (e=iz, e-'Bz2), 

K(Z1, Z2) = (Z2, Z1) 

I8 Vol. 325. A 
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The eigenvalues of the linearization about the stable equilibrium are imaginary, and are forced 

to be double by the group action. The S1-action defined by the linear flow is 

(z1, 2) = (e', z, e' z2). 

This is identical to the group action discussed in Golubitsky & Stewart (1985) in the context 

of Hopf bifurcation with 0(2) symmetry, although their coordinate system is different. From 

that paper the maximal isotropy subgroups are conjugate either to 

S0(2) = {(6, -0) eSO(2) x S}, 

or to Z2 0 Z2, 

where Z2 = {, K}, 

Z2 = {1, (7n, 7) SO(2) x S1}. 

The group Z2{ acts trivially on C2. 

Each maximal isotropy group has a two-dimensional fixed-point space. By theorem 1.1, on 

each energy level near the equilibrium, there is a periodic trajectory with each of these 

symmetry groups. Other periodic trajectories with conjugate symmetry groups are obtained by 
applying elements of F = 0(2) x S' to these. In total there are two periodic trajectories with 

symmetry groups conjugate to SO(2), and an infinite family, foliating an invariant torus, with 

symmetry groups conjugate to Z2 ? Z2C. The former are the periodic trajectories where the 

pendulum rotates in a horizontal circle (one clockwise trajectory, one anti-clockwise). The 
latter are the trajectories where the pendulum swings in a fixed vertical plane, and there is an 
infinite family of such planes. These are in fact the only periodic trajectories 'near' those of the 
linearized system. 

N 
/___ 

\ 1L / 4- 

FIGURE 1. Circular and planar trajectories of the spherical pendulum. 

(b) The Henon-Heiles hamiltonian. For details see Henon & Heiles (1964) and Rod & Churchill 

(I985). Let F = D3, the dihedral group of order 6 (or symmetry group of an equilateral 
triangle). Identify this with the subgroup of 0(2) generated by 1-n S0(2) and K, by using the 
notation of example 1.3a and let it act on P = V = C2 by the restriction of the 0(2)-action 
above. Let J be a hamiltonian on C2 that is invariant under this action; an example is the 
Henon-Heiles hamiltonian. Again the group action forces the eigenvalues of the linearization 
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to be double, and we suppose they are imaginary as in the H6non-Heiles system. The S1-action 

given by the linearization is the same as in example 1.3a. The maximal isotropy subgroups of 

the combined D3 xS1-action are calculated in Golubitsky & Stewart (1986). They are con- 

jugate to one of the following subgroups: 

23 = {(, -) e D3 x S1: = 0, 3, } 

Z2K = {1, K}, 

where= {, (, n)}, 
where TreS . 

Again each maximal isotropy subgroup has a two-dimensional fixed-point space, so (by 

applying the D3xS1-action) theorem 1.1 yields two periodic trajectories with symmetry 

groups conjugate to Z3 and three periodic trajectories with symmetry groups conjugate to each 

of Z,K Z2 ("'). These are the only periodic trajectories of the Henon-Heiles system near periodic 

trajectories of the linearization. We can identify these eight solutions with those shown in 

figure 2, taken from Churchill et al. (1983), as follows: 

111,111 H3 have symmetry groups conjugate to Z2. 

114, 5, 116 have symmetry groups conjugate to Z2('") 

117,118 have symmetry groups conjugate to Z. 17, II, have symmetry groups conjugate to Za. 

These results are generalized to systems with D, symmetry in ?7. 

: nX 

n4 n\"2 

FIGURE 2. Periodic trajectories in the Hdnon-Heiles system, after Churchill et al. (1983). 

(c) Spring pendulum. Consider a pendulum in a vertical plane suspended by a spring instead 

of a stiff rod. This is a hamiltonian system invariant under reflection through the vertical line. 

In a neighbourhood of the vertical equilibrium position (that minimizes the hamiltonian) the 

phase space is isomorphic to C2 with Z2 = {1, K} acting by rK (z1,z2) = (-z1,z2). The eigen- 
values of the linearization about the vertical equilibrium are imaginary, but vary with the 

spring constant, the equilibrium length of the pendulum, etc. In particular they may be 

resonant (for details see Duistermaat 1984). In all cases the Weinstein-Moser theorem 

guarantees at least two periodic trajectories in each energy level near equilibrium, with 

periods near those of the linearized system. 
If the eigenvalues ?:A1, ?A2 are non-resonant then the resonance spaces VA, are both two 

dimensional and can be identified with C. On one, say VA1, the flip K acts trivially, whereas on 

18-2 
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the other it acts non-trivially. On each, S1 acts as multiplication by unit-circle complex 
numbers. With respect to these actions ofZ2 x S1, the space VA1 is fixed pointwise by Z2,, whereas 

V^ is fixed pointwise by Z2'K = {1, (KK, r)}. Thus theorem 1.1 implies that on each energy level 
near the stable equilibrium there exists one periodic trajectory fixed by K, with period near 

2t/1All, and another fixed by (K, r) with period near 2n/1A21. 

Suppose now that A1 = A2 = A. Then VA = C2 with action of Z2 as above, and again S1 acts 

as multiplication by unit-circle complex numbers. The non-trivial isotropy subgroups are Z2K 
and Z2(K"', defined as above, both with two-dimensional fixed-point subspaces. Again theorem 
1.1 implies that there exists one periodic trajectory fixed by K and one fixed by (K, 7), both with 

period near 2n/IAl. 
In fact, by applying theorem to thee possible eigenspaces V that can occur in both non- 

resonant and resonant equilibria, it can be shown that there is always one periodic trajectory 
with K in its symmetry group, and another with (K, T) E Z2 x S1 in its symmetry group, provided 
that both symmetry groups are taken with respect to the minimal periods of the trajectories. 
These may be thought of as spring-like and pendulum-like trajectories respectively. We do not 

obtain more periodic orbits than the Weinstein-Moser theorem gives; but we derive extra 
information about their symmetries. 

2. EQUIVARIANT SYMPLECTIC LINEAR MAPPINGS 

A symplectic representation ofa group G is a real vector space V on which is defined a symplectic 
form [,] and a linear action of G that preserves the symplectic form: 

g'v,g w] = [v,w] (v,weV,geG). (2.1) 

Recall that an equivariant mapping V - V is one that commutes wit the actions of all ge G. A 

symplectic representation V is said to be cyclospectral if every equivariant symplectic linear 

mapping N: V -> V has all its eigenvalues on the unit circle. The main aim of this section is to 
characterize cyclospectral representations of compact groups in a computable manner. We 

state the main theorems in ?2a, illustrating them on the group S1. The proofs, which are 

technical, are given in ?2b-d. 
(a) Statement of results 

We begin by recalling some standard facts about representations of a compact Lie group G. 
See Adams (1969) for further details. 

A representation of G is irreducible if it has no proper non-zero invariant subspace. If V is a 

representation of G we write HomG(V, V) for the set of equivariant linear maps V -+ V. If W 
is an irreducible representation then HomG(W,W) is a real division algebra (with multi- 

plication given by composition of maps), hence isomorphic to one of R, C, or H. We say that 
W is real, complex, or quaternionic according to which possibility is realized. 

An arbitrary representation V can be decomposed as a direct sum of irreducible represen- 
tations. By collecting together all summands of a given isomorphism type we obtain a unique 
isotypic decomposition 

V = V, E ... ? V?, (2.2) 

where each V, is a direct sum of subspaces, each isomorphic to a single irreducible represen- 
tation W,, such that if j k then W, is not isomorphic to Wk. If W, is a real, complex or 
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quaternionic irreducible representation then we refer to V, as a real, complex or quaternionic isotypic 
block, respectively. 

If V is a symplectic representation then by ignoring the symplectic structure we obtain an 

ordinary representation, which we call the underlying representation of V. An irreducible symplectic 
representation is one that has no proper non-zero invariant symplectic subspaces. The underlying 
representation need not be irreducible in this case: the first result describes the relation in 
detail. 

THEOREM 2.1. (Classification of irreducible symplectic representations.) 
(a) The underlying representation of an irreducible symplectic representation is either: 

(i) a complex or quaternionic irreducible representation, or 

(ii) isomorphic to W @ W where W is a real irreducible representation. 
(b) In the real and quaternionic cases the isomorphism type of the irreducible symplectic representation is 

uniquely determined by that of its underlying representation. 
(c) In the complex case there are precisely two isomorphism types of irreducible symplectic representation 

for a given complex irreducible underlying representation. 
The two types of irreducible symplectic representation that occur for a given complex 

irreducible underlying representation are dual to each other, in a sense to be made precise in 

?2b. 
An irreducible symplectic representation is referred to as real, complex, or quaternionic according 

to the type of its underlying representation. 
Example. Let V = C with symplectic form 

[z, ] = Imzw. 

Let G = S1, identified with the unit complex numbers {e'}. For every integer r there is a 

symplectic action or? of G on V given by 

ei8Z = eri z. 

If r # 0 this is a complex irreducible symplectic representation; if r = 0 it is a real irreducible 

symplectic representation. If r ? s then o-r and ar, are not isomorphic as symplectic repre- 
sentations. However, their underlying representations are isomorphic if r = -s, the isomor- 

phism being z 21 2. Every irreducible symplectic representation of S1 is isomorphic to some or. 
THEOREM 2.2. (Isotypic decomposition of symplectic representations.) Every symplectic repre- 

sentation V has a unique direct sum decomposition 

V = V1 ...E V, 

where each Vj is a symplectic subspace of V, and either 

(a) V, is isomorphic to a direct sum of a number of copies of a single real or quaternionic irreducible 

symplectic representation, or 

(b) Vj is isomorphic to a direct sum 

(('X) G (t'Y) (s > O, t > 0), 

where X and Y are a (dual) pair of complex irreducible symplectic representations whose underlying 
representations are isomorphic. 

Example. There is a bijection between isomorphism classes of symplectic representations V 
of S1 and sequences of integers (rl,...,rk) with r1 r ... < re. Namely, decompose the 
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representation into a direct sum of ors and list the rs that occur in ascending order (with 

appropriate multiplicity). Let (R, ..., R.) be the distinct values of Irjl listed in ascending order. 

Then the isotypic decomposition of V has the form 

v =v,, 
-i1 

where V, is the sum of the irreducible subspaces of V on which S' acts either by ffr or ar_. 
THEOREM 2.3. (Characterization of cyclospectral representations.) A symplectic representation V 

is cyclospectral if and only if, in its isotypic decomposition: 

(a) there are no real isotypic blocks; 

(b) no complex isotypic block contains two distinct complex irreducible symplectic representations 

(necessarily dual to each other); 

(c) every quaternionic isotypic block consists of a single quaternionic irreducible representation. 
More briefly: 'cyclospectral' means 'no reals, no dual complex pairs, no multiple quaternionics'. 

Example. There is a bijection between isomorphism classes of cyclospectral symplectic repre- 
sentations of S' and sequences of integers (r, ..., r,) with r1 < ... < rk such that r and - r do 

not both occur in the sequence (so in particular 0 does not occur). Proof: there are no 

quaternionic irreducible representations of S1. There is a real block if and only if ao occurs. 

Complex dual pairs correspond to ar, and o_r, r > 0. 

(b) Isotypic decomposition of a symplectic representation 

In this section we prove theorems 2.1 and 2.2. We begin with some further standard facts 

from representation theory. 
Let V be a representation of G. The isotypic decomposition (2.1) can be written in the 

form 
V t kj ?k,W,, (2.3) 

J=l 

where W1,..., W are pairwise non-isomorphic irreducible representations and 

k, = HomG(W,, W,) RI, C, or H. 

Note that the action of G on V, is the tensor product of the action on W, and the trivial action 

on k1'. It is a consequence of Schur's lemma that any Ne HomG(V, V) can be written as 

N = ( Tj 8k 1W, (2.4) 
i-1 

where lw, is the identity on WI and T1 E Homk/(k,n, kf,), the space of k-linear transformations 

of kPl. Conversely, if N E Homk,(ksj, k/'i) for j = 1,..., C then (2.4) defines an element of 

HomG(V, V). Thus 

HomG(V, V) Homk,(kl,, kl'n) e ... ? Homk (k k/ ). (2.5) 

Restricting to invertible maps we obtain 

GLG(V) t GL(n,; k) x... xGL(n,; k). (2.6) 

For a uniform treatment of the cases R, C, H we must work not with symplectic forms but 

with closely related antihermitian forms. An antihermitianform on a k-vector space X is a pairing 
{, }:X x X- k that is k-linear in the first variable and satisfies 

{y, x} =-{xy} for all x, yE X. 
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For k = R, conjugation is trivial, so antihermitian forms are the same as symplectic forms. For 

each of k = R , C, H we define the standard antihermitian forms on k" by 

in 

k = R: {x, y} = Z (xyj n+,- Xjn+ y,) (n must be even), 

k=C:{x,y}= x,iy- X xtiyS (OSp?n), 
J-1 J-p+l1 

J-1 
k=H:{x,y}= xi- iy<, 

Here the bar denotes complex conjugation in C or quaternionic conjugation in H. 

For each of DR and H there is a unique standard antihermitian form, while for C there are 

n+ of them. Any antihermitian form on k" can be transformed into a standard one by a 

k-linear change of coordinates (see MacDonald I979). 
If {, } is an antihermitian form then its real part 

[, = Re{,} 

is a symplectic form on the underlying real vector space of k', which satisfies 

[Ax,Ay] = IA1[x,y] for all x,y e k, A k. (2.7) 

Conversely any symplectic form satisfying (2.7) can be used to define an antihermitian form 

on k.n by 
{x, } = [x, y] if k = R, 

{x, y} = , y] + [x, iy] i ifk = C, 

{x, y} = [, y] + [x, iy] i+ [x,jy]j+ [X, ky] k if k = H. 

Two antihermitian forms are isomorphic by a k-linear change of coordinates if and only if the 

corresponding symplectic forms are similarly isomorphic. It follows that any symplectic form 

on k" satisfying (2.7) can be transformed by a k-linear change of coordinates to a standard 

symplectic form [,] = Re{, }, where {, } is a standard antihermitian form. 

Theorems 2.1 and 2.2 are consequences of the following result. 

THEOREM 2.4. Every symplectic representation V of G has a unique decomposition 

V = V ... V, 
where 

(a) The V, are G-invariant symplectic subspaces of V; 

(b) Vjs kf ?kk Wj where W, ..., W, are pairwise non-isomorphic irreducible representations of G 

and HomG(Wj, W,) - k, = R, C, or H; 

(c) The action of G on V, is the tensor product of the action on W, and the trivial action on kfJ; 

(d) The symplectic form on V, can be transformed by an equivariant linear change of coordinates to one 

given by given by [X ? Wl, X2 ? W2]3j, = [X1, X23j (w1, W2)W. (2.8) 

Here [, ], is a standard symplectic form on k/jJ and ( , )wis a G-invariant inner product on W, (unique 

up to a scalar multiple). The symplectic forms [, ]j are uniquely determined by V. 

Proof. Let V = V,1 ... E Vt be the usual isotypic decomposition of V and choose 
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isomorphisms V1 w k1nj ?k WI. Fix G-invariant inner products (, ) on the W, and let (, ) 
denote the standard inner product on kj1', defined by 

n 

(x,y)j = Re S Xkk. 
k-i 

Then (x1 0 w1, x2 ( W2)vj = (xl, x2) (wl, w2)W 

defines a G-invariant inner product on Vj, and the direct sum of these gives a G-invariant inner 

product (,)v on V. 
If [, ]v is the symplectic form on V then the formula 

[V1,v2]v = (v1,Jvv2)v 

defines a symplectic involution Jv: V- V. Conversely J determines [,]v in the presence 
of ( , )v. A simple calculation shows that Jv is G-equivariant, so by (2.4) Jv =c )Jv, where 

Jv: Vj -+ V, is given by Jv, = Jj lw) 1 for some kj-linear map J1: kjJ 
__ 

kjn. 
Therefore Jv leaves V, invariant, so that Vj is a symplectic subspace of V. Moreover, the 

symplectic form restricted to Vj is given by 

[X1 ( W1, X2 0 W2] = (X1i 0 lJv,(X2 0 W2))v, 

= (x1 (0 wl,Jjx2 0 W)v 

= 
(xl,J x2)j (W1, W2)W,. 

The symplectic involution ji gives a symplectic form (xl,Jx2)j on knj' which satisfies (2.7). By 
the discussion preceding the statement of the theorem, this is equivalent, by some k1-linear 

change of coordinates %, to a standard symplectic form [, ]j on k1nj. Define an equivariant 

change of coordinates Is of V} by T' = (J 0(k 1W. This transforms the restriction of [, ]v to 

V1 into the symplectic form [, ]v defined in (2.8). 
The rest of the theorem merely restates standard properties of the isotypic decomposition 

of V. 

It is clear from this that an irreducible symplectic representation must be of the form 

R2 ?R W, where W is a real irreducible representation, or k (OkW, where W is a k-irreducible 

representation, k = C or 0H. (This is the content of theorem 1.1 of Golubitsky & Stewart (1987), 
which is proved there by a more concrete method.) The symplectic form is given by a standard 

symplectic form on R2 or k. For the real and quaternionic cases these are unique. However, 
on C there are two non-isomorphic symplectic forms xiy and -xzy, giving two non-isomorphic 
irreducible symplectic representations with the same underlying representation. This proves 
theorem 2.1. Theorem 2.2 also follows immediately. 1 

Remark. An alternative approach to theorem 2.4 is to use a symplectic involution Jv of the 

symplectic representation V to define a complex structure on V with respect to which the 

representation becomes unitary. This gives a bijection between isomorphism classes of sym- 
plectic representations and those of unitary representations. This is useful because unitary 
representations are widely studied. The theorem follows from the isotypic decomposition of 

unitary representations and the classification of irreducible unitary representations into real, 
complex, and quaternionic types, see Adams (1969, theorem 3.57). 

Note that if W is a unitary representation then its dual W* is defined by the natural action 
of G on Homc(W, C). If W is a k-irreducible unitary representation then it is isomorphic to W* 
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if and only if k = R or H, although the underlying real representations are always isomorphic. 
This is the sense in which there are dual pairs in the complex case, and corresponds to the fact, 
noted above, that on C there are two non-isomorphic symplectic forms xmy and -xi. 

The essential difference between the symplectic and unitary categories lies in the mappings 
between representations. IfW is a complex unitary/symplectic irreducible representation then 
the invertible equivariant unitary linear mappings W ? W* -+ W D W* are sums of mappings 
W - W and W* - W*. They therefore form a group isomorphic to U(1; C) x U(1, C). How- 

ever, the group of equivariant symplectic linear mappings is isomorphic to U(1, 1; C) as we 
shall see in the next section. 

(c) Decomposition of SpG(V) 

The groups ofk-linear transformations ofkn that preserve the standard antihermitian forms 

are denoted by 

Sp(n; R) if k=R, 
p n 

U(p,q;C) if k=C,p+q=n, and {x,y}= S - 
x,' , 

-1 IJ-p+1 

(U(n;H) if k=IH. 

Here Sp(n; OR) is the usual symplectic group, ocU(n; H) is the quaternionic antiunitary group, 
and the o is dropped from U(p, q; C) because any transformation preserving the antihermitian 
form {, } also preserves the hermitian form i{ , }, and vice versa. Also U(p, q; C) t U(q,p; C). 

If V is a symplectic representation of G then we denote the group of equivariant symplectic 
linear transformations of V by SpG(V). We can describe the structure of this group precisely. 

THEOREM 2.5. (Structure of symplectic equivariants.) Let V = V1 ... E VI, 

Vj = 
kn 0kj W1, be the isotypic decomposition of V. Then 

SpG(V) Sl x... x St, 
where 

(a) If kj = R then Sj = Sp(n1; R); 

(b) If k = C then Sj = U(p, q; C), where p and q are determined by the standard antihermitian form 
on k1n' defined by V; 

(c) If k = H then S = aU(n; H). 

Proof. If NNSpG(V) then by (2.4) 

N= Tj g1 lW, 
i-1 

where Tj: kn - kjnj is k,-linear. An easy calculation shows that if N is symplectic then the Tj 

preserve the induced symplectic form on k,J. Conversely, given k-linear symplectic maps T, 

(j = 1, .... 1) the formula (2.4) defines an element of SPG(V). The proof is completed by show- 

ing that a kj-linear map kjl -> kjk' preserves a symplectic form on kjn, satisfying (2.7) if and 

only if it preserves the corresponding antihermitian form. Again this is straightforward. U 

Example. Let V be the symplectic representation of G = S' indexed by a sequence of integers 

(ri, ..., rk) with rl , ... rk Let R1 < ... < R. be the values Irl arranged in ascending order. 

Let 
nj = {r,: r, = Rj}l, 

pi = I{r,: r = R} 

q = {r,: r, = =-R nj-pj. 
Vol. 325. A '9 
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Then SPG(V) = Sp(2n,; R) x U(p2, q2; C) x... x U(p;, q; C) if R, = 0, 

SPG(V) = U(P, ql; C) x...xU(p, qe; C) if R > 0. 

(d) Eigenvalues of equivariant symplectic mappings 

Finally we prove theorem 2.3. This can be done by showing that: 

(i) every element of U(p, 0; C) and aU(1; 0H) has all its eigenvalues on the unit circle, 
but 

(ii) there exist elements of Sp(2n; R) (n > 1), U(p, q; C) (p, q > 0), and aU(n; H) (n > 2) 
with eigenvalues not on the unit circle. 

There are several ways to do this. One is by direct calculation, noting that for (ii) it is 

sufficient to deal with Sp(2; R), U(1, 1; C) and aU(2; 0H). Another method is to exploit the 

Chevalley-Jordan decomposition into unipotent and semi-simple parts, see Springer (I98I), to 

reduce the problem to semi-simple elements; then use the classification of semi-simple elements 

in Sugiura (1959). The third method is more abstract, but perhaps gets closer to the essence 

of the matter: it rests on the following observation. 

THEOREM 2.6. V is cyclospectral if and only ifSpG(V) is compact. 

Proof. A compact Lie group acting on a space V preserves a positive definite inner product, 
hence can be considered as a subgroup of O(V). Therefore all eigenvalues lie on the unit 

circle. 

Conversely, theorem 2.5 implies in particular that that SPG(V) is a reductive Lie group. We 

show that if a reductive Lie group H has a faithful representation p such that all eigenvalues 
of p(h) lie on the unit circle for all heH, then H is compact. By Varadarajan (1974, p. 255 

exercise 43), H = MA where M and A are closed subgroups, M is semi-simple, A is compact 
abelian, and A commutes with M. Therefore without loss of generality we may assume H is 

semi-simple. Let t be the Lie algebra of H. Then p induces a faithful representation of ), which 

we also denote p. Consider the trace form Qp(6) = Trp(6)2, 6E i. This quadratic form is non- 

degenerate because ) is semi-simple, see Varadarajan (1974, lemma 3.9.5, p. 212). Because for 

all heH the eigenvalues of p(h) lie on the unit circle, the eigenvalues of p(4) are purely 

imaginary, whence the eigenvalues of p(6)2 are real and negative. Therefore Qp is negative 
definite (definite since it is non-degenerate). Further, Qp is invariant under the adjoint rep- 
resentation of H. To see this compute 

Tr (adh p())2 = Tr (h-lp(6) h)2 = Tr (h-p(6)2h) = Trp()2. 

Thus, ad (H) preserves a definite quadratic form. Therefore ad (H) c O(b) which is compact, 
so ad (H) is compact. But H is a covering of ad (H), and Weyl's theorem (Varadarajan 1974, 
theorem 4.11.6, p. 345), implies that H is compact. 

The proof of theorem 2.3 can now be completed as follows. By MacDonald (1979) or Tits 

(1983, p. 231) the groups Sp(2n; lR) are not compact; U(p, q; C) is compact if and only if 

p = 0 or q = 0; and oU(n; H) is compact if and only if n = 1. H 

Remarks 2.7 

(a) When the representation of G is cyclospectral the compactness of SPG(V) also implies 
that every commuting symplectic mapping M is semi-simple. That is, M is linearly stable in the 

sense of ?5 b. 
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(b) Suppose that the isotypic blocks of G on V either satisfy the conditions of theorem 2.3, 
or have SPG(V,) w Sp(2; lR) (a symplectic irreducible real block). If M Sp(V), then those 

eigenvalues of M that lie on the unit circle and are not equal to I must be semi-simple. This 

is true because Sp(2; R) has the same property. Thus if M is spectrally stable and has no 

eigenvalues equal to 1, then it must be linearly stable. 

3. STABILITY OF EQUILIBRIUM POINTS 

In this section we apply the results of ?2 to the linear stability of equilibrium points in 

hamiltonian systems with symmetry. 
Let P be a symplectic manifold and X a hamiltonian vector field on P with equilibrium point 

p. Say that p is spectrally stable if all eigenvalues of DXp are imaginary, and linearly stable if in 

addition DXp is semi-simple. The following result gives a representation-theoretic criterion for 

linear stability in equivariant systems. 
THEOREM 3.1. (Stability theorem for equilibria.) Let P be a symplectic manifold, G a group acting 

symplectically on P, X an equivariant hamiltonian vector field andp an equilibrium point of X with isotropy 

subgroup H c G. If the symplectic representation of H on T, P is cyclospectral, then p is linearly 
stable. 

The proof rests upon the observation that DXp is infinitesimally symplectic, i.e. it belongs 
to the Lie algebra sp( Tp P) of the group Sp( Tp P) of all symplectic linear transformations of 

Tp P. This is because the flow generated by X is symplectic. Because DXp is equivariant with 

respect to the H-action on T, P, the theorem is a corollary of the next result. 

PROPOSITION. Let V be a cyclospectral representation of the group H and let L: V -+ V be an infini- 

tesimally symplectic map that commutes with the action of H. Then all eigenvalues of L are imaginary and 

L is semi-simple. 
Proof. Because L is infinitesimally symplectic and equivariant, eL is an equivariant symplectic 

map, which therefore has all its eigenvalues on the unit circle in C and is semi-simple by remark 

2.7 a. Therefore the eigenvalues of L are imaginary, and L is semi-simple. L 

Remarks 

(a) Suppose that the representation of H on TpP is the direct sum of a cyclospectral 

representation and a set of pairwise non-isomorphic real irreducible representations. Then an 

argument similar to that in remark 2.7a shows that whenever p is spectrally stable and DXp 
is invertible, p is also linearly stable. 

(b) Liapunov stability may also be forced by a group action. We give two examples. 

(i) Let G = S1 and P = Ck with symplectic form 
k 

[z, w] = Im S zj wj 
J-1 

and G-action ' z = (e1"?z1, ..., elPk zk) (pj 0). 

Associated to this action is a 'momentum' 0, which is conserved by any G-equivariant 
hamiltonian vector field X on Ck (see ?4). Explicitly (see example (a) in ?4) 

k 

C(z) = ZPjIZ12. (3.1) 
1-1 

19-2 
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If the p, all have the same sign then the level sets of 0 are spheres centred on the origin, which 

must therefore be a Liapunov stable equilibrium point of X. However, if there exist pj of 

different sign, then it may no longer be true that the origin is a Liapunov stable equilibrium 

point of every equivariant hamiltonian vector field on C, even though the representation is still 

cyclospectral if p # -p, V i,j. 
For example, take k = 2, p1 = -2, and P2 = 1, and let X be the vector field generated by the 

S1-invariant hamiltonian 
X (z) = -21z112 + Z21 2 + (Z1 Z22 22). 

This has a linearly stable, but Liapunov unstable, equilibrium point at the origin, see page 5 

of Holm et al. (I985), which uses a different coordinate system, and references therein. 

(ii) Let G = SU(2), realized as the unit quaternions, acting by left multiplication on 

P = H. The associated momentum mapping (see example (b) in ?4) is of the form 

O(w+xi+yj+zk) = (2+ 2 --z, 2(xy + wz), 2(xz-wy)) = (W1, W2, W3), say. 

Thus 11 (v)l12 = W12+ + W + W2 = (+x2 +y2 +z2)2 = lvll4 is conserved by the flow. But this 
has compact level-sets, hence the equilibrium is Liapunov stable. 

(c) The stability criterion of theorem 3.1 may also be applied to relative equilibria. We recall 

the general situation of remark 1.2d. Let r and G be compact Lie groups with commuting 

symplectic actions on P. Choose /peg* and let Q = (D-1('u)/G, be the associated reduced 

phase space with induced symplectic F-action. Let Y be a Fx G-equivariant hamiltonian 

vector field on Q. An equilibrium point q of Y is spectrally stable if and only if the corresponding 

G,-orbit of relative equilibria in 4-l (g) is spectrally stable. The analogous statement is not true 

fo; linear or Liapunov stability. By theorem 3.1 the relative equilibria in 4D-'(p) are spectrally 
stable if the representation of the F-isotropy subgroup of q on Tq Q is cyclospectral. A variation 
on this idea is used to discuss the spectral stability of arbitrary periodic trajectories (near 

equilibria) in the next three sections. 

4. DECOMPOSITION OF FLOQUET OPERATORS 

According to Noether's theorem, continuous symmetries of hamiltonian systems give rise to 

conserved quantities. These quantities are collected together in the momentum mapping. Con- 

servation of momentum forces some eigenvalues of the Floquet operator M. of a periodic 
trajectory to be 1. Equivariance of the hamiltonian flow forces other eigenvalues to be 1. In this 
section we describe which eigenvalues are forced to be 1. If F is discrete then there are always 
two eigenvalues forced to I and this section gives no further information. We use a slight 
refinement of the decomposition of the tangent space to phase space introduced by Arms et al. 

(I975), and define a quotient space on which the remaining eigenvalues lie. This quotient is 

precisely the tangent space to the reduced phase space of Marsden & Weinstein (1974), when 

this is well defined. 
In the main result of this section, theorem 4.5, we prove that the Floquet operator takes the 

form, 

Muw 0 * * 

MU = ? ? N _ 
0 N0 
0 0 0 Iz 
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relative to this decomposition. We also show that Nu is symplectic, and is equivariant with 

respect to an action of L, c F x R, where ?, is the inverse image of ? under the natural map 
F x R-? r x S1. In ?6 we show that this action can be deformed to an action of ? under which 
Nu remains equivariant, which yields information on the eigenvalues of Nu. 

(a) Decomposition of the tangent space 

Let P be a symplectic manifold with symplectic form w and let G be a Lie group acting on 
P by symplectic diffeomorphisms. Denote the (real) Lie algebra of G by g and its dual by g*. 
The group G acts linearly on g by the adjoint action and on g* by the coadjoint action. We 
assume that there exists a G-invariant momentum mapping for the action of G on P. That is, an 

equivariant mapping 0(: P -g* such that for all z e P, v T P,and eg, 

<D (v), >) = w(X )(z), v). (4.1) 

Here X, is the vector field on P generated by the I-parameter subgroup exp (tg) of G, 

X(z) = (d/dt) exp (t) z l-0, (4.2) 

and , > denotes the pairing g* x g - R. This assumption is certainly valid locally (e.g. in the 

neighbourhood of a fixed point, see example 4a below) if G = F or F x R, where F is a compact 
group and the R-action is the flow of a F-invariant hamiltonian. The momentum map for 
F x R is then the energy-momentum map for F: OrxR = (Ir, X). Because we are concerned 

only with periodic trajectories near equilibria, this local existence is sufficient for our purposes. 
The raison d'etre of the momentum mapping is that if ' is a G-invariant hamiltonian function 

on P, then the associated flow leaves the momentum mapping invariant ('conservation of 

momentum'). For more details on the momentum mapping (see Marsden & Weinstein 1974; 
Abraham & Marsden 1978; Arnold 1978; Guillemin & Sternberg I984). 

Examples. If G is compact then in the neighbourhood of a fixed point its action can be 

linearized, and if the action is symplectic then this linearization can render the symplectic form 
constant. For linear actions an explicit momentum mapping can be determined as follows. Let 
V be a symplectic representation of G. This induces a representation of g on V, for which 

-A,esp(V). Then / i p(V). Then <((v), 6> = '[A V, v] 

is the appropriate momentum mapping. Note that 4) is a homogeneous quadratic mapping. 
(a) Let V be a symplectic representation of S1. As discussed in the examples in ?2, to V there 

corresponds a sequence of integers (r, ..., rk). The momentum mapping is then 

4)(v) = E rjIlv2, 

where g* is identified with R, and v = Sv is the decomposition of v with respect to the 
irreducible representations aO,. 

(b) For a second example - with interesting theoretical implications - let G = SU(2) and 
V = H, with symplectic form [u, v] = <u, vi>. Identify SU(2) with the unit sphere S3 c HI, 

acting by quaternionic left multiplication. Choosing {i,j, k) as a basis for g and identifying g and 

g* we get, for v = w + ix +jy + zk, 

4) (v) = (w2 + 2 y2 _ Z2, 2(xy + ), 2 (xz-wy)). 

As observed in remark (bii) of ?3, 114>(v) 12 = 1lv114, so 0 maps spheres centred at 0 e H to spheres 

257 



J. A. MONTALDI, R. M. ROBERTS AND I. N. STEWART 

centred at 0 Eg* (as it must, by equivariance). When restricted to a sphere, 0( is the Hopf 

fibration, and its fibres are circles. The flow of any SU(2)-invariant hamiltonian on H preserves 
these circles, hence all its trajectories are periodic. Because the circles can all be obtained from 

any given circle by applying the SU(2)-action, the periods are constant on each sphere. 
Nonlinearities in the hamiltonian may change this period, but they leave the trajectories 

unchanged. 

Y 

-9/W ^ 

*,x I 

ker DOz 

FIGURE 3. Decomposition of the tangent space to a symplectic manifold. The space Z can be 

represented as a subspace perpendicular to the plane of the page. 

We now take up the question of decomposing the tangent space T, P. The geometry behind 

the discussion that follows is shown in figure 3. Choose ze P and let g = 4( (z) E g*. We define 

the following subspaces and quotients of T P: 

W = ker DZ fng z, 

X = g-z/W, 

Y = ker DO/W, 

Z = T P/ (ker D(D, + g z), 

where g z is Tz(G * z), the tangent space to the group orbit through z. We have an isomorphism 
of vector spaces T P W X Y Z. (4.3) 

Let Gz and G, denote the isotropy subgroups of the points z and I in P and g* respectively, 
and let gz and , denote their Lie algebras. Note that Gz c G, and g, c g,. There are natural 
actions of G, on T7P, ker D(z (because () is equivariant), and g 'z. It follows that there are 
induced actions of Gz on each of W, X, Y, Z, though if G is not compact the isomorphism (4.3) 
cannot in general be made Gz-equivariant. For example, the quotient Z may not have a Gz- 
invariant representative in Tz P. 

Before discussing the symplectic nature of the decomposition we need a lemma from linear 

algebra. For any vector space V we denote its dual by V*. If U c V is a subspace, U' will 

denote the annihilator of U: 
T T It f 4 iw T Tr A- 

- =jaE V*: al) =U . 
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LEMMA. Let A be a vector space and If: A -> A* an invertible linear map. Let B c A be a subspace and 
denote by PB the composition 

B ?A ?A* ?B*, 

the first arrowt beinlg the natlral inclusion and the third the natural projection. Let C = I(B)' c A. 

ker uc = cokerf B = B n C. 

Moreover, if r is antisymmetric, then 
ker PB+C = B n C. 

Proof. Consider the composition 

A ?A* ?B*. 

The kernel of this map is C, and because VB,* is its restriction to B, we have ker B* = B n C. 

Repeating the argument using 

A ,A* AC* 

we obtain ker Vc = B n C. The last part follows immediately. C 

For a subspace U of T7 P, denote by w I U the restriction of o to U. 
PROPOSITION 4.2 

(a) ker D)D is the w-orthogonal space to g z. 

(b) wt (ker D4D + g z) is singular, with null-space W. 

(c) w induces G,-invariant symplectic forms wx on X and wy on Y. 

(d) w defines a G,-isomorphism of W with Z*. Thus the representation of GG on Z is dual to that 
on W. 

Proof 

(a) This follows immediately from (4.1). 
(b) This follows from lemma 4.1, with : T7P- T7*P given by i4(u) = w(u, .), B = ker DZ, 

C = g z. The fact that C = #(B)' follows from (a). 

(c) Similarly cl ker DPZ and c Ig z both have W as null-space, and so induce non- 

degenerate symplectic forms on the quotients X and Y. 

(d) Because co is G,-invariant, it follows that i/ is Gz-equivariant. From (b), (W)= 
(W ? X ? Y)', which can be naturally identified with Z*. ? 

Remark. A symplectic form (' can be defined on W $ X 3 Y @ Z, and representative 

subspaces of Tz P can be chosen, in such a way that the isomorphism (4.3) becomes symplectic. 
To do this define co' as follows: 

w'IX=w, 'Y = , w' IWY= =y 
, W IZ =0, 

o('(w,z) = oa(w,z) for weW, zeZ, which by proposition 4.2b is well defined. 
A particularly useful feature of the decomposition is that the actions of Gz on three of the 

components, W, X, and Z, depend only on the sequence of subgroups Gz c G, c G. 
Recall that the Kostant-Kirillov-Souriau symplectic form on co-adjoint orbits (see, for 

example, Abraham & Marsden 1978; Arnold 1978; Guillemin & Sternberg 1984), is defined 

by a symplectic form Qf on g/g via 

),(6, q) = <,6, E ]=>. 

It is easy to see that this is well defined on g/g,. 
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PROPOSITION 4.3 

(a) The restriction to Gg of the adjoint action of G on g leaves invariant the subspaces g, and ?g and so 
induces actions on g/gu and g/l/z. 

(b) (X, wx) and (g/g,,, ) are isomorphic symplectic representations of G. 

(c) W and 9j/9, are isomorphic representations of G,, so W ? Z is symplectically isomorphic to 

g,/go ?0 C with standard symplectic form. 
Proof 

(a) The proof of this part is clear. 

(b) The isomorphism is provided by the differential of the momentum mapping. Because 0D 
is G-equivariant, it follows that D$( is Gz-equivariant. It therefore maps g z onto g '/, and g -t 
is identified with g/g,.. Thus we have the exact sequence 

DOz 

0 W - ,g z - /g 0. 

So g/g. is Ge-isomorphic to g z/W which is by definition X. 
It remains to show that DFD, I g z preserves the restriction of the symplectic form. (It is a 

standard fact that 0D is 'symplectic between orbits' in this sense, but we reproduce the proof 
here for completeness.) Let 6, y eg, and let gt = exp (ty). By the equivariance of ', 

<(gtz), g> = < (z), Ad-e >. 

Differentiating with respect to t at t = 0, we get 

<DQz(X,), I> = <((z), [-4, ~ >, 

and the right-hand side is precisely Q,(, y). Furthermore, by (4.1), 

<D~(X,), .> = c(XF X,), and we are done. 

(c) Let ge G, and let g: TP-+ TP be the action induced from that on P. Then 

gX(z) = XAd(gz). 

If ge Gz we get the desired result. The final statement then follows by proposition 4d. N 
Remark. If / is a regular value of D and the reduced phase space ~-l(/t)/G, is smooth at the 

point corresponding to z, then Y can be identified with its tangent space. See remark e. 

(b) Decomposition of Floquet operators 

Suppose now that G = r x R where F is a compact Lie group acting symplectically on P and 
the action of R is given by the G-equivariant hamiltonian flow ar: P-+ P generated by a smooth 
F-invariant hamiltonian function r on P. Let u(t) be a T-periodic trajectory of this flow with 

u(0) = z. Then the Floquet operator of u is 

M, = D(aT):z TzP->- TP. 

Define ,S to be the isotropy group Gz c F x R. The new notation is chosen to suggest a relation 
with the symmetry group X c rF x S' defined in ?1. In fact, if v: F xR r-> F x S' is the mapping 
(7, t) - (y, [2it/ T]), where [0] is the equivalence class of 0 mod 27Z, then E, = v-1 (,). 

PROPOSITION 4.4. MU is a EI-equivariant symplectic mapping. 
Proof. This follows easily because Sr is symplectic and G-equivariant. U 
We now come to the main result of this section. 
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THEOREM 4.5 

(a) If we choose representative subspaces for X, Y, and Z in T P, then with respect to the decomposition 
(4.3) M, has theform rI O * * 

Iw 0 
0 Ix 0 0 

M 0 0 N * 

0 0 0 IZ 

where the *s represent arbitrary matrices, depending of course on the choice of representatives, and Iu is the 

identity map on U (U = W, X, Z). See the remark in ? 6(b) for further comment. 

(b) The eigenvalue I of Mu has multiplicity at least 

2 dim Gz- dimG ,u. 

(c) The map N,: Y- Y is symplectic (with respect to the symplectic form wy of proposition 4.2) and 

u,-equivariant. 
Proof 

(a) The map (To is G-equivariant and so fixes the orbit G z pointwise, giving the form of the 

first two columns of Mu. The second and fourth rows of Mu are explained by 'conservation of 

momentum': IoOaT = (I. Differentiating the equality at z, and taking duals we get 

M*' DO* = DO*, 

so M * is the identity on the image of DOz*. But 

Im (DO(z*) = (ker DI,)'. 

(b) Clearly the multiplicity of the eigenvalue 1 is at least 

dim W+dim X +dim Z, 

and this is 2 dim G z-dim G-. 

(c) To show that NU: Y - Y is symplectic, let y1, Y2 e Y and write 

M, yi = Eyj + N, y, 
for E: Y -W. Then M = Ey 

w(Y1, y) = w(M y, Mu 2) 

= w(Ey1 + N, Y, Ey2 + N, y2) 

= (Nu 1, Nu 2), 

the other terms being zero by proposition 4.2b. The Su-equivariance of N. is clear. U 
Remark. Even if ( does not exist, or is not equivariant, we can still use proposition 4.2 to 

obtain a decomposition of T P. On g z the restriction of w has null-space denoted by W and 

X is defined to be g z/W. Define Y to be the quotient of the w-orthogonal subspace to g z by 

W, and finally let Z be the quotient of T, P by W e X E3 Y. The analogue of theorem 4.4 tells 

us that the eigenvalue 1 of Mu has multiplicity at least 

2 dim Gz-rank I g'z. 

This is also proved in Losco (i983). 
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(c) Relation between the actions of f and F x R 

To apply the theory to be developed in ?? 5 and 6 below, it is useful to investigate the relation 

between the symmetry properties of the momentum mappings for F and for G = rF x R (where 
R acts via the hamiltonian flow). The aim of this section is to clarify this relation. 

Let u be a periodic trajectory, of fundamental period T, with symmetry group l c F x S'. 

Let z = u(O). Then G. = X is the inverse image of X under the natural map v: F x R - F x Sl, 

where v(y, t) = (y, [2nt/T]) and [8] is the equivalence class of 6 mod 2tZ. Let H be the 

image of Z under the projection p: F x S'l - , and let K = F =r nFl . Then K c H c F. 

Because T is the fundamental period of u, the groups H and X are isomorphic (see Golubitsky 
& Stewart I985, ?6). The twist map is the natural homomorphism 0: -- S1 so that the elements 

of I are of the form (fl(c), r(a)), where i: - H is the above isomorphism. Note that 

Golubitsky & Stewart (1985) define the twist as a map 0': H- S1 such that elements of S are 

(h,O'(h)), so 0 is l- o 0'. 

The group K is equal to ker 0, hence is a normal subgroup of H, and H/K is isomorphic to 

a subgroup of S1, which must either be the whole of S1 or a finite cyclic group Zm. In the first 

case we say that u is a rotating wave; in the second case we say it is a discrete rotating wave if 

m > 2 and a standing wave if m < 2. 

LEMMA 4.6. Let u be a T-periodic orbit with u(O) = z. Then a(O) E T7(F z) if and only if u is a 

rotating wave. 

Proof. If u is a rotating wave then the twist is surjective, so for each 8e S' there exists y eF 
such that 

y'9 u(t+ TO/2n) = u(t) 

for all t. Thus u(t) = y-1,t/T'(O) 

and the trajectory lies in F'z. 

Conversely, if u(0) is tangent to rFz there exists f in the Lie algebra of F such that (0O) = 

X,(z). The curve r(t) = exp (tg) z is a solution curve of the hamiltonian system, because 

r(t) = exp (tg) a(O) = exp (tf)* XH(Z) = XH(exp (tg) z) 

by the equivariance of the flow; so r(t) = u(t) by uniqueness. ? 
Remark. If the reduced phase space corresponding to the point z is smooth, see remark 1.2e, 

then a rotating wave is a relative equilibrium. 
For the remainder of this section, let y denote the Lie algebra of F. Then g = y @ R, and 

because R is in the centre of G, the adjoint or coadjoint actions of G and F, respectively, are 

the same except that R acts trivially. That is, if (g, t) eF x R then Ad( t) = Adg x IdR. Let $ 

denote the momentum mapping for F, let f, = $ (z) E y*, and let Ig' = (u, .*(z))eg*. Then 

G /u' and Fr ' can be identified, and G,. = F x R. Because dim F z = dim G z if and only if 

i(0) e T((F z), theorem 4.5 and lemma 4.6 give the following corollary. 
COROLLARY 4.7. Let u be a periodic orbit with u(O) = z and 4?(z) = i,. Then the multiplicity of 1 

in the spectrum of M. is at least 
2 dim rz-dim r*F 

if u is a rotating wave, and 
2 dim F z-dim F*/t +2 

otherwise. 
Thus the lower bound or the multiplicity of can be deduced from knowledge of the mdeomoot 

action and S,. Moreover, the symplectic representations of G, involved in the decomposition 
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of T, P in proposition 4.3 also depend only on Fr and ?14 (or more precisely on r, H and K), 
together with r,. Because the coadjoint actions of G and r differ only by the trivial action of 

IR, as described above, the coadjoint action of G, factors through the action of H. In fact, 
consider the diagram 

-I I- v 4v 

E- 
? HcF. 

The action of E induces a natural action of H on g =* y R by 

h (x, y) = (h, t(h)) (x, y), 

where xe y*, ye R, and t(h) is any element of I such that (h, t(h)) e . Because t(h) acts trivially 
this definition is independent of the choice of t(h), and in fact 

(h, t(h)) '(x, y) = (hx, y) (4.4) 

because H c F. Hence h (x, y) = (h x, y). 
More generally, suppose that groups B and C act on two spaces V and W that are isomorphic 

via a map a: V -+ W. We say that the B-actionfactors through C if there is a group homomorphism 
,B: B-C such that a4(b =v) =(b) aoc(w). If a preserves symplectic structure and B, C act 

symplectically, then we say that the B-actionfactors symplectically through the C-action. Effec- 

tively we may then identify the actions of B and C except for a trivial part in kerfl. In 

particular, the B-action on V is cyclospectral if and only if the C-action on W is. 

The above shows that the Gz-action factors through the H-action (provided we add the trivial 

space R to y* for the H-action). Routine computations lead to the following result: 

PROPOSITION 4.8 

(a) g/g9 7y/y7, and the symplectic representation of Gz on g/g, factors through that of H 

on 7/y. 

(b) go/g/z ; y7n/yz if u is a rotating wave, and to (y,/yz) e R if not. The symplectic rep- 
resentation of Gz on go,/gz 0 C factors symplectically through that of H on y/y7z 0 C when 

u is a rotating wave, and through that of H on (y7/ryz R) 0 C when u is not. ? 
Remark. If the connected component TO of r that contains the identity is abelian, then it acts 

trivially on y*, so Fr, r1 for all gEy*. Therefore y, = y, y/y, = {0}, and y,/yz = y/yr. Thus 

in this case the corresponding representation of Z = GX can be calculated without explicit 

knowledge of F,. In particular this is the case when r is finite, because then rO = 1. 

A final useful fact is the following. 
PROPOSITION 4.9. With the above notation, H c F,. 
Proof. This follows directly from (4.4). U 

5. STABILITY OF PERIODIC SOLUTIONS 

In the notation of ? I let J be a F-invariant hamiltonian on a symplectic manifold P, let 

peP be an equilibrium, and let u = u(t) be a periodic trajectory near p for the I-equivariant 
hamiltonian system (1.1), obtained by applying theorem 1.1. Suppose that its period is T7, 
close to T, = 2i/IAI, and that its isotropy subgroup is X c r x S1. Let T,(o)P be the tangent space 
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to P at u(O). If dim P = 2n then we may identify T(,o)P with R2n. We recall the significance of 
the Floquet operator M:TU,P TU( 

Mu' Tu(0)p__ Tu(0)P 

for the stability of u. For general systems a necessary condition for Liapunov stability is that 
all eigenvalues of Mu lie inside or on the unit circle. Because Mu is symplectic its eigenvalues 
form quartets A, A, A-', A-' (see Abraham & Marsden 1978; Arnold 1978). Therefore a 

necessary condition for the Liapunov stability of u is that all eigenvalues of Mu lie on the unit circle. 
If this is so we call u spectrally stable. As for equilibria, ?3, spectral stability is weaker than 

Liapunov stability. In proposition 4.4 we showed that the corresponding Floquet operator 
Mu is a S,-equivariant symplectic mapping, where E, = v-1 () and v: F x R - r x S' is the 
natural map modulo Tu Z, where T, is the period. We wish to apply the results of ?3 to Mu 
to obtain a criterion for spectral stability, but 4u is not compact. In ?5b we show that in fact 

Mu commutes with an action of the compact group Xu, and that, when restricted to a suitable 

subspace, this action is isomorphic to the action of ,u obtained by restriction from that of 
F x S' on V^. This leads to the main result of this paper, which we state as motivation 
below. 

We begin by setting up some terminology for eigenspaces. Recall that eigenvalues of sym- 
plectic or infinitesimally symplectic mappings A on a space V come in quartets v, v, v-1, -v 
or v, v, -v, - v, respectively. By the (real) eigenspace VP corresponding to the quartet v we mean 
the real part of the sum of the eigenspaces (in the complexification of V) for the members of the 

quartet. The same goes for generalized eigenspaces. Below we are primarily interested in the 
case when A is infinitesimally symplectic and v is imaginary (so the quartet degenerates to a 

pair v, y). 
Recall that L = DXp is the linearized flow at equilibrium, and this is infinitesimally sym- 

plectic. Let $D: P -g* be the momentum mapping associated to the G-action as in ?2. Define 
K = kerDO(0)), and let E be the sum of the real generalized eigenspaces of the Floquet operator 
Mu on Tu(o)P for eigenvalues 'near 1', see ?5a. Let the residual space corresponding to Z be 

;4 = K n E/K nfg u(O). 

This space arises because, as we show in ?6, there is a symplectic representation of the group 
Z on Ez that has strong implications for the eigenvalue structure of Mu. 

The main result is given in the following theorem. 
THEOREM 5.1. (Stability theorem.) Suppose that the hamiltonian aJ is r-invariant and satisfies 

hypotheses HI and H2 from ? 1, for some A, at the equilibrium point p. Let u(t) be a periodic trajectory of 
(1.1), close to p, with isotropy subgroup Z c F x S'. Let L = DXp. Assume that: 

(a) all eigenvalues of L are on the imaginary axis; 

(b) L has no eigenvalues kA/2 where k Z is odd; 

(c) if t is a multiple eigenvalue of L, then D2.Jp is definite on the (real) pt eigenspace of L; 

(d) there are no resonances of the form 1--/2 = nA, n E Z\{O0},for distinct eigenvalues /It and t2 of L 
not of the form kA, k E Z; 

(e) the action of E on the space 39 is cyclospectral. 
Then u(t) is spectrally stable for u sufficiently near p. 

Remarks 

(a) Hypotheses (a)-(d) of theorem 5.1 all concern data derived from the linearization L, that 
is, from the quadratic part of the hamiltonian, at equilibrium. Condition (e) is more subtle, but 
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in many examples can also be verified from the linear data: see ?4b and ?6d. Condition (a) is 

obviously necessary for spectral stability of u. Conditions (b), (c) and (d) hold generically. 
Condition (e) of course applies only to suitable isotropy subgroups ?, but we shall show by 
examples in ?? 7 and 8 that such isotropy subgroups occur sufficiently often for the theorem to 
have useful content. 

(b) The idea of the theorem is that, as we describe in ?5a, M. is a perturbation of M = 
e-2L/AI, the 'Floquet operator at equilibrium for period 2n/IAl', and thus we can infer some 

properties of M, from those of Mp. Each condition ensures that certain types of eigenvalue of 
Mu are on the unit circle. If (a) is not satisfied then M, has eigenvalues off the unit circle by 
a simple continuity argument. Condition (b) forbids eigenvalues of Mp, hence also of Mu, at 

-1, and is related to possible period-doubling. Conditions (c) and (d) imply by Krein theory, 
see ?, that the eigenvalues of Mu arising from eigenvalues of M that are not close to 1 (that 
is, eigenspaces of L not contained in V.) lie on the unit circle. Condition (c) is automatically 
satisfied if the /-eigenspace is a symplectic irreducible, which is generically true. Condition (d) 
can be weakened, see remark 5.10.1. Condition (e) lets us apply the results of ?4 to the 

eigenvalues of Mu that are close to 1. Some are forced to equal 1 by equivariance; the rest come 
from the space ME and are forced to lie on the unit circle by the assumption of cyclospectrality. 
See ?5b,c. 

(a) Perturbation of the Floquet operator 

We may think of Mu as a small perturbation of the corresponding operator Mp for the 

equilibrium state. We shall describe how the Floquet operator M. varies as we make small 

changes to the periodic solution u(t) being studied. 
We can describe the Floquet operator more concretely as follows. Identify TUo)P with R82n 

and hence the equilibrium p with 0. Let xe Tu(O)P R" and consider the non-autonomous 
linear system 

x + DXU(,t) = 0. (5.1) 

Let x(t) be any solution to (5.1) and define M. x(0) = x(Tu). Then Mu is the Floquet operator 
for u. 

We can compare this with the situation at equilibrium. Here (5.1) becomes 

x+Lx = 0, (5.2) 

where L = DXp. This has the explicit solution x(t) = e-Lt x(0), and the corresponding Floquet 
operator is Mp = e-LTP, where Tp = 2i/1AI. This has eigenvalues e-2n/IAl as p runs through the 

eigenvalues of L. 

We claim that Mu is continuous in u at u = p. This implies that we can label the eigenvalues 
in such a way that each is a continuous function of u at u = p. Essentially this is a result of 
classical perturbation theory, but we shall sketch a proof and make the statement more precise. 
To provide a suitable Banach space structure we must temporarily abandon the C' category, 
and in fact we prove that for arbitrary finite k, near u = p, the operator M. varies in Ck 
fashion with u for a suitable Banach space structure which depends on k. 

We therefore consider a general T-periodic linear system 

+A(t) x = 0, (5.3) 

where A(t) lies in a space of Ck mappings for some k, namely 

t = {T-periodic Ck maps R -+ sp(2n; R)}. (5.4) 
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A suitable norm on k' is introduced as follows. For any linear map with matrix C = (c) define 

if CII = maxjIlcIl, and extend this to multilinear mappings in the obvious way. For A = A(t) e Xk 
define 

~define 1~IIAIll = maxl,<j<k supRRIID't A(t) II. 

Associated with each A es is its Floquet operator (or monodromy operator) MA defined 

by 
MAx(O) = x(T) 

where x(t) satisfies (5.3). 
The following observation is no doubt well known. 
PROPOSITION 5.2. The map Xk-esp(2n; R) associating to each Ae-# its Floquet operator MA 

is C. 

Proof. We can interpret the matrix A as a parameter, taken from the Banach space Xk. The 
result then follows easily from smooth dependence on initial conditions and parameters of 
solutions of ODES, in an appropriate infinite-dimensional setting (see Abraham et al. I983, 
lemma 4.1.9, p. 190). U 

To deal with the Floquet equation (5.1) we must take account of the fact that the period 
T7 of u(t) depends on u. To deal with this introduce T = T. as a further parameter and rescale 
time by setting t' = rt/ T,. Now consider the rescaled equation 

dx/dt' + T/ T DXw(t,) x = 0, (5.5) 

where w(t') = u(Tt'/T). Then we have the following. 
PROPOSITION 5.3. For each k, the Floquet operator M for (5.5) depends in a Ck fashion on (w, T) 

considered as an element of J4k x R. 

Proof. Define A(t') = T/T,DXW(,t) and argue as before, using the parameter space = 

{(w, r) : w is near 0 and r near 1} c ak x R. This is an open subset of a Banach space, and the 

theorem is local, so the proof goes through. 1 

Remarks 

(a) In proposition 5.3 the Banach space structure depends on k, so the proof given here does 

not show that the dependence of Mw on w is CJ. However, the referee of this paper pointed out 
that properties of time-ordered integrals imply that the dependence is C'. In this paper we 

require only the case k = 0 of this proposition, and henceforth 1lull denotes the norm in ?'0. In 
that case all we need is that T. is continuous in u at u = p, which is the meaning of the phrase 

'period near 2//IAl'. However, in Montaldi et al. (I988 b) we shall provide a further analysis 
of the dependence of the eigenvalues of Mu on nonlinear terms in (5.1), and this will require 
the C1 version of proposition 5.3. 

(b) For non-hamiltonian systems a similar argument applies, but with sp(2n, R) replaced by 
gl(2n; R) in the definition of rk. 

COROLLARY 5.4. If u(t) is sufficiently close to the equilibrium x = p, then Mu is arbitrarily close to 

e-T~L, where L = DXp. 

It follows that if u is near p then the eigenvalues of Mu are near e-Tpv for eigenvalues u of 
L. More precisely, let a be an eigenvalue of f multiplicity ma. Surround each distinct 

eigenvalue a of eTvPL by a disc of radius c, small enough to exclude all other eigenvalues. By 
Rouche's theorem applied to the characteristic polynomials of Mp and Mu, when \lull is small 

enough, this disc still contains precisely ma eigenvalues of Mu (counted according to multi- 

plicity). We say that these eigenvalues of Mu emanate from a under perturbation of Mu from Mp. 
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We distinguish four types of eigenvalue of Mp, as follows: 

(a) eigenvalues off the unit circle; 

(b) eigenvalues equal to -1; 

(c) eigenvalues equal to 1; 

(d) eigenvalues on the unit circle, other than + 1. 
We discuss these in turn. 

(a) If L has eigenvalues off the imaginary axis, then M. has eigenvalues off the unit circle 
for small enough u. Therefore the solution u(t) will be unstable. This reduces the analysis to the 
case when all eigenvalues of M, lie on the unit circle, that is, all eigenvalues of L are on the 

imaginary axis. 

(b) Eigenvalues of Mp at --1 cause problems (related to possible period-doubling) and will 

be excluded by hypothesis. Generically they are absent in any case. However, if they are present, 

they can be removed by working with IA rather than A, enlarging the space V. to one that is 

technically more suitable. This process can if necessary be repeated, replacing A by 2-rA for 

suitable r. 

(c) These correspond to the eigenvalues kA (ke 2) of L, because if gt = kA then e2x#/IA = 

e 2k = 1. Under perturbation they break up into two types: eigenvalues that remain at I (due 
to symmetry, as in ?4), and those 'near' 1. We study them in detail in ?6. 

(d) Eigenvalues on the unit circle but not at + 1 will be dealt with by assuming a Krein 

condition, see ?5b, implying that they remain on the unit circle under perturbation. This 

condition is generically valid, because eigenspaces are generically F-simple and non-resonant. 

(b) Krein theory 

Recall that a symplectic transformation M: V -+ V is spectrally stable if its spectrum lies on the 

unit circle, and it is linearly stable if in addition it is semi-simple, see ?? I and 3. It is strongly stable 

if it lies in the interior of the set of spectrally stable symplectic transformations. We describe 

briefly the theory developed by Krein (1950, 1955), and also by Moser (1958), which gives 

necessary and sufficient conditions for M to be strongly stable. (See also Gelfand & Lidskii 

1955; Arnold & Avez I968, appendix 29; MacKay I986). 
Given MeSp(V) define a quadratic form Q on V by 

Q(x) = [Mx,x]. 

This quadratic form is clearly invariant under M. Let a be an eigenvalue of M. Then so are 

a, a-', and o-l. Let E, be the real generalized eigenspace for this quartet, and let Qa = Q I E. 

The eigenvalue a is said to be definite if Qa is definite. 

PROPOSITION 5.5. Let a be an eigenvalue of M Sp(V). Then 

(a) if a +? 1 then Qa is non-degenerate; 

(b) ifa I1 # 1 then Q, is indefinite; 

(c) if Jai = 1 and a is simple then a is definite; 

(d) if a is definite then M I EB is semi-simple. 

Proof. These results may be found, or adapted from similar results, in the cited references. 

Note that (d) holds because M I Ea preserves a definite quadratic form. U 

Suppose now that a compact group G acts symplectically on V, with ME SpG(V). As noted 

above, Q is then a G-invariant quadratic form. Define an eigenvalue a of M to be G-simple if 

the space E, is an irreducible symplectic subspace of V (in the sense of theorem 2.1). 
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PROPOSITION 5.6. Suppose that lacl = 1, a ? ?+ , and a is G-simple. Then a is definite. 

Proof. From theorem 2.1 (see also the paragraph following the proof of .theorem 2.4) we 

consider the three types of underlying representation of G. If the underlying representation is 

complex or quaternionic, then E, is itself irreducible, so the space of invariant quadratic forms 

is one dimensional, and all non-zero forms in it are definite. Proposition 5.5a states that Qa is 

non-degenerate, hence non-zero, so it must be definite. 

If the underlying representation is real, we can write E- = R2 ? W, where W is the under- 

lying irreducible representation. Now M[Ea becomes N ? 1, where N: R2-R2, and the 

eigenvalues of M I E, are those of N, with multiplicity dim W. But the eigenvalues of N are on 

the unit circle and not real, so of the form a, dx, hence simple. If u = x ? w, then [Mu, u] = 

[Nx, x]R2<W, w>, and [Nx, x] and (w, w> are both definite. U 

THEOREM 5.7. (Krein's theorem.) Let ME Sp(V) be spectrally stable. Then M is strongly stable if 
and only if every eigenvalue is definite. 

Proof. This is clear from proposition 5.5, because if every neighbourhood of M contains an 

M' with eigenvalues off the unit circle, then either M is itself not spectrally stable, or some 

eigenvalue of M leaves the unit circle on perturbing M. Because Q, is definite, so is any nearby 

quadratic form, contradicting proposition 5.5. ? 
COROLLARY 5.8. Strongly stable symplectic transformations are linearly stable. 

Proof. This is an immediate consequence of Krein's theorem and proposition 5.5d. a 

(c) Eigenvalues far from 1 

Decompose Tp P as VA E V'A, where V. is the sum of the eigenspaces of L for eigenvalues 
that are integer multiples of A, and VA is the sum of the eigenspaces of L for eigenvalues that 

are not integer multiples of A. (Recall that L is semi-simple.) In ?6 we will discuss how 

MP I VA deforms to M, I E. Here we consider how MP I V deforms to M, I E'. 

Let a be an eigenvalue of MPIV" with Icl = 1. Then ac # 1, and by hypothesis (b) of the 

stability theorem (5.1), a - 1. Let U. c V' be the real eigenspace for the pair a, Y. Let / be 

the eigenvalue of L with a = e-21/lA, which is unique by hypotheses (c) and (d). 
LEMMA 5.9. The eigenvalue a of Mp is definite if and only if D2.ep I U, is definite. 

Proof. By (1.1) D2a,X(x) = [Lx, x]. As in ?5b let Q(x) = [Mp,x,x]. Let xe U, and let 5 be a 

complex eigenvector of L with eigenvalue /, such that x = 4+ . Then 

[Lx, x] (/-) [, (5.6) 
An} (5.6) 

Q(x) =a-) [), 

The result follows. 

We have now proved that the eigenvalues far from 1 remain on the unit circle, because 

hypotheses (a), (c), and (d) ensure, by the above lemma, that every eigenvalue of M I V' is 

definite. 

Remarks 5.10 

(a) If U is symplectically irreducible then the invariance of Q shows that a must be definite. 
It is easy to see that generically Ua is symplectically irreducible. 

(b) By Krein's theorem (5.7) Mp I V' is strongly stable, and by continuity, so is M, I E'. By 
corollary 5.8, M, I E' is linearly stable. 
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(c) For Mp I VA to be strongly stable it is sufficient that each eigenvalue be definite. We can 
therefore weaken hypothesis (d) to allow resonances of the form I,- i2 = nA (n e Z) provided 
a further 'compatibility of signs' condition is imposed on the /u and /2 eigenspaces of L. Of 

course, we still require D2', to be definite on each L-eigenspace. From (5.6) we have 

(a-a4)-Q(x) = u-DD2yep(X) 

because u is imaginary. For Q to be definite on E, we need the sign of iO-'D2ayp I E^ to be 
constant on Ea. For example, if /-/u2 = nA and Ea = E, 1 EE,, then D2X!yp I E, is definite if 
and only if iuL and i/2 have the same sign, i.e. lU I2 < 0. 

6. DEFORMING THE ACTION OF 

It remains to consider the eigenvalues of Mu that emanate from the eigenvalue 1 of Mp. We 

show that the action of the isotropy group ? of Mu imposes group-theoretic restrictions on these 

which, in suitable cases, imply that they remain on the unit circle. If the action of Z is not of 

such a kind, the analysis depends on the coefficients that occur in the Taylor expansion of the 

hamiltonian; we shall discuss this in Montaldi et al. (1988c). 
We know from proposition 4.4 that Mu is equivariant under an action of the group 

u c rF x R. For the remainder of this section, to simplify notation, we write S in place of Su, 
M in place of Mu, and let T = T. be the period of u. In this section we modify the S-action to 

produce a S-action (defined on the sum of the generalized eigenspaces ofM for the eigenvalues 
near 1) which retains all of its pleasant properties. 

(a) X-equivariance and eigenvalues near 1 

The obstacle to I inducing a X-action is that (1, T) fails to act as the identity: that is, there 

are expanding and contracting directions for M. The action is therefore 'rescaled' to com- 

pensate for these contractions and expansions. 
First we review some classical results on periodic linear systems, see Hale (1969, p. 119) or 

Hartman (I964, p. 47). We use the equation in the form 

x+A(t) x = 0, (6.1) 

where x e R 2 and A(t) = DXU(t) is a T-periodic infinitesirnally symplectic 2n x 2n matrix. 

There exists a fundamental matrix solution Y(t) eJ sY such that every solution to (6.1) has the 

form 
ft^~~~~orm ~x(t) = Y(t) c 

for a constant vector ce2 R2, and conversely every such x(t) is a solution. Every other fun- 

damental matrix solution is of the form Y(t) C where C is a non-singular constant 2n x 2n 

matrix, and anything of this form is a fundamental matrix solution. By taking C = Y(O)- we 

may assume that Y(0) = I, which specifies Y uniquely. 
Clearly Y(t+ T) is also a fundamental matrix solution, so there must exist a constant matrix 

K such that 
Y(t+ T) = Y(t) K. 

Because K is non-singular, we can find a (possibly complex) matrix B such that K = eB. 

Because Y(0) = I we have x(t) = Y(t) x(0). The classical trick is to define 

P(t) = Y(t)e-. 
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Then 
P(t+ T) = Y(t+ T) e-(t+T) = Y(t) Ke-Bt+T) = Y(t) e-Bt = P(t), 

so that P(t) is T-periodic. We have thus decomposed Y(t) as 

Y(t) = P(t)e t, (6.2) 

where P(t) is T-periodic and B is constant. Further, the Floquet operator is M = eTB. In 

particular M = K, and B must be some value of 

B = 1/TlnM. (6.3) 

Note that the entries in B, hence in P(t), may as yet be complex, because the exponential map 
on sp(2n; fR) is not surjective; though it is on its complexification. Later we will need to ensure 

that they are real, but for the moment we ignore this point and investigate the consequences 
of (6.2) for equivariance. 

Whatever the choice of B in (6.3), it must commute with M because M = eBT. We know that 

M commutes with the action of X. Indeed M acts as (1, T) which is in the centre of S. Therefore, 
for all (y, 0) e X, we have 

yY(0) M = MyY(0), 

whence yP(0) eB0 M = MyP(0) eB, 

yP(6) MeB? = MyP(0) eB, 

yP(0) M = MyP(). 

Thus M commutes with yP(6). We now observe that yP(6) also defines an action of X, provided 
that a technical hypothesis holds, and that this induces an action of X. 

PROPOSITION 6.1. Suppose that B in (6.3) is real and commutes with S. Then there is an action * of 
? on R2n defined by (y, 0) * x = yP(8) x. Under * the element (1, T) of E acts trivially, hence there is an 

induced action of S. If B is infinitesimally symplectic then the actions of E and Z are symplectic. 

Proof. eB0 commutes with all elements of Y for any 8, because B does. It is then easy to see 

that * is an action (see lemma 6.5 below). Now I = Y(0) = P(0) and P is T-periodic, so 

P( T) = I. Thus the element (1, T) e acts as 1 * P( T) = I. Then the action of Y factors through 

S/TZ wT . If B is infinitesimally symplectic then eB? is symplectic for all 0, so the actions of 
and X are symplectic. i 

The aim now is to choose B in (6.3) so that 

(a) B commutes with S, 

(b) B is real, 

(c) B is infinitesimally symplectic, so that X acts symplectically. 
We also wish, when possible, to compute the symplectic isomorphism type of the action * 

from linear data at equilibrium. In fact there is one further technicality. The original action 

of X is defined only on the subspace VA of T, P. Therefore we must restrict attention to a suitable 

subspace of T(0o)P before performing the above construction. The idea is to treat the entire 

problem as a small deformation of the analogous problem at equilibrium, where everything can 

be calculated explicitly. 
Now for the details. We have already noted that M can be thought of as a small perturbation 

of M, = e-TvL. The eigenvalues of M are close to e-Tp' for eigenvalues p of L, and the 

eigenvalues of interest in this subsection are those near 1. Specifically, let y,,...,v be the 
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distinct eigenvalues of M that emanate from 1 under perturbation from M. (where v1 = 1) and 
define E to be the (real part of the) sum of the generalized eigenspaces for the v,. Let E' be the 
sum of the remaining generalized eigenspaces, so that Th(O)P = E ( E'. The spaces E and E' are 

skew-orthogonal symplectic subspaces. 
LEMMA 6.2 

(a) dim E =dim V. 

(b) E is symplectic. 
(c) E is invariant under X and M. 

(d) MIE is close to I E. 

(e) E is close to VA, in the appropriate grassmannian manifold. 

Proof. Parts (a) and (d) are obvious. Part (b) follows from Williamson (I936), see also 

Golubitsky & Stewart (1987, proposition 2.1) for a simple proof. To establish (c), note that by 
definition E is invariant under M. However, M commutes with X, so ? leaves all of the 

generalized eigenspaces of M invariant. Part (e) is well known in perturbation theory: for 

example it follows from properties of Riesz projectors (see Lancaster & Tismenetsky 1985, 
?9.5). ? 

In this section we are interested only in the eigenvalues of M on E. The action of X leaves 
E invariant, and on it takes the form 

(Y, 0) x(0) = yx(0). (6.4) 

On E there is a natural choice for the matrix B in (6.3), as we now show. We define a matrix 
B' by the logarithmic series: 

o00 

B' = 1/TlnM = 1/ T (l/j)(- 1)J+((M-I) IE)'. (6.5) 
3-1 

This series converges because M I E is close to I E. The entries of B' are obviously real. 
LEMMA 6.3 

(a) B' is infinitesimally symplectic on E. 

(b) B' commutes with S on E. 

(c) B' commutes with M on E. 

(d) B' is close to 0 E. 

(e) If B in (6.3) is chosen so that B I E = B', then the S-action on E is given by 

(y,0)x= yP(0)eBx. (6.6) 

Proof 

(a) For simplicity drop the IEs. We have MeSp(E). The exponential map 

exp: sp(E) - Sp(E) 

is bijective near 0, see Adams (1969), and exp ( TB') = M EeSp(E), whence TB'esp(E) so 

B'esp(E). 

(b, c, d) These are clear from the series (6.5). 

(e) This follows because eB = M on E. m 
Because E is invariant under M we can indeed choose B so that B I E = B', and this we now 

do. We next 'scale away' the B' part of the E-action, when restricted to E, leaving only the P(t) 

part, which is T-periodic (and will therefore induce a S-action). To be precise, we shall prove 
a variation on proposition 6.1: 

21-2 



J. A. MONTALDI, R. M. ROBERTS AND I. N. STEWART 

THEOREM 6.4. For u sufficiently near p there is a symplectic action * of S on TL(o)P which restricts to 

the action of ? on E defined by () *x = x, (6.7) 
(% 0)?x = yP(0) x, (6.7) 

and M I E commutes with this action. The action (6.7) is symplectically isomorphic to the one obtained 

by restriction from the action of x S1 on VA. 
Remark. We emphasize that this is a S-action, not just a E-action. 
Theorem 6.4 follows from a simple algebraic fact: two commuting actions of a group can be 

combined by performing them in turn. This is proved by the following trivial calculation. 
LEMMA 6.5. Let * and o be two actions of a group G on a space Z, which commute in the sense 

that 
go (hz) = h (goz) (6.8) 

for all g, heG and z e Z. Then the map o: G x Z Z defined by 

g o z = g (goz) (6.9) 

is a G-action. If o and o are symplectic then so is o. 

Proof of theorem 6.4. Define B": T,(O)P -* T(o)P as follows. Choose B in (6.4) so that B I E = B'. 

Let B" I E = B', and let B" be zero on E', the natural skew-orthogonal complement to E on 

T,(O)P. Apply lemma 6.5 with G = X, Z = E, ? the action 

(y, o) x(O) = yx(O) = yP(O) eB?x(O), 
and o defined by 

(y, 0) o(O) = e-B'?x(0). 

Clearly o is also a symplectic action; and (6.8) follows from lemma 6.2a. Then the action a 

is the same as * in (6.7). Now * is a E-action; but (1, T) acts on E by P(T)eTBe-~TB = I, 
because P(T) = P(0) = I and B E = B' E. We may therefore define a -action on E by 
factoring out the subgroup TZ which acts trivially via *. Now on E the Floquet operator M 
commutes with Z and with B, so it commutes with the action of X. 

Finally we prove that the action (6.7) of X is symplectically isomorphic to its action on V, 
where 

(y, ) xo = ye-OL x0. (6.10) 

We do this by a deformation argument, based on computing the action when u(t) p and 

showing that because it changes continuously it must retain its symplectic isomorphism 
type. 

First consider what the action * is for the equilibrium solution x = p considered as a T- 

periodic solution u(t) = p. On VA the Floquet operator Mp is eTpL, which is the identity. So 

B = 0 and P(t) = e-Lt. Thus the *-action of I on VA is given by (6.10) when u(t) _ 0. 

Now deform u continuously away from p. The entire construction varies continuously, and 

in particular VA changes continuously into E, see lemma 6.2e. Hence the action (6.10) deforms 

continuously into the *-action of X on E. But it is a standard fact about symplectic repre- 
sentations of compact Lie groups that they retain their isomorphism type under continuous 

deformation. This is a simple consequence of the orthogonality of characters. Recall that to 

each symplectic representation there is associated a unique unitary representation (?2). The 

character of a unitary representation p is the function X: F- C given by x(y) = trp(y). 
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Isomorphic representations have the same character. There is an inner product on characters 
defined by 

<X1, X2> = X (Y) X2(') 
Jr 

If X and X' are irreducible characters then <X, X'> = 0 unless the corresponding representations 
are isomorphic. If they are isomorphic then X' = X and <X,x> = 1. The multiplicity with 
which a representation having X as its character appears in the decomposition of a repre- 
sentation having character f is 

KXa>. (6.11) 

As the representation deforms continuously, so does (6.11). But, being an integer, it must 
remain constant; hence the unitary isomorphism type of the representation, i.e. the symplectic 
isomorphism type of the original representation, cannot change. B 

Remarks 

(a) Although we have made M commute with : on E it seems unlikely that in general we 
can arrange this (for a non-trivial action of 5) on all of Tu(o)P, because the exponential function 
is not surjective. Under extra hypotheses, however, we can adapt the approach above to a more 

global setting. We shall not pursue the question here. 

(b) By deleting all references to the symplectic structure, we can obtain a similar result in 
the analogous context of periodic solutions arising by Hopf bifurcation, as in Golubitsky & 
Stewart (I985). 

(b) Proof of the stability theorem 

To complete the proof of the stability theorem 5.1 we apply the above construction in the 

context of ?4. We set z = u(0), so that T(o)P = T P, and write K = ker D. We have a lattice 
of subspaces 

T,P 

lz 
K+g z 

x/ \Y 
K g.Z (6.12) 

Y\ /x 
K n 9'Z 

lw 
0 

Here the annotations on the arrows denote the (isomorphism type of the) corresponding 
quotient spaces, introduced in ?4. The eigenvalues of M on W, X, Z are all 1. 

There are two actions of Z on T, P: the original action ( * ) inherited from F x R, and the 

modified action (*) of (6.7). The latter induces an action of S on E c T7 P. All subspaces in 

(6.12) are invariant under the original S-action, and hence also under M = (1, T) e. 
LEMMA 6.6. For l ullj sufficiently small, if a subspace of T7 P is invariant under the original action of X, 

then it is invariant under the modified action. 

Proof. Let Uc T P be 5-invariant. Then U = U1 ? U2 where U1 is the sum of the 
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generalized eigenspaces of M I U for eigenvalues near 1, and U2 is the sum of the remaining 

generalized eigenspaces. We have U1 = U n E, U2 = U n E'. On U2 the modified action is the 

same as the original, so for all (y, 0) eX we have (y, 0) * U2 c U2. Now M leaves U1 invariant, 

so e-B'? leaves U1 invariant. If x U1 then (y, 0) * x = (y, 0) 
- e-B ' x E U1. 

Thus when we say that a subspace of T P is Z- or M-invariant, we need not specify which 

action is intended, provided we establish invariance for the original action. 

We now prove the following. 
PROPOSITION 6.7. If the action of l on K n E/K n gf z is cyclospectral, then M IE is spectrally 

stable. 

Proof. Note that K n g z c E by the definition of E. Consider the sequence 

E K n E = K gz O. 

These spaces are M-invariant and the eigenvalues of M on E/K n E and on K n g 'z are 1 by 
theorem 4.5. The space K n E/K n g z is symplectic by proposition 4.2c, and Z acts 

symplectically on it, hence so does 1. The result follows from the definition of cyclospec- 

trality. I 

This completes the proof of theorem 5.1. 

Remark. Unlike the case of equilibria, we cannot assert here that Mu is linearly stable when 

1 is cyclospectral on 9.. This is because of the presence of off-diagonal blocks, marked *, in 

the matrix of theorem 4.5a. 

If the eigenvalues of Mu on the space Y of theorem 4.5 are not 1, then we can choose Y to 

be the sum of the corresponding generalized eigenspaces, which is Mu-invariant. This implies 
that the only possible off-diagonal block is the (W, Z), entry. This part of the matrix can be 

interpreted as a linear drift along the constant-momentum part of the orbit of periodic 

trajectories, and there is no reason to expect to be able to rule out such a drift. Indeed the 

'correct' definition of linear stability of a periodic trajectory, when a symmetry group is present, 
should permit such a non-zero block in the (W, Z) position. 

We call Mz. = K n E/K n g z the residual near-1 eigenspace, or more briefly the residual space, for 

1. We emphasize 1 in the notation because it is the residual representation of 1, that is the 

representation of 1 on 9,, that is crucial. Similarly we call Mu 191 the residual Floquet operator. 
When V = V., the space 9z is the same as Y in ?4. We now investigate how to compute the 
residual representation. 

(c) Computing the action of 1 

To apply the stability theorem to specific examples we must be able to compute the action 

of Z on M. = K n E/K n g z. In this subsection we derive a formula for the character of this 

representation, which depends on linear data at the equilibrium point, together with one 

further piece of information: the momentum isotropy subgroup F, where /t = 4 (u(0)) and (4 

is the momentum mapping for r x R. From this definition rT apparently depends on the R- 

action, that is, the hamiltonian flow. However, in the next subsection we show that in suitable 

cases r, can be found without knowing the details of this flow. 
We know from the remark after theorem 2.4 tha to each symplectic representation of on 

a symplectic space U there corresponds a unique unitary representation on U (with complex 
structure induced by a symplectic involution). We let x[U] denote the (complex) character of 

this representation. Then we have the following. 
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PROPOSITION 6.8 

XI[-R] = x[VA] -X[lS,/z ? C] -X[l/9,] (6.13) 

Remark. Before giving the proof we explain the notation. The character X[VA] is that of the 

representation of on VA obtained by restriction from that of x S'. By proposition 4.3b g/gf 
is symplectically isomorphic to g z/K n 9 g z as a S-space. The coadjoint action of R c F x R on 

g is trivial, hence the S-action induces a S-action. Its unitary character is X[9/9g]. Similarly 
there is a symplectic isomorphism between 

(K n g9z) ( (T,P/(K+g.z))* 

and 9g/9, ? C 

as ?-spaces; and again DR acts trivially on the latter, whence there is a S-action whose character 
we denote X[9,/92g0C]. All characters on the right-hand side of (6.13) are in principle 
computable, hence so is the character on the left-hand side, which is what we require. In 

practice we compute the second two terms on the right-hand side by using proposition 4.8, and 
in some cases the subsequent remark. 

Proof. For the original action of Z we have 

X[E] = X[E/K n E] + X[3]j + x[K n 9 z]. (6.14) 

Now E/K n E w E + K/K. We claim that E + K = T7 P. This is clear because the eigenvalues 
of M on Tt P/K are all 1. Because K is M-invariant the sum of the generalized eigenspaces of 
M on T7P/K for eigenvalues near 1 must be E+K/K. Therefore E+K = T7; P. So for the 
modified action (*) of Z we also have (6.14), which we rewrite as 

X[i9] = X[E]-X[E/K n E] -[Kn 9gz]. 

On E/K n E and K n g z we have M = I, so the original and modified actions of S coincide; 
further we can interpret the modified S-action as a S-action. Hence 

[E/K n E] + X[K n 9 z] = x[ T P/K] + [K n g z] 

= X[g/9,( ? C] + X[9/9,]. 

Finally E is S-isomorphic to VA, so X[E] = X[VA]. The result follows. U 
We will give examples showing how to use proposition 6.8 in ??7 and 8. 

(d) Calculation of F 

By the results of?4b everything in (6.13) can be computed from linear data at equilibrium, 
provided that we also know F,,. This appears to be a more subtle question and we are unable 
to give a general answer. However, we can obtain upper and lower 'bounds' for F, which turn 
out to be sufficient for the calculations in the next two sections. 

The lower bound has already been described in ?4. IfH is the projection of? (or equivalently 
of ?) into r, then r,F n H. The upper bound will follow from the next result. As usual P is a 

symplectic manifold with a F-action which fixes p, and CD is the momentum mapping on P. The 

tangent space Tp P is denoted by V. The group F acts on V, hence there is also a momentum 

mapping ': V -? y* where y is the Lie algebra of F. 

PROPOSITION 6.9. Let S be a submanifold of P containing p. Then there exists a neighbourhood U of 
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p in S with thefollowing property: ifz e U\{p} then there exists we 7TS\{O} such that rF is conjugate to 

a subgroup of fT, where t = 4(z) and y = TP(w). 

Proof. Because the F-action may be linearized near p we may assume that P = V, p = 0. Any 
two momentum maps for the same action differ by a constant, so ) - vT = T y*. The equi- 
variance of D and ' implies that r is fixed by the coadjoint action, so without affecting any 

isotropy subgroups we can suppose that r = 0 and thus () = T. From the remarks on examples 
in ?4a we know that ' is a homogeneous quadratic mapping. Assume for a contradiction that 

the proposition is false. Then there exists a sequence of points {z1} in S converging to p and 

such that, if/ I = TP(z), then F,i is not conjugate to a subgroup of F. for any y Ey* such that 

T) = '(w) for some we To S\{0}. Because T is homogeneous, 

czi E /-' (Fix (Fr,; 7 )) 

for all ce R. Let w 1 = z/ llzl and y1 = TP(w,); then IF = Fr,. The sequence {w}) lies on the unit 

sphere in V and accumulates on the unit sphere in To0 S. By compactness there must be a 

subsequence converging to a point we To S. Without loss of generality (remove superfluous 

zj) we may assume that {w} itself converges. Then the sequence {j} converges to y = T (w). For 
i sufficiently large, F, and hence F, is conjugate to a subgroup of F,, contradicting our original 
assumption. See figure 4. 1 

w TiS 

FIGURE 4. Proof of proposition 6.9. 

To see how this result applies, let p be an equilibrium point and A an eigenvalue of DtY, 

satisfying the conditions HI and H2 of? 1. Let X be an isotropy subgroup of the F x S'-action 

on VA c V = Tp P, and consider a family of periodic trajectories, with symmetry groups X and 

periods near 2/1IA l, lying in a submanifold S of P containingp and with Tp S = Fix (Z; VA). (See 
theorem 1.1 and remark 2 of? 1.) Then proposition 6.9 implies that if u(t) is a periodic trajectory 

sufficiently close to p, and g = 0((u(0)), then F. is conjugate to a subgroup of Fr, for some 

y = T'(v), veFix (X; VA), v # 0. As will be seen in the examples in ??7 and 8, this restricts F, 
considerably. In particular, if FV turns out to be a principal isotropy subgroup, a minimal isotropy 
subgroup for the action of F on y*, then F, must be conjugate to Fr. 

We conjecture that in fact F, is always conjugate to the corresponding F,, for u(0) sufficiently 
close to p, but we lack a proof. 
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7. SIMPLE EXAMPLES 

In this section we describe some simple examples that illustrate the results developed above. 

They are r = 0(2) and D. acting on R2 0 C; O(n) on Wn 0 C; SO(2) and Z, on R2; and 

SU(2) on R4 and R4 e R2. These representations are chosen either because they occur fre- 

quently in applications or because of their theoretical implications. 
For the purposes of this section we work only on VA and describe the action of r on VA. 

However, the results also apply when VA is embedded in a larger space V = T, P, on which F 

acts, provided the hypotheses of theorem 5.1 hold, that is, suitable non-resonance plus a Krein 
condition on all other eigenspaces. In all examples except 7.9 the space VA is symplectically 
irreducible; but example 7.9 is a non-trivial 'T-resonance'. In several cases it is easy to find 
short cuts in the analysis, but we shall follow the general theory to see how it works out. A more 
substantial example, actions of 0(3), is given in ?8. 

Example 7.1. 0(2) acting on Rf2 ( 0. We use the following notation for elements of 0(2). 
Elements of SO (2) are denoted by Ee IR (mod 2X7). Theflip, reflection in an axis, is denoted K. 
The standard action of 0(2) on R2 is by 

x]r [cos -sin ] [x] 
[y Lsin6 cos 0 yJ 

(7.1) 

This action is irreducible of real type. To obtain a symplectic action we must pass to R2 0 C. 
We therefore take coordinates 

and complexify (7.1) to obtain 

Z2J sind cos Jz J' 
K [::] [ , 

sin 
O ] z[ ] 

KZ2l -= BZ2 
Without loss of generality the Sl-action is given by 

~' 
zJ = [e0z2 ' 

The first step is to choose more suitable coordinates. Because SO(2) x S' is abelian its action 
can be simultaneously diagonalized. To do this note that 

[i i] and [I] 

are simultaneous eigenvectors for all 0e SO (2), with eigenvalues e10 and e-"i respectively. They 
are also eigenvectors for all 5e S1. Define new coordinates wl, w2 on C2 by 

[::] _- ] +W[[] 2-Vl. 3 

22 Vol. 325. A 
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so that I = w 1+ W2, Z2 = i(W2-W1), 

w1 i (Z+iz2), W2 = (z1 -iz2). 

We can write zj = pj + iq. The symplectic form 

[z, Z] = Im (z1Z + z2 Z2) 

is 0(2)-invariant, and in the w1 coordinates takes the form 

[w, W] = 2 Im (w W + w2 W2). 

The action of 0(2) x S1 is: wi W2 

i e' w e-10 
0(2)1 e1 W2C (7.2) 

wK 2 w 

S1 qe w e W ew 

By Van Gils (1984) or Golubitsky & Stewart (I985) the isotropy data are as shown in table 1. 

TABLE 1. 0(2) ACTING ON C G C 

number of 
orbit isotropy fixed-point eigenvalues 

representative subgroup Z subspace Fix (E) dim Fix (E) forced to 1 cyclospectral? 

(0,0) 0(2) xSI {(0,0)} 0 

(a, 0) S0(2) {(w, 0)} 2 2 yes 
(a, a) Z2" / Z2C {(w, W)} 2 4 yes 
(a, b) Z2 C2 4 4 yes 

a,beR, a>b>O weC 

Here S0(2) = {(O, -6) I ESO(2)}, Z: = {(0,0), (K,0)}, Z, = {(0,0), (n, n)}. 

Near an equilibrium, and assuming hypotheses HI and H2, theorem 1.1 implies that on each 

nearby energy level there exists at least one solution with isotropy subgroup S0(2) and at least 

one with isotropy subgroup Z{2 @ Z2C. Applying theorem 1.1 with X = Z2c yields the existence 

of at least two solutions with isotropy subgroup containing Z24, but these may just be repetitions 
of the two found above. This shows that theorem 1.1 may give no useful information for 

submaximal S. 

We can interpret the SO (2) solution as a rotating wave. In the spherical pendulum, example 
1.3.1, it corresponds to the circular motion. The Z2K Z2C solution is a standing wave. In the 

spherical pendulum it corresponds to the motion in a vertical plane. 
Solutions in the 0(2)-orbits of these (having conjugate isotropy subgroups) may be described 

as follows. For S0(2) there are two, which in the spherical pendulum correspond to clockwise 

and anticlockwise circular motion. For Z24 ? Z2' there is a circle's worth of standing waves, one 

for each possible reflectional symmetry, and in phase space these foliate a 2-torus. In the 

spherical pendulum they correspond to solutions lying in vertical planes of symmetry (see 

Golubitsky & Stewart I985, remark (d), p. 128). 
We can interpret the new coordinates (w1, w2) as follows. Ifw1 = r1 e'0, then r1 is the amplitude 

and 01 the phase of an anticlockwise rotating wave with isotropy subgroup S0(2) and fixed- 

point subspace {(w, O)}. Similarly if w2 = r2 ei'2 then r2 and 02 are the amplitude and phase of 

a clockwise rotating wave with isotropy subgroup {(0, 0)} conjugate to S0(2) and with fixed- 
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point subspace {(O,w)}. Thus (at a linearized level) we are representing solutions as super- 
positions of two rotating waves. The standing waves are equal-amplitude superpositions of a 
wave in each direction. 

Next we consider stability. The momentum mapping for 0(2) x R is 

.: C2 - * R2, 

where g, the Lie algebra of 0(2) x DR, is isomorphic to 0i2 with trivial Lie bracket. Because 

S0(2) x DR is abelian the coadjoint action of 0(2) x IR on g* is trivial for 0E S0(2) and S E IR. 
For K it is given by K (x, y) = (-x,y). All actions are trivial on the energy component of 0, 
corresponding to R. Therefore G, contains S0(2), and gF = g for all It. This is always so when 
the connected component rF of the identity in F is abelian: see the remark after proposition 
4.8. 

First suppose that S = Z{ e Z2C. As noted above, 9g = 9. Because I is finite, g? = 0. Now 

/Q = 0, and g,/gQ 0 C has dimension 4. Thus the space M. has dimension 0. The repre- 
sentation of S is trivially cyclospectral, and all eigenvalues of the Floquet operator M are forced 
to 1 by symmetry. 

Next, suppose that S = S0(2). Again g9 = 9. However, g, = {(x, -x) e R2. Thus gB/gz 0 C 
is two dimensional. We compute the S-action on 69. Let Xk denote the (complex) character 
of the action of Y on C in which (0, - ) acts by elk?. On VA = C2 the character of S is 

x[VA] = Xo + X2 

Clearly X[g/9gZ 0 C] = Xo 

because E is abelian. By proposition 5.11 

X[P] = Xo + X2-Xo = X2 

This is a single irreducible of complex type, so S is cyclospectral on 94. Hence the S0(2) 
solutions are linearly stable, with two eigenvalues of M forced to 1 and two others on the unit 
circle. 

Example 7.2. Non-standard actions of 0(2). There are other irreducible representations of 0(2). 
In particular if in (7.2) we change the 8-action to (ekiO w1, ekil w2) with k > 2, we again have an 
irreducible symplectic action of 0(2) x S1 on C2. The 0(2)-action has a kernel Zk = (2c/k>, 
and the action induced on 0(2)/Zk z 0(2) is the standard one. Therefore we can read off 
the behaviour from example 7.1 by pulling back each isotropy subgroup through the map 

0(2) x S -0(2)/Zk x S. The abstract arguments, including stability assignments, are un- 

changed: only the interpretation of the symmetries of solutions changes. The Z2 @D Z2' standing 
wave for the standard action becomes a D 2-symmetric standing wave. The S0(2) rotating 
wave becomes a rotating wave with Zk spatial symmetry and isotropy subgroup 

SOk(2) = {(( +2 2l) /k, ) I = O,..., k-1}. 

Although the changes are mathematically trivial they are important in applications. For 

example, consider a two-dimensional liquid drop in IR2, having an 0(2)-symmetric equilibrium 
state. Although this is an infinite-dimensional system the above results should remain appli- 
cable. Oscillations near this equilibrium can be expected to occur for all 'modes', that is, 
irreducible symplectic actions of 0(2). The D2k solutions are those in which a droplet shaped 

22-2 
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like a (rounded) regular k-gon oscillates as a standing wave. The SOk(2) solutions correspond 
to a rotating structure with k-fold cyclic symmetry: like a k-armed spiral but close to circular 

form. See figure 5. 

J*01 (b) 

FIGURE 5. Schematic illustration of symmetries of periodic solutions expected for the k-fold action of 0(2). 
(a) Standing wave with D2k symmetry; (b) rotating wave with spatial Zk symmetry. Here k = 5. 

Such oscillations are commonly observed in a droplet of water lying on a heated surface 

(Aitta, personal communication). To take this analysis further requires an explicit model, and 

a suitable reduction to finite dimensions, but the model-independent symmetry features should, 

broadly speaking, be as just outlined. Other kinds of dynamic behaviour are of course possible. 
Similar remarks apply to non-standard actions of SO(2), Zn, and Dn, provided we take care 

to check cyclospectrality for the appropriate actions. We shall therefore below describe only 
what happens for their standard actions. 

Example 7.3. Dn acting on R2 ? C. Let the dihedral group D. of order 2n be realized as 

<Z,, K> C 0(2), where Zn is generated by = 2nr/n. We take n > 3 for the moment because 

the standard action of D2 on R2 is reducible. The standard action of Dn x S' on C2 is obtained 

by restriction from (7.2) above. By Golubitsky & Stewart (I986) the isotropy data are as in 

table 2. In each case there are three maximal isotropy subgroups, with two-dimensional fixed- 

point spaces, but the details depend in a minor way on n (mod 4). 
Because D. is finite the momentum mapping provides no information that cannot be 

obtained more directly, but as a check we shall derive the results from the general theory. The 

momentum mapping for Dn x R is 
: C2- ": g* fR 

(W1, W2) -+ ((w1, W2). 

For all z we have g = g,, g< = 0. Thus ,/g? 0 C is two dimensional in all three cases, and so 

is ,, on which we wish to compute the E-action. 

Suppose Z = Zn. Let Xk be the character of the action of Z in which ({, -?) acts by ekC. 
Then 

X[VJ] = Xo +X2 

X[glZgz C] = Xo0 

leaving X[I#] = X2, 

which is cyclospectral unless n = 4. 
The case n = 4 is also exceptional in Hopf bifurcation (see Golubitsky & Stewart 1986 and 

Swift I986). 
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TABLE 2. D. ACTING ON C ( C 

orbit isotropy 
representative subgroup 2 

(0, ) Dn xS1 

(a,0) 2n 

(a, a) ZK 

(a, -a) Z2(n') 
(a, w) I 

O<aeR, O w2eC 

ni 

fixed-point ei 

subspace Fix (E) dim Fix (Z) fo 

(a) n odd 

{(0,0)} 0 

{(w, 0)} 2 

{(, W)} 2 

{(w, -W)} 2 
C2 4 

weC 

umber of 
genvalues 
rced to I cyclospectral? 

2 yes 
2 no 
2 no 
2 no 

(0,0) 
(a,0) 
(a,a) 
(a, -a) 
(a, w2) 

O<aeR, O^w2eC 

DnxS1 

an 
Z2(K () Z 2c 
zc(K,ff) D Z2 
z 

c 

(b) n - 2(mod4) 

{(0,0)} 
{(w, )} 
{(w, w)} 
{(w, -w)} 
02 

weC 

(0,0) 
(a,0) 
(a,a) 
(a, e'Ca) 
(a, w2) 

O <naR. O ,,, c - 

D,, xSi 

Zn 
Z2~ e DZ. 
Z2Kc $2 
z C 

2 

(c) n= 0 (mod 4) 

((0,0)) 
{(w, 0)) 

2c I ~(W, w)}I 
'd2 { (w, e'ciw)} 

02 

0 
2 
2 
2 
4 

2 yes (n # 4) 
2 no 
2 no 
2 no 

- 
, _ w _ 

la 
X 7 W2 w - 

Here 2, 
= {(0, -8) I f0 Z,}, Z2, = {(0,0), (K, 0)}, Z?= {(0, 0), (r, i)}, and Z2( = ((0, 0), (K, )}, Z = {((0, 0), 

(KC, 0)}, = 2nr/n. 

In the other two cases, where Y - Z2 or Z2 ? Z2c, there are two distinct characters: the 
trivial character Xo and the non-trivial one X, in which a generator acts as -I. Now 

X[V] = Xo+X1 and X[g/z ? C] Xo, 

so X[s = X1 

which is of real type. Hence S is not cyclospectral. 
We now discuss the connection between these results and the H6non-Heiles system, which 

is D -invariant for n = 3. As remarked in example 1.2, the eight periodic trajectories discussed 

by Rod & Churchill (1985, and references therein) can be associated with the three conjugacy 
classes of maximal isotropy subgroups discussed above. What we have just shown is that the 
Z3-solutions are spectrally stable, by virtue of their symmetries, and this is independent of the 
actual coefficients occurring in the Henon-Heiles hamiltonian. The two types of Z2-solution 
are not necessarily spectrally stable. In fact, by passing to Birkhoff normal form, it can be 
shown that, except at certain degeneracies and sufficiently close to equilibrium, exactly one of 
these two orbits of solutions is spectrally stable. In general it may be either, but for the specific 
hamiltonian chosen in the H6non-Heiles system it is the orbit of ZK solutions. Similar results 
are derived in Churchill et al. (i983). 

In the same way, for analogues of the Henon-Heiles hamiltonian with Dn symmetry, n > 4, 
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2 
2 
2 
4 

2 yes 
2 no 
2 no 
2 no 
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we find two solutions with symmetry Z., and n solutions each for the two kinds of Z2 

symmetry. The Z. solutions (n # 4) are always spectrally stable. Such systems are described in 

Churchill et al. (1975). They remark there - though not in these terms - that the case of D2 

symmetry is exceptional. We now show that this is a consequence of the standard representation 
of D2 on R2 = C being reducible. 

Example 7.4. D2 acting on W2 C. The irreducible actions of Da are on R, not R2. There is 

a non-trivial kernel modulo which the action is that of Z2 or, for the trivial action, 1. Embed 

D2 in 0(2) as the set of mappings (x,y) (+ x, ?y). The action on R2? C obtained by 
restriction from example 7.1 is 

0 w w 

w1 w~ 

If -W - W2 

K W2 WI 

KIT W2 - W1 

qSd eei w1 ei4 w2 

The isotropy data are as in table 3. 

TABLE 3. Dg ACTING ON C ( C 

number of 
orbit isotropy fixed-point eigenvalues 

representative subgroup ? subspace Fix (E) dim Fix (;) forced to 1 cyclospectral? 

(0, O) D x S {(0, 0)) 0 - 

(x, x) Z2 E Z2C {(W, w)} 2 2 no 

(x,-x) Z2 g Z2C {(w,-w)} 2 2 no 

(X, w2) ZC C2 4 2 no 

0<xe1R, O-w2eC, weC 
W2 +?x 

Thus we get solutions for isotropy subgroups ZK ? Z2C and Z2' 0 Z2e. Only two eigenvalues 
are forced to 1. Because all irreducible representations of are of real type, the representations 
are not cyclospectral. The results differ from D. when n > 3 in that there are two types of 

solution, not three, and that linear stability is not forced on either. 

Example 7.5. 0(n) acting on Rn 0 C. We take the standard action of O(n) on Rn, which is 

irreducible of real type. We observe, following Golubitsky & Stewart (1985), that the results 

exactly parallel 0(2) on R 2 0 C. For details see ?11 of that paper. The lattice of (conjugacy 
classes of) isotropy subgroups is 

O(n)x S1 

Z xO (n-1) S0(2) xO(n-2) 

Z2 x 0(n-2). 

There is a rotating wave solution with isotropy S0(2) x (n- 2) for which the Floquet operator 
M has 2n-2 eigenvalues at I and the other two on the unit circle; and a standing wave 

Z2 x 0(n-I1) with all 2n eigenvalues at 1. 
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Example 7.6. SO(2) acting on Rt. The natural action of SO (2) on R2 = C is by 8 * z = ei'z. The 
S'-action is also by 0 z = e=' z. The standard symplectic form is [z, w] = Im (zw). The isotropy 
data are as in table 4. 

TABLE 4. SO(2) ACTING ON C 

orbit 

representative 

0 

x(> 0) 

number of 

isotropy fixed-point eigenvalues 
subgroup E subspace Fix (E) dim Fix (?) forced to I 

S0(2) xS1 0 0 

S0(2) C 2 2 

cyclospectral? 

yes 

Thus there is a solution with isotropy S0(2). The momentum map is 

F): C g * R2 

W (Iw1H^2,.(W)). 

The co-adjoint action is trivial so g = g. If z # 0 then g { = {(x, -x)} a R2. Therefore 

g,/g, ? C is two dimensional, and both eigenvalues of M are 1. 
This is of course obvious. By classical Floquet theory M has at least one eigenvalue 1, but 

M is symplectic, hence has determinant 1. The existence of this solution follows from the 

Liapunov centre theorem, but its symmetry properties do not without further analysis. 

Example 7.7. Z, acting on R2. Let Z, c SO(2) act by restriction from example 7.6. The 

isotropy data are as in table 5. (Note that Z2 = Z2.) 

TABLE 5. Zn ACTING ON C 

isotropy fixed-point 
subgroup I subspace Fix (Z) dim Fix (Y) 

Z, xSi 0 0 
2 H C 2 

Here 2, = {(0,-0) IOeZ,,}. 

number of 

eigenvalues 
forced to 1 cyclospectral? 

2 yes 

The analysis is slightly different for the cases n > 3, n = 2, but the end result is the same. 

Once more we find one solution type (also implied by the Liapunov centre theorem) with 

isotropy subgroup Z, (not implied directly by the Liapunov centre theorem). Again both 

eigenvalues of M are 1. 

Example 7.8. SU(2) acting on R4. The geometry of this example is well known (see Cushman 

& Rod 1982), but it is especially interesting. Consider SU(2) as the group of unit quaternions 

{a+bi+cj+dka2+b2 +c2 + d2 = 1 

acting by left multiplication on HI = R4. This is irreducible of quaternionic type. 
The SU(2)-invariants are generated by the norm N= x2+y2+z2+t2 of elements h = 

x +yi + zj + tk H. The hamiltonian is of the form 

XW(h) = aN+ 0(11 N12) 

and a # 0 for a non-degenerate equilibrium. The energy levels are 3-spheres N = constant. 

orbit 

representative 

0 
x(> 0) 
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The action of S1 is by a subgroup of H\{O} acting on the right. Because SU(2) is the unique 
maximal compact subgroup of H\{O} and all maximal tori of SU(2) are conjugate we may 
assume that 

S1 = (cos 0+ i sin 010 < 0 < 2}n 

acting by right multiplication. Thus the action of SU(2) x S' on HI is 

(q, )'h=qh(cos +isinO), q SU(2), 0eS1, he H. 

The isotropy lattice is SU(2) Si 

I 

t 
c2 

where Z2 = ((-1,-1)>, S1 = {(cos0-i sin, cos0+i sin0)). 

Clearly Fix(S') = R{l,i}, which has dimension 2, so there exists a rotating wave solution 

with isotropy S. 

Under the SU(2)-action the orbit of this solution fills out an invariant 3-sphere, that is, an 

entire energy level. The set of periodic trajectories is the same as the Hopf fibration S'-bundle 

over S2, see ?4 and Cushman & Rod (982). All periodic orbits in a given energy level have 

the identical period. 
It is easy to see that all four eigenvalues of M are I for such solutions, so the residual 

representation is trivial. 

Note that although this representation of SU(2) is of quaternionic type, an isotropy subgroup 
of SU(2) x S1 can have a two-dimensional fixed-point subspace. 

Example 7.9. SU(2) acting on R4 @ 1R2. We include this example because an isotropy subgroup 
with a quaternionic isotypic block occurs. Also, it illustrates how our methods apply when there 

is a 'F-resonance', that is, when VA is not F-irreducible. Suppose that SU(2) acts on RI4 as in 

example 7.8 and trivially on R2. Assume that there is a 1:1 resonance between these repre- 
sentations, that is, the eigenvalues on them are the same'. Then S1 acts as in example 7.8 on 

R4 and by the standard rotations on [R2. The isotropy data are as in table 6. 

TABLE 6. SU(2) ACTING ON H 0 R2 

number of 
orbit isotropy fixed-point eigenvalues 

representative subgroup S subspace Fix (E) dim Fix (E) forced to 1 cyclospectral? 

(0,0) SU(2) x S {(0,0)} 0 - 

(x, 0) 
gl R2 0 4 4 yes 

(0, y) SU(2) 0 R2 2 2 yes 
(x, y) 1 4 R I2 6 6 yes 

x,y> 0. 

There are solutions with isotropy S' and SU(2). The momentum mapping is 

4: H ? ) -R2 g* (t 1(2;, R) ) R, 

(q, z) ( J Q, z)), 
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where H,(a+bi+cj+dk) is as in example 2 of ?4. The possibilities for f, are SU(2) and 

subgroups conjugate to S. 
If ? = S1 then in the usual notation for circle actions 

X[V] = Xo+ Xi +X2 

If (q, z) eFix (S1; V) then an easy computation shows that t (q, z) has isotropy subgroup S'. 
The discussion in ?6d implies that ,, is conjugate to S', and proposition 4.8 yields 

X[g,/9Z C] = Xo, X[9/9!] = XV, 

whence X[Se] = X1 and the solution is spectrally stable. 
If I = SU(2) then we let XH be the character of the standard representation on H and Xo 

be the trivial character. We have 
X[V, = X XH+Xo 

and X[9x] = XH' 

This is a non-repeated quaternionic isotypic block, hence the representation is cyclospectral 
and the solution is spectrally stable. 

If Z = 1 then the formula of corollary 4.7 shows that all the eigenvalues of the Floquet 
operator are equal to 1. 

8. SPHERICAL SYMMETRY: THE GROUP 0(3) 

In this final section we discuss the existence and stability of periodic trajectories in hamil- 
tonian systems with spherical symmetry - the orthogonal group 0(3) in R3 - near equilibria 
fixed by the O(3)-action. The reader may like to keep in mind the example of a vibrating liquid 

drop or bubble (Lamb 1932). This is an infinite-dimensional system, but the results described 
here should still be applicable. 

(a) Existence ofperiodic trajectories 

Let U, ( = 0, 1,...) denote the space of spherical harmonics of order I with its natural 

action of 0(3). This is a real irreducible representation, so by theorem 2.1 the spaces 
VI = U U1 0 U U 1 ? C, with induced 0(3)-actions and standard symplectic forms, are real 

irreducible symplectic representations. Let J. be an 0(3)-invariant hamiltonian satisfying, at 
an equilibrium p, the hypotheses HI and H2 of theorem 1.1, with VA, V1 for some 1. The latter 

condition holds generically. The Si-action given by the linearized flow on VA isisomorphic to 

that induced on V, from the action by multiplication by unit-circle complex numbers on C. 

The isotropy subgroups of the resulting 0(3) x Si-action that have two dimensional fixed-point 

subspaces are listed in table 7, which is taken from Golubitsky & Stewart (1985) table 14.1. 

Our restriction to natural representations of 0(3) on spherical harmonics means that, in their 

terminology, we consider only the 'plus representation' for even I and the 'minus 

representation' for odd 1. We have also made a correction: the isotropy subgroups in the next 

to last row of their table 14.1 are conjugate to subgroups of those in the last row, and hence 

should be omitted. 
As usual K is Z n F and H is the projection of ? into 0(3). The symmetry group S can be 

reconstructed from the pair (H, K) by using a twist map, see ?4c. If the twist is trivial we have 

23 Vol. 325. A 

285 



286 J. A. MONTALDI, R. M. ROBERTS AND I. N. STEWART 

TABLE 7. ISOTROPY SUBGROUPS OF 0(3) X S1 ACTING ON V, WITH TWO-DIMENSIONAL 

FIXED-POINT SUBSPACES 

number of 
E H K I eigenvalues = 1 

even I 

0(2) 0(2) 0(2) all even 6 

(S0(2))~k SO(2) Zk all even 4 
k= 1,...,1 
0 1 0 6, 10, 12, 16, 18, 20, 22, 24, 8 

26, 28, 32, 34, 38, 44 
0 0 0 4, 6, 8, 10,14 8 
0 0 T 6,10,12,14,16,20 8 
I T T D, 2, 4, 6 8 
Dk D2k D < k l 8 

odd I 

(0(2) D Z2")~k 0(2) Z2" 0(2)- all odd 6 

(S0(2) C Z,c)~k S0(2) G Z2" ,- all odd 4 
k= 1, ..., I 
(0 Z2C) ? IID Z,c 0 21, 25, 27, 31, 33, 35, 37, 8 

39, 41, 43, 47, 49, 53, 59 

(0 E Z )"' O ( ZJ 0 9, 13,15,17, 19, 23 8 

(0C E Z2c)2 0 o Z: 0- 3, 7, 9, 11, 13, 17 8 

(T E Z2) T G ZC D2 5, 7, 9 8 

(D2k Z)- D Z Dk 1 < 1 < k < 1 8 

I = H; otherwise we write S = H. A superscript is appended to the tilde when necessary to 

distinguish different S with the same H. When I is even - I 0(3) acts trivially, so both H and 

K contain Z2c = { ?I}. However, because it enters trivially it is omitted in the table. When I 
is odd -I composed with phase shift n always belongs to E, so H contains Z c when I is odd, 
but K does not. The notation used for subgroups of 0(3) is the same as that in Golubitsky & 
Stewart (1985). In particular T, 0, D are the tetrahedral, octahedral, and icosahedral subgroups 
of SO(3). The groups 0(2), S0(2), , 0G,O, Dk, and Zk are all subgroups of SO(3), and the 

superscript - denotes an isomorphic but non-conjugate subgroup of 0(3). 
From theorem 1.1 and remark 2 in ? 1 we know that for each such isotropy subgroup S there 

is, passing through p, a smooth family of periodic trajectories of the nonlinear flow with periods 
near 2rc/1AI and symmetry groups S. For 1 = 0, 1, 2 these solutions are shown in figure 6. 

In general there will be other maximal isotropy subgroups, with higher-dimensional fixed- 

point subspaces, giving rise to other periodic trajectories. However, these subgroups have not 

yet been classified and are not considered here. 

We can also prove the existence of some periodic trajectories with submaximal isotropy 
groups. Suppose that I is even and consider S = D2k c 0(3) x S1 when 'l < k ?< 1. From 

(8.8, 8.9) below Fix (D2) is four-dimensional, whence by theorem 1.1 in each energy level 
near p there exist at least two periodic trajectories with symmetry group containing D2,. Now 
Fix (D2k) n Fix (D4,) which has dimension 2, so (precisely) one of these two trajectories has 

symmetry group D4k. However, no other subgroup conjugate to one listed in table 8.1 contains 

D2k, so there are no other two dimensional fixed-point subspaces lying in Fix (D2). Therefore 
there must also be a periodic trajectory with period near 2/1jAl and submaximal symmetry 
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group D2T. This example shows that theorem 1.1 can sometimes provide useful information 

for submaximal X. 
(b) Eigenvaluesforced to 1 

First we give a more explicit description of part of the 0(3)-action on 4. Let 0 < a < x, 
0 < f, < 2n denote spherical polar coordinates on the sphere as in figure 7. 

FIGURE 7. Spherical polar coordinates. 

Then an arbitrary spherical harmonic of order I can be written as 

X zm r,m(a,f), (8.1) 
where zr E C, Z_- = z, and m-- 

Yl,(a,f) = PI m(cosa) emf (-l< m < 1), (8.2) 

the PI m being associated Legendre polynomials, see Whittaker & Watson (I927). Similarly an 

arbitrary point in V, can be written as a linear combination of rotating spherical harmonics 

Re zYm Y,(a, M t)], (8.3) 
where zm e C and m-1 

Y, m(a, ,t) = Y m ( ,fl) eit (8.4) 

Note that in (8.3) we relax the restriction z_m = zm and instead take the real part. The zm form 

a coordinate system on V;. 
Let S0(2) c 0(3) be the subgroup of rotations 

6: (a,)( {,f+) + [0, 2n) 

and let 0(2) be the subgroup generated by S0(2) and 

K: (a, p) - (Rn-, -ft). 

Then the action of 0(2) on V; is given by 

?' (z-_, . , z) = (e-i z_1, ..., eirt Zr, ., e ele Z1) (8.5) 

(8.6) K (Z-I1 ... ) ZI)= (ZI, ... ) (I 1 -1,r Z Z 1 -' 1 
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The rest of the 0(3)-action is more difficult to describe, but we do not need it explicitly. The 
S1-action is 

~' (Z-_,..., Zz) = (eti z_l, ..., ei z,l). (8.7) 

We now calculate the momentum isotropy subgroup F, for each Z. The Lie algebra 0(3) of 

0(3) is three dimensional, and the action of 0(3) on o(3) is generated by the standard action 
of SO(3) on R3 and the trivial action of Z2c. Thus the only possible momentum isotropy 
subgroups are 0(3) and subgroups conjugate to SO(2) ? Zc. 

PROPOSITION 8.1. If X = (S0(2))~k or (S0(2) e Z2C)k then F, is conjugate to S0(2) e Z2. 
Otherwise rF = 0(3). 

Proof. By proposition 4.9 F must contain H, the projection of into 0(3). From table 8.1 
the only Z with H c SO(2) Z2c are (S0(2))~k and (SO(2) Z2t). Thus periodic 
solutions with all other (listed) symmetry types must have zero angular momentum. If X 

is (S0(2))~k or (SO(2) OZ2C)k then Fix () = {z = Oj -k). The component of the 
r-momentum mapping coming from the S0(2)-action is X_ rlzrl2, see example 1 of?4a, and 
is therefore non-zero if (z_,, ..., z1) E Fix (X). By the discussion in ?6d the momentum isotropy 
subgroups F, for (S0(2)) k and (S0(2) ? Z2C) " are conjugate to S0(2) ( Z2c. I 

By this proposition and theorem 4.5 it is a straightforward exercise to compute the number 
of Floquet multipliers of a periodic trajectory with symmetry group S that are forced to 1. The 
results are given in the last column of table 7. 

(c) The residual Floquet operator 

To take the stability analysis further we must proceed case by case. 

(i) 0(2) and (0(2) Z2c)~ 

The analysis is essentially the same in both cases, so we consider only 0(2), which occurs for 

even 1. The action of 0(2) on V, is given by (8.5, 8.6). The complex character of this 

representation is ' 
Xr, where Xr is the character of the representation on {zj = 0 lj # + r}. The 

Xr are irreducible and pairwise non-isomorphic. Note that the factors (- 1)'- in (8.6) do not 

affect the isomorphism type of the representation. To calculate the residual representation 
A9 we use proposition 6.8. Let g be the Lie algebra of 0(3) x R and 6g that of 0(2). By the 

above, X[VJ = ;,o Xr) while X[g/9,] = 0 and X[,/9o. ? C] = X[o 0 C] -X[oz ? C]. Defining 

Xr as above and letting Xo- be the non-trivial complex one-dimensional character of 0(2) we 

have X[g9 C] = Xo + Xo- + X and X[z ( C] = Xo'- Thus the character of the residual rep- 
resentation is Xr. This is cyclospectral only if I < 1. The residual Floquet operator behaves 

as an element of [Sp(2; R)]1-l, the product of I- copies of Sp(2; R). 

(ii) (SO(2)) and (S0(2) E Z2>)~ 

Again we consider only (S0(2))~k explicitly, where k = 1,...,. If f parametrizes 

(SO(2))~k its action on V, is 

ifr (Z-l, ..., Zr, ., zl) = (e (-l+k) z-, ..., er+k) Zr, elQ+k) z) 

so that, in the obvious notation, 
l+k 

x[V] = Z Xr 
-I+k 
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In proposition 6.8 we must take g to be the Lie algebra of 0(3) x R, and g, that of SO(2) x 0R, 
and gz that of (S0(2))~k. Clearly 

X[g/g] = X1, 

X[g/g9z ? C] = X[, ? C] -X[, ? C] = 2Xo -Xo = Xo 

Thus the residual representation has character 

X-l+k +...+X-1 + X2 +. + Xk+z 

This is cyclospectral if and only if k = I or I- 1. In general the residual Floquet operator behaves 

as an element of 
[U(l; c)]1+ x [U(1, 1; c)]l-k+l 

(iii) D2k and (Dk e Z2C) 

We consider D2k. This is generated by K and the element i/ obtained by composing 
7T/k SO(2) with re S1. We have 

^*' (z, . ), (_-ilk 
zl 

) 
irn/k 

= - lnfeuk/ 

--e'n/k %l) } (8.8) 
- _ (eik-l) . ei(k+r) ir/k Z, ei(k+) /k z1) J 

_.e - e Z... e z. 

K (Z_, ...z, ZL) = (Z1, ,(- )l+ z , z1) (8.9) 
Denote by 

Xk-r, r # 0, k, the complex character of the four-dimensional (over R) irreducible symplectic 

representation of D2k on the space spanned by z_- and zr; 

Xk the character of the two-dimensional irreducible symplectic representation of D2k on the 

span of z0; 

Xo+ the character of the two-dimensional trivial representation on the span of 

Z-k+ (- ) k; 

X- the character of the two-dimensional irreducible symplectic representation of D2k on the 

span of z_-(- )k Zk. 

Note that Xk-, = X-r, if and only if r = r2(mod k). Then 

X[V]= Xo + Xo+ Xk-r, 
r-O 
r#k 

Clearly g, = 0, while g = g is the Lie algebra of 0(3) x R. Thus X[g/g1] = 0, and X[/gz g C] 
is the character of the complexification of the standard action of D2k on IR3 R, that is, 

Xi + Xo-+ X Thus the residual representation is 

1 Xk-r. 
r-O 

r# k, k-I 

I-k k 

which equals X + 2 E Xk-r + E Xr 
r-2 rl--k+l 

Hence the residual Floquet operator behaves as an element of 

[Sp(2; R)]min [1-2k-l+l) X [Sp(4; R)]t-k+ 
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(iv) The others 

We do not give detailed calculations for the remaining isotropy subgroups with two- 
dimensional fixed-point subspaces, namely those involving 0, 0, and T. However, note that all 

symplectic irreducible representations of U and 0 are real, hence so are those of (0, 0 5 Z2c)~, 
(O @ Z2C) l, and (0 5 Z2)~2. Thus the residual representations can never be cyclospectral. 
We therefore expect that it is possible for the corresponding periodic trajectories to be 

hyperbolic (for suitable choices of the hamiltonian). On the other hand, the tetrahedral group 
T does have a pair of two-dimensional complex symplectic irreducibles. The only other 

symplectic irreducibles are the trivial one and a six-dimensional real irreducible. When 1 = 2 

the calculation of the number of eigenvalues equal to 1 shows that the residual representation 
must be two dimensional. Because it cannot be trivial it must be complex and hence 

cyclospectral. 

TABLE 8. RESIDUAL FLOQUET OPERATORS FOR 1 < 3 

type of residual 
I S Floquet operator cyclospectral? 

0 0(3) 1 yes 
1 (0(2) ) Z2)~ 1 yes 

(S0(2) E Z2')~1 U(1; C) yes 
2 0(2) Sp(2; R) no 

(S0(2))~- [U(1; C)] yes 

(SO(2))~2 [U(1;C)]3 yes 

D4 Sp(2; R) no 
T U(1;C) yes 

3 (0(2) e Z2)~ [Sp(2; R)]2 no 
(SO(2) E Z2,)" [U(1; C)]3 X U(l; 1, C) no 

(S0(2) Z2)~2 [U(1; C)]6 yes 
(S0(2) E Z2,)~3 [U(1 ;.C)] yes 
(0 e Z2,) 2 not calculated no 

(D2 D Z2,) [Sp(2; R)]2 no 

(D, Z,)~ [Sp(2; R)] no 

The results of these calculations are summarized, for I = 0, 1, 2, and 3, in table 8. In these low 
dimensions many of the periodic trajectories are forced to be spectrally stable. This ceases to 
be true as I increases, though the two 'fastest spinning' rotating waves are always spectrally 
stable. Nevertheless, in all cases the possible behaviour of the Floquet multipliers is severely 
constrained by the group action, and these constraints are given precisely by the type of the 
residual Floquet operator, indicated in the third column of the table. 

We are grateful to Robert MacKay for introducing us to Krein theory, and to Marty 
Golubitsky for telling us of unpublished work of Xianwu Zeng. The work ofJ. M. and R. S. was 

partly supported by a SERC Research Grant, and that of M.R. by an SERC Advanced 
Research Fellowship. 
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